MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucfil Structured version   Visualization version   GIF version

Theorem caucfil 25190
Description: A Cauchy sequence predicate can be expressed in terms of the Cauchy filter predicate for a suitably chosen filter. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
caucfil.1 𝑍 = (ℤ𝑀)
caucfil.2 𝐿 = ((𝑋 FilMap 𝐹)‘(ℤ𝑍))
Assertion
Ref Expression
caucfil ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐿 ∈ (CauFil‘𝐷)))

Proof of Theorem caucfil
Dummy variables 𝑗 𝑘 𝑚 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 1088 . . . . . . . 8 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
2 caucfil.1 . . . . . . . . . . . . . 14 𝑍 = (ℤ𝑀)
32uztrn2 12819 . . . . . . . . . . . . 13 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
43adantll 714 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
5 simpll3 1215 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍𝑋)
65fdmd 6701 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → dom 𝐹 = 𝑍)
74, 6eleqtrrd 2832 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
85, 4ffvelcdmd 7060 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ 𝑋)
97, 8jca 511 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋))
109biantrurd 532 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
11 uzss 12823 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ𝑗) → (ℤ𝑘) ⊆ (ℤ𝑗))
1211adantl 481 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (ℤ𝑘) ⊆ (ℤ𝑗))
1312sseld 3948 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑚 ∈ (ℤ𝑘) → 𝑚 ∈ (ℤ𝑗)))
1413pm4.71rd 562 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑚 ∈ (ℤ𝑘) ↔ (𝑚 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑘))))
1514imbi1d 341 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝑚 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑘)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
16 impexp 450 . . . . . . . . . . 11 (((𝑚 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑘)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ (𝑚 ∈ (ℤ𝑗) → (𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
1715, 16bitrdi 287 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ (𝑚 ∈ (ℤ𝑗) → (𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
1817ralbidv2 3153 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
1910, 18bitr3d 281 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
201, 19bitrid 283 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
2120ralbidva 3155 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
22 r19.26-2 3119 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)) ↔ (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)))
23 eleq1w 2812 . . . . . . . . . . . . 13 (𝑢 = 𝑘 → (𝑢 ∈ (ℤ𝑚) ↔ 𝑘 ∈ (ℤ𝑚)))
24 fveq2 6861 . . . . . . . . . . . . . . 15 (𝑢 = 𝑘 → (𝐹𝑢) = (𝐹𝑘))
2524oveq2d 7406 . . . . . . . . . . . . . 14 (𝑢 = 𝑘 → ((𝐹𝑚)𝐷(𝐹𝑢)) = ((𝐹𝑚)𝐷(𝐹𝑘)))
2625breq1d 5120 . . . . . . . . . . . . 13 (𝑢 = 𝑘 → (((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥 ↔ ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥))
2723, 26imbi12d 344 . . . . . . . . . . . 12 (𝑢 = 𝑘 → ((𝑢 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥) ↔ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)))
2827cbvralvw 3216 . . . . . . . . . . 11 (∀𝑢 ∈ (ℤ𝑗)(𝑢 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥))
2928ralbii 3076 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑗)∀𝑢 ∈ (ℤ𝑗)(𝑢 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥) ↔ ∀𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥))
30 fveq2 6861 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → (ℤ𝑚) = (ℤ𝑘))
3130eleq2d 2815 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (𝑢 ∈ (ℤ𝑚) ↔ 𝑢 ∈ (ℤ𝑘)))
32 fveq2 6861 . . . . . . . . . . . . . 14 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
3332oveq1d 7405 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → ((𝐹𝑚)𝐷(𝐹𝑢)) = ((𝐹𝑘)𝐷(𝐹𝑢)))
3433breq1d 5120 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑢)) < 𝑥))
3531, 34imbi12d 344 . . . . . . . . . . 11 (𝑚 = 𝑘 → ((𝑢 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥) ↔ (𝑢 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑢)) < 𝑥)))
36 eleq1w 2812 . . . . . . . . . . . 12 (𝑢 = 𝑚 → (𝑢 ∈ (ℤ𝑘) ↔ 𝑚 ∈ (ℤ𝑘)))
37 fveq2 6861 . . . . . . . . . . . . . 14 (𝑢 = 𝑚 → (𝐹𝑢) = (𝐹𝑚))
3837oveq2d 7406 . . . . . . . . . . . . 13 (𝑢 = 𝑚 → ((𝐹𝑘)𝐷(𝐹𝑢)) = ((𝐹𝑘)𝐷(𝐹𝑚)))
3938breq1d 5120 . . . . . . . . . . . 12 (𝑢 = 𝑚 → (((𝐹𝑘)𝐷(𝐹𝑢)) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
4036, 39imbi12d 344 . . . . . . . . . . 11 (𝑢 = 𝑚 → ((𝑢 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑢)) < 𝑥) ↔ (𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
4135, 40cbvral2vw 3220 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑗)∀𝑢 ∈ (ℤ𝑗)(𝑢 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
42 ralcom 3266 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥))
4329, 41, 423bitr3i 301 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥))
4443anbi2i 623 . . . . . . . 8 ((∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)) ↔ (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)))
45 anidm 564 . . . . . . . 8 ((∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
4622, 44, 453bitr2i 299 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
47 simpll1 1213 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → 𝐷 ∈ (∞Met‘𝑋))
48 simpll3 1215 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → 𝐹:𝑍𝑋)
492uztrn2 12819 . . . . . . . . . . . . . . 15 ((𝑗𝑍𝑚 ∈ (ℤ𝑗)) → 𝑚𝑍)
5049ad2ant2l 746 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → 𝑚𝑍)
5148, 50ffvelcdmd 7060 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (𝐹𝑚) ∈ 𝑋)
528adantrr 717 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ 𝑋)
53 xmetsym 24242 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑚) ∈ 𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → ((𝐹𝑚)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑚)))
5447, 51, 52, 53syl3anc 1373 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → ((𝐹𝑚)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑚)))
5554breq1d 5120 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
5655imbi2d 340 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → ((𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥) ↔ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
5756anbi2d 630 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)) ↔ ((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
58 jaob 963 . . . . . . . . . 10 (((𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
59 eluzelz 12810 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ𝑗) → 𝑘 ∈ ℤ)
60 eluzelz 12810 . . . . . . . . . . . . 13 (𝑚 ∈ (ℤ𝑗) → 𝑚 ∈ ℤ)
61 uztric 12824 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)))
6259, 60, 61syl2an 596 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)))
6362adantl 481 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)))
64 pm5.5 361 . . . . . . . . . . 11 ((𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)) → (((𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6563, 64syl 17 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (((𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6658, 65bitr3id 285 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)) ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6757, 66bitrd 279 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)) ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
68672ralbidva 3200 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6946, 68bitr3id 285 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7021, 69bitrd 279 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7170rexbidva 3156 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
72 uzf 12803 . . . . . 6 :ℤ⟶𝒫 ℤ
73 ffn 6691 . . . . . 6 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
7472, 73ax-mp 5 . . . . 5 Fn ℤ
75 uzssz 12821 . . . . . 6 (ℤ𝑀) ⊆ ℤ
762, 75eqsstri 3996 . . . . 5 𝑍 ⊆ ℤ
77 raleq 3298 . . . . . . 7 (𝑢 = (ℤ𝑗) → (∀𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7877raleqbi1dv 3313 . . . . . 6 (𝑢 = (ℤ𝑗) → (∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7978rexima 7215 . . . . 5 ((ℤ Fn ℤ ∧ 𝑍 ⊆ ℤ) → (∃𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
8074, 76, 79mp2an 692 . . . 4 (∃𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)
8171, 80bitr4di 289 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∃𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
8281ralbidv 3157 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
83 elfvdm 6898 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
8483adantr 480 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) → 𝑋 ∈ dom ∞Met)
85 cnex 11156 . . . . . 6 ℂ ∈ V
8684, 85jctir 520 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) → (𝑋 ∈ dom ∞Met ∧ ℂ ∈ V))
87 zsscn 12544 . . . . . . 7 ℤ ⊆ ℂ
8876, 87sstri 3959 . . . . . 6 𝑍 ⊆ ℂ
8988jctr 524 . . . . 5 (𝐹:𝑍𝑋 → (𝐹:𝑍𝑋𝑍 ⊆ ℂ))
90 elpm2r 8821 . . . . 5 (((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) ∧ (𝐹:𝑍𝑋𝑍 ⊆ ℂ)) → 𝐹 ∈ (𝑋pm ℂ))
9186, 89, 90syl2an 596 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) ∧ 𝐹:𝑍𝑋) → 𝐹 ∈ (𝑋pm ℂ))
92 simpl 482 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) → 𝐷 ∈ (∞Met‘𝑋))
93 simpr 484 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
942, 92, 93iscau3 25185 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
9594baibd 539 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) ∧ 𝐹 ∈ (𝑋pm ℂ)) → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
9691, 95syldan 591 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) ∧ 𝐹:𝑍𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
97963impa 1109 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
98 caucfil.2 . . . 4 𝐿 = ((𝑋 FilMap 𝐹)‘(ℤ𝑍))
9998eleq1i 2820 . . 3 (𝐿 ∈ (CauFil‘𝐷) ↔ ((𝑋 FilMap 𝐹)‘(ℤ𝑍)) ∈ (CauFil‘𝐷))
1002uzfbas 23792 . . . 4 (𝑀 ∈ ℤ → (ℤ𝑍) ∈ (fBas‘𝑍))
101 fmcfil 25179 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (ℤ𝑍) ∈ (fBas‘𝑍) ∧ 𝐹:𝑍𝑋) → (((𝑋 FilMap 𝐹)‘(ℤ𝑍)) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
102100, 101syl3an2 1164 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (((𝑋 FilMap 𝐹)‘(ℤ𝑍)) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
10399, 102bitrid 283 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐿 ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
10482, 97, 1033bitr4d 311 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐿 ∈ (CauFil‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  wss 3917  𝒫 cpw 4566   class class class wbr 5110  dom cdm 5641  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  pm cpm 8803  cc 11073   < clt 11215  cz 12536  cuz 12800  +crp 12958  ∞Metcxmet 21256  fBascfbas 21259   FilMap cfm 23827  CauFilccfil 25159  Cauccau 25160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-z 12537  df-uz 12801  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ico 13319  df-rest 17392  df-psmet 21263  df-xmet 21264  df-bl 21266  df-fbas 21268  df-fg 21269  df-fil 23740  df-fm 23832  df-cfil 25162  df-cau 25163
This theorem is referenced by:  cmetcaulem  25195
  Copyright terms: Public domain W3C validator