MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucfil Structured version   Visualization version   GIF version

Theorem caucfil 24447
Description: A Cauchy sequence predicate can be expressed in terms of the Cauchy filter predicate for a suitably chosen filter. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
caucfil.1 𝑍 = (ℤ𝑀)
caucfil.2 𝐿 = ((𝑋 FilMap 𝐹)‘(ℤ𝑍))
Assertion
Ref Expression
caucfil ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐿 ∈ (CauFil‘𝐷)))

Proof of Theorem caucfil
Dummy variables 𝑗 𝑘 𝑚 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 1088 . . . . . . . 8 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
2 caucfil.1 . . . . . . . . . . . . . 14 𝑍 = (ℤ𝑀)
32uztrn2 12601 . . . . . . . . . . . . 13 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
43adantll 711 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
5 simpll3 1213 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍𝑋)
65fdmd 6611 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → dom 𝐹 = 𝑍)
74, 6eleqtrrd 2842 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
85, 4ffvelrnd 6962 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ 𝑋)
97, 8jca 512 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋))
109biantrurd 533 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
11 uzss 12605 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ𝑗) → (ℤ𝑘) ⊆ (ℤ𝑗))
1211adantl 482 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (ℤ𝑘) ⊆ (ℤ𝑗))
1312sseld 3920 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑚 ∈ (ℤ𝑘) → 𝑚 ∈ (ℤ𝑗)))
1413pm4.71rd 563 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑚 ∈ (ℤ𝑘) ↔ (𝑚 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑘))))
1514imbi1d 342 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝑚 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑘)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
16 impexp 451 . . . . . . . . . . 11 (((𝑚 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑘)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ (𝑚 ∈ (ℤ𝑗) → (𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
1715, 16bitrdi 287 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ (𝑚 ∈ (ℤ𝑗) → (𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
1817ralbidv2 3110 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
1910, 18bitr3d 280 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
201, 19bitrid 282 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
2120ralbidva 3111 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
22 r19.26-2 3096 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)) ↔ (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)))
23 eleq1w 2821 . . . . . . . . . . . . 13 (𝑢 = 𝑘 → (𝑢 ∈ (ℤ𝑚) ↔ 𝑘 ∈ (ℤ𝑚)))
24 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑢 = 𝑘 → (𝐹𝑢) = (𝐹𝑘))
2524oveq2d 7291 . . . . . . . . . . . . . 14 (𝑢 = 𝑘 → ((𝐹𝑚)𝐷(𝐹𝑢)) = ((𝐹𝑚)𝐷(𝐹𝑘)))
2625breq1d 5084 . . . . . . . . . . . . 13 (𝑢 = 𝑘 → (((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥 ↔ ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥))
2723, 26imbi12d 345 . . . . . . . . . . . 12 (𝑢 = 𝑘 → ((𝑢 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥) ↔ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)))
2827cbvralvw 3383 . . . . . . . . . . 11 (∀𝑢 ∈ (ℤ𝑗)(𝑢 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥))
2928ralbii 3092 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑗)∀𝑢 ∈ (ℤ𝑗)(𝑢 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥) ↔ ∀𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥))
30 fveq2 6774 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → (ℤ𝑚) = (ℤ𝑘))
3130eleq2d 2824 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (𝑢 ∈ (ℤ𝑚) ↔ 𝑢 ∈ (ℤ𝑘)))
32 fveq2 6774 . . . . . . . . . . . . . 14 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
3332oveq1d 7290 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → ((𝐹𝑚)𝐷(𝐹𝑢)) = ((𝐹𝑘)𝐷(𝐹𝑢)))
3433breq1d 5084 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑢)) < 𝑥))
3531, 34imbi12d 345 . . . . . . . . . . 11 (𝑚 = 𝑘 → ((𝑢 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥) ↔ (𝑢 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑢)) < 𝑥)))
36 eleq1w 2821 . . . . . . . . . . . 12 (𝑢 = 𝑚 → (𝑢 ∈ (ℤ𝑘) ↔ 𝑚 ∈ (ℤ𝑘)))
37 fveq2 6774 . . . . . . . . . . . . . 14 (𝑢 = 𝑚 → (𝐹𝑢) = (𝐹𝑚))
3837oveq2d 7291 . . . . . . . . . . . . 13 (𝑢 = 𝑚 → ((𝐹𝑘)𝐷(𝐹𝑢)) = ((𝐹𝑘)𝐷(𝐹𝑚)))
3938breq1d 5084 . . . . . . . . . . . 12 (𝑢 = 𝑚 → (((𝐹𝑘)𝐷(𝐹𝑢)) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
4036, 39imbi12d 345 . . . . . . . . . . 11 (𝑢 = 𝑚 → ((𝑢 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑢)) < 𝑥) ↔ (𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
4135, 40cbvral2vw 3396 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑗)∀𝑢 ∈ (ℤ𝑗)(𝑢 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
42 ralcom 3166 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥))
4329, 41, 423bitr3i 301 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥))
4443anbi2i 623 . . . . . . . 8 ((∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)) ↔ (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)))
45 anidm 565 . . . . . . . 8 ((∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
4622, 44, 453bitr2i 299 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
47 simpll1 1211 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → 𝐷 ∈ (∞Met‘𝑋))
48 simpll3 1213 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → 𝐹:𝑍𝑋)
492uztrn2 12601 . . . . . . . . . . . . . . 15 ((𝑗𝑍𝑚 ∈ (ℤ𝑗)) → 𝑚𝑍)
5049ad2ant2l 743 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → 𝑚𝑍)
5148, 50ffvelrnd 6962 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (𝐹𝑚) ∈ 𝑋)
528adantrr 714 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ 𝑋)
53 xmetsym 23500 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑚) ∈ 𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → ((𝐹𝑚)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑚)))
5447, 51, 52, 53syl3anc 1370 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → ((𝐹𝑚)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑚)))
5554breq1d 5084 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
5655imbi2d 341 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → ((𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥) ↔ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
5756anbi2d 629 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)) ↔ ((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
58 jaob 959 . . . . . . . . . 10 (((𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
59 eluzelz 12592 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ𝑗) → 𝑘 ∈ ℤ)
60 eluzelz 12592 . . . . . . . . . . . . 13 (𝑚 ∈ (ℤ𝑗) → 𝑚 ∈ ℤ)
61 uztric 12606 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)))
6259, 60, 61syl2an 596 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)))
6362adantl 482 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)))
64 pm5.5 362 . . . . . . . . . . 11 ((𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)) → (((𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6563, 64syl 17 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (((𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6658, 65bitr3id 285 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)) ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6757, 66bitrd 278 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)) ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
68672ralbidva 3128 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6946, 68bitr3id 285 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7021, 69bitrd 278 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7170rexbidva 3225 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
72 uzf 12585 . . . . . 6 :ℤ⟶𝒫 ℤ
73 ffn 6600 . . . . . 6 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
7472, 73ax-mp 5 . . . . 5 Fn ℤ
75 uzssz 12603 . . . . . 6 (ℤ𝑀) ⊆ ℤ
762, 75eqsstri 3955 . . . . 5 𝑍 ⊆ ℤ
77 raleq 3342 . . . . . . 7 (𝑢 = (ℤ𝑗) → (∀𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7877raleqbi1dv 3340 . . . . . 6 (𝑢 = (ℤ𝑗) → (∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7978rexima 7113 . . . . 5 ((ℤ Fn ℤ ∧ 𝑍 ⊆ ℤ) → (∃𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
8074, 76, 79mp2an 689 . . . 4 (∃𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)
8171, 80bitr4di 289 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∃𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
8281ralbidv 3112 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
83 elfvdm 6806 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
8483adantr 481 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) → 𝑋 ∈ dom ∞Met)
85 cnex 10952 . . . . . 6 ℂ ∈ V
8684, 85jctir 521 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) → (𝑋 ∈ dom ∞Met ∧ ℂ ∈ V))
87 zsscn 12327 . . . . . . 7 ℤ ⊆ ℂ
8876, 87sstri 3930 . . . . . 6 𝑍 ⊆ ℂ
8988jctr 525 . . . . 5 (𝐹:𝑍𝑋 → (𝐹:𝑍𝑋𝑍 ⊆ ℂ))
90 elpm2r 8633 . . . . 5 (((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) ∧ (𝐹:𝑍𝑋𝑍 ⊆ ℂ)) → 𝐹 ∈ (𝑋pm ℂ))
9186, 89, 90syl2an 596 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) ∧ 𝐹:𝑍𝑋) → 𝐹 ∈ (𝑋pm ℂ))
92 simpl 483 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) → 𝐷 ∈ (∞Met‘𝑋))
93 simpr 485 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
942, 92, 93iscau3 24442 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
9594baibd 540 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) ∧ 𝐹 ∈ (𝑋pm ℂ)) → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
9691, 95syldan 591 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) ∧ 𝐹:𝑍𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
97963impa 1109 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
98 caucfil.2 . . . 4 𝐿 = ((𝑋 FilMap 𝐹)‘(ℤ𝑍))
9998eleq1i 2829 . . 3 (𝐿 ∈ (CauFil‘𝐷) ↔ ((𝑋 FilMap 𝐹)‘(ℤ𝑍)) ∈ (CauFil‘𝐷))
1002uzfbas 23049 . . . 4 (𝑀 ∈ ℤ → (ℤ𝑍) ∈ (fBas‘𝑍))
101 fmcfil 24436 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (ℤ𝑍) ∈ (fBas‘𝑍) ∧ 𝐹:𝑍𝑋) → (((𝑋 FilMap 𝐹)‘(ℤ𝑍)) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
102100, 101syl3an2 1163 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (((𝑋 FilMap 𝐹)‘(ℤ𝑍)) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
10399, 102bitrid 282 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐿 ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
10482, 97, 1033bitr4d 311 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐿 ∈ (CauFil‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  wss 3887  𝒫 cpw 4533   class class class wbr 5074  dom cdm 5589  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  pm cpm 8616  cc 10869   < clt 11009  cz 12319  cuz 12582  +crp 12730  ∞Metcxmet 20582  fBascfbas 20585   FilMap cfm 23084  CauFilccfil 24416  Cauccau 24417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-z 12320  df-uz 12583  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ico 13085  df-rest 17133  df-psmet 20589  df-xmet 20590  df-bl 20592  df-fbas 20594  df-fg 20595  df-fil 22997  df-fm 23089  df-cfil 24419  df-cau 24420
This theorem is referenced by:  cmetcaulem  24452
  Copyright terms: Public domain W3C validator