MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucfil Structured version   Visualization version   GIF version

Theorem caucfil 24352
Description: A Cauchy sequence predicate can be expressed in terms of the Cauchy filter predicate for a suitably chosen filter. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
caucfil.1 𝑍 = (ℤ𝑀)
caucfil.2 𝐿 = ((𝑋 FilMap 𝐹)‘(ℤ𝑍))
Assertion
Ref Expression
caucfil ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐿 ∈ (CauFil‘𝐷)))

Proof of Theorem caucfil
Dummy variables 𝑗 𝑘 𝑚 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 1087 . . . . . . . 8 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
2 caucfil.1 . . . . . . . . . . . . . 14 𝑍 = (ℤ𝑀)
32uztrn2 12530 . . . . . . . . . . . . 13 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
43adantll 710 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
5 simpll3 1212 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍𝑋)
65fdmd 6595 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → dom 𝐹 = 𝑍)
74, 6eleqtrrd 2842 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
85, 4ffvelrnd 6944 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ 𝑋)
97, 8jca 511 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋))
109biantrurd 532 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
11 uzss 12534 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ𝑗) → (ℤ𝑘) ⊆ (ℤ𝑗))
1211adantl 481 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (ℤ𝑘) ⊆ (ℤ𝑗))
1312sseld 3916 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑚 ∈ (ℤ𝑘) → 𝑚 ∈ (ℤ𝑗)))
1413pm4.71rd 562 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑚 ∈ (ℤ𝑘) ↔ (𝑚 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑘))))
1514imbi1d 341 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝑚 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑘)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
16 impexp 450 . . . . . . . . . . 11 (((𝑚 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑘)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ (𝑚 ∈ (ℤ𝑗) → (𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
1715, 16bitrdi 286 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ (𝑚 ∈ (ℤ𝑗) → (𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
1817ralbidv2 3118 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
1910, 18bitr3d 280 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
201, 19syl5bb 282 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
2120ralbidva 3119 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
22 r19.26-2 3095 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)) ↔ (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)))
23 eleq1w 2821 . . . . . . . . . . . . 13 (𝑢 = 𝑘 → (𝑢 ∈ (ℤ𝑚) ↔ 𝑘 ∈ (ℤ𝑚)))
24 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑢 = 𝑘 → (𝐹𝑢) = (𝐹𝑘))
2524oveq2d 7271 . . . . . . . . . . . . . 14 (𝑢 = 𝑘 → ((𝐹𝑚)𝐷(𝐹𝑢)) = ((𝐹𝑚)𝐷(𝐹𝑘)))
2625breq1d 5080 . . . . . . . . . . . . 13 (𝑢 = 𝑘 → (((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥 ↔ ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥))
2723, 26imbi12d 344 . . . . . . . . . . . 12 (𝑢 = 𝑘 → ((𝑢 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥) ↔ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)))
2827cbvralvw 3372 . . . . . . . . . . 11 (∀𝑢 ∈ (ℤ𝑗)(𝑢 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥))
2928ralbii 3090 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑗)∀𝑢 ∈ (ℤ𝑗)(𝑢 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥) ↔ ∀𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥))
30 fveq2 6756 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → (ℤ𝑚) = (ℤ𝑘))
3130eleq2d 2824 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (𝑢 ∈ (ℤ𝑚) ↔ 𝑢 ∈ (ℤ𝑘)))
32 fveq2 6756 . . . . . . . . . . . . . 14 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
3332oveq1d 7270 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → ((𝐹𝑚)𝐷(𝐹𝑢)) = ((𝐹𝑘)𝐷(𝐹𝑢)))
3433breq1d 5080 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑢)) < 𝑥))
3531, 34imbi12d 344 . . . . . . . . . . 11 (𝑚 = 𝑘 → ((𝑢 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥) ↔ (𝑢 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑢)) < 𝑥)))
36 eleq1w 2821 . . . . . . . . . . . 12 (𝑢 = 𝑚 → (𝑢 ∈ (ℤ𝑘) ↔ 𝑚 ∈ (ℤ𝑘)))
37 fveq2 6756 . . . . . . . . . . . . . 14 (𝑢 = 𝑚 → (𝐹𝑢) = (𝐹𝑚))
3837oveq2d 7271 . . . . . . . . . . . . 13 (𝑢 = 𝑚 → ((𝐹𝑘)𝐷(𝐹𝑢)) = ((𝐹𝑘)𝐷(𝐹𝑚)))
3938breq1d 5080 . . . . . . . . . . . 12 (𝑢 = 𝑚 → (((𝐹𝑘)𝐷(𝐹𝑢)) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
4036, 39imbi12d 344 . . . . . . . . . . 11 (𝑢 = 𝑚 → ((𝑢 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑢)) < 𝑥) ↔ (𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
4135, 40cbvral2vw 3385 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑗)∀𝑢 ∈ (ℤ𝑗)(𝑢 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
42 ralcom 3280 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥))
4329, 41, 423bitr3i 300 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥))
4443anbi2i 622 . . . . . . . 8 ((∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)) ↔ (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)))
45 anidm 564 . . . . . . . 8 ((∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
4622, 44, 453bitr2i 298 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
47 simpll1 1210 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → 𝐷 ∈ (∞Met‘𝑋))
48 simpll3 1212 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → 𝐹:𝑍𝑋)
492uztrn2 12530 . . . . . . . . . . . . . . 15 ((𝑗𝑍𝑚 ∈ (ℤ𝑗)) → 𝑚𝑍)
5049ad2ant2l 742 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → 𝑚𝑍)
5148, 50ffvelrnd 6944 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (𝐹𝑚) ∈ 𝑋)
528adantrr 713 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ 𝑋)
53 xmetsym 23408 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑚) ∈ 𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → ((𝐹𝑚)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑚)))
5447, 51, 52, 53syl3anc 1369 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → ((𝐹𝑚)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑚)))
5554breq1d 5080 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
5655imbi2d 340 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → ((𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥) ↔ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
5756anbi2d 628 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)) ↔ ((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
58 jaob 958 . . . . . . . . . 10 (((𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
59 eluzelz 12521 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ𝑗) → 𝑘 ∈ ℤ)
60 eluzelz 12521 . . . . . . . . . . . . 13 (𝑚 ∈ (ℤ𝑗) → 𝑚 ∈ ℤ)
61 uztric 12535 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)))
6259, 60, 61syl2an 595 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)))
6362adantl 481 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)))
64 pm5.5 361 . . . . . . . . . . 11 ((𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)) → (((𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6563, 64syl 17 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (((𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6658, 65bitr3id 284 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)) ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6757, 66bitrd 278 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)) ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
68672ralbidva 3121 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6946, 68bitr3id 284 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7021, 69bitrd 278 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7170rexbidva 3224 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
72 uzf 12514 . . . . . 6 :ℤ⟶𝒫 ℤ
73 ffn 6584 . . . . . 6 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
7472, 73ax-mp 5 . . . . 5 Fn ℤ
75 uzssz 12532 . . . . . 6 (ℤ𝑀) ⊆ ℤ
762, 75eqsstri 3951 . . . . 5 𝑍 ⊆ ℤ
77 raleq 3333 . . . . . . 7 (𝑢 = (ℤ𝑗) → (∀𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7877raleqbi1dv 3331 . . . . . 6 (𝑢 = (ℤ𝑗) → (∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7978rexima 7095 . . . . 5 ((ℤ Fn ℤ ∧ 𝑍 ⊆ ℤ) → (∃𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
8074, 76, 79mp2an 688 . . . 4 (∃𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)
8171, 80bitr4di 288 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∃𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
8281ralbidv 3120 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
83 elfvdm 6788 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
8483adantr 480 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) → 𝑋 ∈ dom ∞Met)
85 cnex 10883 . . . . . 6 ℂ ∈ V
8684, 85jctir 520 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) → (𝑋 ∈ dom ∞Met ∧ ℂ ∈ V))
87 zsscn 12257 . . . . . . 7 ℤ ⊆ ℂ
8876, 87sstri 3926 . . . . . 6 𝑍 ⊆ ℂ
8988jctr 524 . . . . 5 (𝐹:𝑍𝑋 → (𝐹:𝑍𝑋𝑍 ⊆ ℂ))
90 elpm2r 8591 . . . . 5 (((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) ∧ (𝐹:𝑍𝑋𝑍 ⊆ ℂ)) → 𝐹 ∈ (𝑋pm ℂ))
9186, 89, 90syl2an 595 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) ∧ 𝐹:𝑍𝑋) → 𝐹 ∈ (𝑋pm ℂ))
92 simpl 482 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) → 𝐷 ∈ (∞Met‘𝑋))
93 simpr 484 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
942, 92, 93iscau3 24347 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
9594baibd 539 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) ∧ 𝐹 ∈ (𝑋pm ℂ)) → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
9691, 95syldan 590 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) ∧ 𝐹:𝑍𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
97963impa 1108 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
98 caucfil.2 . . . 4 𝐿 = ((𝑋 FilMap 𝐹)‘(ℤ𝑍))
9998eleq1i 2829 . . 3 (𝐿 ∈ (CauFil‘𝐷) ↔ ((𝑋 FilMap 𝐹)‘(ℤ𝑍)) ∈ (CauFil‘𝐷))
1002uzfbas 22957 . . . 4 (𝑀 ∈ ℤ → (ℤ𝑍) ∈ (fBas‘𝑍))
101 fmcfil 24341 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (ℤ𝑍) ∈ (fBas‘𝑍) ∧ 𝐹:𝑍𝑋) → (((𝑋 FilMap 𝐹)‘(ℤ𝑍)) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
102100, 101syl3an2 1162 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (((𝑋 FilMap 𝐹)‘(ℤ𝑍)) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
10399, 102syl5bb 282 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐿 ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
10482, 97, 1033bitr4d 310 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐿 ∈ (CauFil‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  wss 3883  𝒫 cpw 4530   class class class wbr 5070  dom cdm 5580  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  pm cpm 8574  cc 10800   < clt 10940  cz 12249  cuz 12511  +crp 12659  ∞Metcxmet 20495  fBascfbas 20498   FilMap cfm 22992  CauFilccfil 24321  Cauccau 24322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-z 12250  df-uz 12512  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ico 13014  df-rest 17050  df-psmet 20502  df-xmet 20503  df-bl 20505  df-fbas 20507  df-fg 20508  df-fil 22905  df-fm 22997  df-cfil 24324  df-cau 24325
This theorem is referenced by:  cmetcaulem  24357
  Copyright terms: Public domain W3C validator