MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucfil Structured version   Visualization version   GIF version

Theorem caucfil 23878
Description: A Cauchy sequence predicate can be expressed in terms of the Cauchy filter predicate for a suitably chosen filter. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
caucfil.1 𝑍 = (ℤ𝑀)
caucfil.2 𝐿 = ((𝑋 FilMap 𝐹)‘(ℤ𝑍))
Assertion
Ref Expression
caucfil ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐿 ∈ (CauFil‘𝐷)))

Proof of Theorem caucfil
Dummy variables 𝑗 𝑘 𝑚 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 1083 . . . . . . . 8 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
2 caucfil.1 . . . . . . . . . . . . . 14 𝑍 = (ℤ𝑀)
32uztrn2 12254 . . . . . . . . . . . . 13 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
43adantll 712 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
5 simpll3 1208 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍𝑋)
65fdmd 6516 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → dom 𝐹 = 𝑍)
74, 6eleqtrrd 2914 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
85, 4ffvelrnd 6845 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ 𝑋)
97, 8jca 514 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋))
109biantrurd 535 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
11 uzss 12257 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ𝑗) → (ℤ𝑘) ⊆ (ℤ𝑗))
1211adantl 484 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (ℤ𝑘) ⊆ (ℤ𝑗))
1312sseld 3964 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑚 ∈ (ℤ𝑘) → 𝑚 ∈ (ℤ𝑗)))
1413pm4.71rd 565 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑚 ∈ (ℤ𝑘) ↔ (𝑚 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑘))))
1514imbi1d 344 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝑚 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑘)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
16 impexp 453 . . . . . . . . . . 11 (((𝑚 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑘)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ (𝑚 ∈ (ℤ𝑗) → (𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
1715, 16syl6bb 289 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ (𝑚 ∈ (ℤ𝑗) → (𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
1817ralbidv2 3193 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
1910, 18bitr3d 283 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
201, 19syl5bb 285 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
2120ralbidva 3194 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
22 r19.26-2 3169 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)) ↔ (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)))
23 eleq1w 2893 . . . . . . . . . . . . 13 (𝑢 = 𝑘 → (𝑢 ∈ (ℤ𝑚) ↔ 𝑘 ∈ (ℤ𝑚)))
24 fveq2 6663 . . . . . . . . . . . . . . 15 (𝑢 = 𝑘 → (𝐹𝑢) = (𝐹𝑘))
2524oveq2d 7164 . . . . . . . . . . . . . 14 (𝑢 = 𝑘 → ((𝐹𝑚)𝐷(𝐹𝑢)) = ((𝐹𝑚)𝐷(𝐹𝑘)))
2625breq1d 5067 . . . . . . . . . . . . 13 (𝑢 = 𝑘 → (((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥 ↔ ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥))
2723, 26imbi12d 347 . . . . . . . . . . . 12 (𝑢 = 𝑘 → ((𝑢 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥) ↔ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)))
2827cbvralvw 3448 . . . . . . . . . . 11 (∀𝑢 ∈ (ℤ𝑗)(𝑢 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥))
2928ralbii 3163 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑗)∀𝑢 ∈ (ℤ𝑗)(𝑢 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥) ↔ ∀𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥))
30 fveq2 6663 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → (ℤ𝑚) = (ℤ𝑘))
3130eleq2d 2896 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (𝑢 ∈ (ℤ𝑚) ↔ 𝑢 ∈ (ℤ𝑘)))
32 fveq2 6663 . . . . . . . . . . . . . 14 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
3332oveq1d 7163 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → ((𝐹𝑚)𝐷(𝐹𝑢)) = ((𝐹𝑘)𝐷(𝐹𝑢)))
3433breq1d 5067 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑢)) < 𝑥))
3531, 34imbi12d 347 . . . . . . . . . . 11 (𝑚 = 𝑘 → ((𝑢 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥) ↔ (𝑢 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑢)) < 𝑥)))
36 eleq1w 2893 . . . . . . . . . . . 12 (𝑢 = 𝑚 → (𝑢 ∈ (ℤ𝑘) ↔ 𝑚 ∈ (ℤ𝑘)))
37 fveq2 6663 . . . . . . . . . . . . . 14 (𝑢 = 𝑚 → (𝐹𝑢) = (𝐹𝑚))
3837oveq2d 7164 . . . . . . . . . . . . 13 (𝑢 = 𝑚 → ((𝐹𝑘)𝐷(𝐹𝑢)) = ((𝐹𝑘)𝐷(𝐹𝑚)))
3938breq1d 5067 . . . . . . . . . . . 12 (𝑢 = 𝑚 → (((𝐹𝑘)𝐷(𝐹𝑢)) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
4036, 39imbi12d 347 . . . . . . . . . . 11 (𝑢 = 𝑚 → ((𝑢 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑢)) < 𝑥) ↔ (𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
4135, 40cbvral2vw 3460 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑗)∀𝑢 ∈ (ℤ𝑗)(𝑢 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
42 ralcom 3352 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥))
4329, 41, 423bitr3i 303 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥))
4443anbi2i 624 . . . . . . . 8 ((∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)) ↔ (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)))
45 anidm 567 . . . . . . . 8 ((∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
4622, 44, 453bitr2i 301 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
47 simpll1 1206 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → 𝐷 ∈ (∞Met‘𝑋))
48 simpll3 1208 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → 𝐹:𝑍𝑋)
492uztrn2 12254 . . . . . . . . . . . . . . 15 ((𝑗𝑍𝑚 ∈ (ℤ𝑗)) → 𝑚𝑍)
5049ad2ant2l 744 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → 𝑚𝑍)
5148, 50ffvelrnd 6845 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (𝐹𝑚) ∈ 𝑋)
528adantrr 715 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ 𝑋)
53 xmetsym 22949 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑚) ∈ 𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → ((𝐹𝑚)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑚)))
5447, 51, 52, 53syl3anc 1365 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → ((𝐹𝑚)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑚)))
5554breq1d 5067 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
5655imbi2d 343 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → ((𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥) ↔ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
5756anbi2d 630 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)) ↔ ((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
58 jaob 957 . . . . . . . . . 10 (((𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
59 eluzelz 12245 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ𝑗) → 𝑘 ∈ ℤ)
60 eluzelz 12245 . . . . . . . . . . . . 13 (𝑚 ∈ (ℤ𝑗) → 𝑚 ∈ ℤ)
61 uztric 12258 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)))
6259, 60, 61syl2an 597 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)))
6362adantl 484 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)))
64 pm5.5 364 . . . . . . . . . . 11 ((𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)) → (((𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6563, 64syl 17 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (((𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6658, 65syl5bbr 287 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)) ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6757, 66bitrd 281 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)) ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
68672ralbidva 3196 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6946, 68syl5bbr 287 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7021, 69bitrd 281 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7170rexbidva 3294 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
72 uzf 12238 . . . . . 6 :ℤ⟶𝒫 ℤ
73 ffn 6507 . . . . . 6 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
7472, 73ax-mp 5 . . . . 5 Fn ℤ
75 uzssz 12256 . . . . . 6 (ℤ𝑀) ⊆ ℤ
762, 75eqsstri 3999 . . . . 5 𝑍 ⊆ ℤ
77 raleq 3404 . . . . . . 7 (𝑢 = (ℤ𝑗) → (∀𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7877raleqbi1dv 3402 . . . . . 6 (𝑢 = (ℤ𝑗) → (∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7978rexima 6991 . . . . 5 ((ℤ Fn ℤ ∧ 𝑍 ⊆ ℤ) → (∃𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
8074, 76, 79mp2an 690 . . . 4 (∃𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)
8171, 80syl6bbr 291 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∃𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
8281ralbidv 3195 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
83 elfvdm 6695 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
8483adantr 483 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) → 𝑋 ∈ dom ∞Met)
85 cnex 10610 . . . . . 6 ℂ ∈ V
8684, 85jctir 523 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) → (𝑋 ∈ dom ∞Met ∧ ℂ ∈ V))
87 zsscn 11981 . . . . . . 7 ℤ ⊆ ℂ
8876, 87sstri 3974 . . . . . 6 𝑍 ⊆ ℂ
8988jctr 527 . . . . 5 (𝐹:𝑍𝑋 → (𝐹:𝑍𝑋𝑍 ⊆ ℂ))
90 elpm2r 8416 . . . . 5 (((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) ∧ (𝐹:𝑍𝑋𝑍 ⊆ ℂ)) → 𝐹 ∈ (𝑋pm ℂ))
9186, 89, 90syl2an 597 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) ∧ 𝐹:𝑍𝑋) → 𝐹 ∈ (𝑋pm ℂ))
92 simpl 485 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) → 𝐷 ∈ (∞Met‘𝑋))
93 simpr 487 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
942, 92, 93iscau3 23873 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
9594baibd 542 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) ∧ 𝐹 ∈ (𝑋pm ℂ)) → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
9691, 95syldan 593 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) ∧ 𝐹:𝑍𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
97963impa 1104 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
98 caucfil.2 . . . 4 𝐿 = ((𝑋 FilMap 𝐹)‘(ℤ𝑍))
9998eleq1i 2901 . . 3 (𝐿 ∈ (CauFil‘𝐷) ↔ ((𝑋 FilMap 𝐹)‘(ℤ𝑍)) ∈ (CauFil‘𝐷))
1002uzfbas 22498 . . . 4 (𝑀 ∈ ℤ → (ℤ𝑍) ∈ (fBas‘𝑍))
101 fmcfil 23867 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (ℤ𝑍) ∈ (fBas‘𝑍) ∧ 𝐹:𝑍𝑋) → (((𝑋 FilMap 𝐹)‘(ℤ𝑍)) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
102100, 101syl3an2 1158 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (((𝑋 FilMap 𝐹)‘(ℤ𝑍)) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
10399, 102syl5bb 285 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐿 ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
10482, 97, 1033bitr4d 313 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐿 ∈ (CauFil‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1081   = wceq 1530  wcel 2107  wral 3136  wrex 3137  Vcvv 3493  wss 3934  𝒫 cpw 4537   class class class wbr 5057  dom cdm 5548  cima 5551   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7148  pm cpm 8399  cc 10527   < clt 10667  cz 11973  cuz 12235  +crp 12381  ∞Metcxmet 20522  fBascfbas 20525   FilMap cfm 22533  CauFilccfil 23847  Cauccau 23848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-map 8400  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-z 11974  df-uz 12236  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ico 12736  df-rest 16688  df-psmet 20529  df-xmet 20530  df-bl 20532  df-fbas 20534  df-fg 20535  df-fil 22446  df-fm 22538  df-cfil 23850  df-cau 23851
This theorem is referenced by:  cmetcaulem  23883
  Copyright terms: Public domain W3C validator