Step | Hyp | Ref
| Expression |
1 | | efgval.w |
. . . . . . . 8
β’ π = ( I βWord (πΌ Γ
2o)) |
2 | | fviss 6965 |
. . . . . . . 8
β’ ( I
βWord (πΌ Γ
2o)) β Word (πΌ Γ 2o) |
3 | 1, 2 | eqsstri 4015 |
. . . . . . 7
β’ π β Word (πΌ Γ 2o) |
4 | | efgval.r |
. . . . . . . . . . 11
β’ βΌ = (
~FG βπΌ) |
5 | | efgval2.m |
. . . . . . . . . . 11
β’ π = (π¦ β πΌ, π§ β 2o β¦ β¨π¦, (1o β π§)β©) |
6 | | efgval2.t |
. . . . . . . . . . 11
β’ π = (π£ β π β¦ (π β (0...(β―βπ£)), π€ β (πΌ Γ 2o) β¦ (π£ splice β¨π, π, β¨βπ€(πβπ€)ββ©β©))) |
7 | | efgred.d |
. . . . . . . . . . 11
β’ π· = (π β βͺ
π₯ β π ran (πβπ₯)) |
8 | | efgred.s |
. . . . . . . . . . 11
β’ π = (π β {π‘ β (Word π β {β
}) β£ ((π‘β0) β π· β§ βπ β
(1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))} β¦ (πβ((β―βπ) β 1))) |
9 | 1, 4, 5, 6, 7, 8 | efgsf 19591 |
. . . . . . . . . 10
β’ π:{π‘ β (Word π β {β
}) β£ ((π‘β0) β π· β§ βπ β
(1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))}βΆπ |
10 | 9 | fdmi 6726 |
. . . . . . . . . . 11
β’ dom π = {π‘ β (Word π β {β
}) β£ ((π‘β0) β π· β§ βπ β
(1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))} |
11 | 10 | feq2i 6706 |
. . . . . . . . . 10
β’ (π:dom πβΆπ β π:{π‘ β (Word π β {β
}) β£ ((π‘β0) β π· β§ βπ β
(1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))}βΆπ) |
12 | 9, 11 | mpbir 230 |
. . . . . . . . 9
β’ π:dom πβΆπ |
13 | 12 | ffvelcdmi 7082 |
. . . . . . . 8
β’ (π΄ β dom π β (πβπ΄) β π) |
14 | 13 | adantr 481 |
. . . . . . 7
β’ ((π΄ β dom π β§ π΅ β dom π) β (πβπ΄) β π) |
15 | 3, 14 | sselid 3979 |
. . . . . 6
β’ ((π΄ β dom π β§ π΅ β dom π) β (πβπ΄) β Word (πΌ Γ 2o)) |
16 | | lencl 14479 |
. . . . . 6
β’ ((πβπ΄) β Word (πΌ Γ 2o) β
(β―β(πβπ΄)) β
β0) |
17 | 15, 16 | syl 17 |
. . . . 5
β’ ((π΄ β dom π β§ π΅ β dom π) β (β―β(πβπ΄)) β
β0) |
18 | | peano2nn0 12508 |
. . . . 5
β’
((β―β(πβπ΄)) β β0 β
((β―β(πβπ΄)) + 1) β
β0) |
19 | 17, 18 | syl 17 |
. . . 4
β’ ((π΄ β dom π β§ π΅ β dom π) β ((β―β(πβπ΄)) + 1) β
β0) |
20 | | breq2 5151 |
. . . . . . 7
β’ (π = 0 β
((β―β(πβπ)) < π β (β―β(πβπ)) < 0)) |
21 | 20 | imbi1d 341 |
. . . . . 6
β’ (π = 0 β
(((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β ((β―β(πβπ)) < 0 β ((πβπ) = (πβπ) β (πβ0) = (πβ0))))) |
22 | 21 | 2ralbidv 3218 |
. . . . 5
β’ (π = 0 β (βπ β dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β βπ β dom πβπ β dom π((β―β(πβπ)) < 0 β ((πβπ) = (πβπ) β (πβ0) = (πβ0))))) |
23 | | breq2 5151 |
. . . . . . 7
β’ (π = π β ((β―β(πβπ)) < π β (β―β(πβπ)) < π)) |
24 | 23 | imbi1d 341 |
. . . . . 6
β’ (π = π β (((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β ((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))))) |
25 | 24 | 2ralbidv 3218 |
. . . . 5
β’ (π = π β (βπ β dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β βπ β dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))))) |
26 | | breq2 5151 |
. . . . . . 7
β’ (π = (π + 1) β ((β―β(πβπ)) < π β (β―β(πβπ)) < (π + 1))) |
27 | 26 | imbi1d 341 |
. . . . . 6
β’ (π = (π + 1) β (((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β ((β―β(πβπ)) < (π + 1) β ((πβπ) = (πβπ) β (πβ0) = (πβ0))))) |
28 | 27 | 2ralbidv 3218 |
. . . . 5
β’ (π = (π + 1) β (βπ β dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β βπ β dom πβπ β dom π((β―β(πβπ)) < (π + 1) β ((πβπ) = (πβπ) β (πβ0) = (πβ0))))) |
29 | | breq2 5151 |
. . . . . . 7
β’ (π = ((β―β(πβπ΄)) + 1) β ((β―β(πβπ)) < π β (β―β(πβπ)) < ((β―β(πβπ΄)) + 1))) |
30 | 29 | imbi1d 341 |
. . . . . 6
β’ (π = ((β―β(πβπ΄)) + 1) β (((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β ((β―β(πβπ)) < ((β―β(πβπ΄)) + 1) β ((πβπ) = (πβπ) β (πβ0) = (πβ0))))) |
31 | 30 | 2ralbidv 3218 |
. . . . 5
β’ (π = ((β―β(πβπ΄)) + 1) β (βπ β dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β βπ β dom πβπ β dom π((β―β(πβπ)) < ((β―β(πβπ΄)) + 1) β ((πβπ) = (πβπ) β (πβ0) = (πβ0))))) |
32 | 12 | ffvelcdmi 7082 |
. . . . . . . . . . 11
β’ (π β dom π β (πβπ) β π) |
33 | 3, 32 | sselid 3979 |
. . . . . . . . . 10
β’ (π β dom π β (πβπ) β Word (πΌ Γ 2o)) |
34 | | lencl 14479 |
. . . . . . . . . 10
β’ ((πβπ) β Word (πΌ Γ 2o) β
(β―β(πβπ)) β
β0) |
35 | 33, 34 | syl 17 |
. . . . . . . . 9
β’ (π β dom π β (β―β(πβπ)) β
β0) |
36 | | nn0nlt0 12494 |
. . . . . . . . 9
β’
((β―β(πβπ)) β β0 β Β¬
(β―β(πβπ)) < 0) |
37 | 35, 36 | syl 17 |
. . . . . . . 8
β’ (π β dom π β Β¬ (β―β(πβπ)) < 0) |
38 | 37 | pm2.21d 121 |
. . . . . . 7
β’ (π β dom π β ((β―β(πβπ)) < 0 β ((πβπ) = (πβπ) β (πβ0) = (πβ0)))) |
39 | 38 | adantr 481 |
. . . . . 6
β’ ((π β dom π β§ π β dom π) β ((β―β(πβπ)) < 0 β ((πβπ) = (πβπ) β (πβ0) = (πβ0)))) |
40 | 39 | rgen2 3197 |
. . . . 5
β’
βπ β dom
πβπ β dom π((β―β(πβπ)) < 0 β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) |
41 | | simpl1 1191 |
. . . . . . . . . . . . . 14
β’
(((βπ β
dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β§ (π β dom π β§ π β dom π) β§ ((β―β(πβπ)) = π β§ (πβπ) = (πβπ))) β§ Β¬ (πβ0) = (πβ0)) β βπ β dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0)))) |
42 | | simpl3l 1228 |
. . . . . . . . . . . . . . 15
β’
(((βπ β
dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β§ (π β dom π β§ π β dom π) β§ ((β―β(πβπ)) = π β§ (πβπ) = (πβπ))) β§ Β¬ (πβ0) = (πβ0)) β (β―β(πβπ)) = π) |
43 | | breq2 5151 |
. . . . . . . . . . . . . . . . 17
β’
((β―β(πβπ)) = π β ((β―β(πβπ)) < (β―β(πβπ)) β (β―β(πβπ)) < π)) |
44 | 43 | imbi1d 341 |
. . . . . . . . . . . . . . . 16
β’
((β―β(πβπ)) = π β (((β―β(πβπ)) < (β―β(πβπ)) β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β ((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))))) |
45 | 44 | 2ralbidv 3218 |
. . . . . . . . . . . . . . 15
β’
((β―β(πβπ)) = π β (βπ β dom πβπ β dom π((β―β(πβπ)) < (β―β(πβπ)) β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β βπ β dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))))) |
46 | 42, 45 | syl 17 |
. . . . . . . . . . . . . 14
β’
(((βπ β
dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β§ (π β dom π β§ π β dom π) β§ ((β―β(πβπ)) = π β§ (πβπ) = (πβπ))) β§ Β¬ (πβ0) = (πβ0)) β (βπ β dom πβπ β dom π((β―β(πβπ)) < (β―β(πβπ)) β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β βπ β dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))))) |
47 | 41, 46 | mpbird 256 |
. . . . . . . . . . . . 13
β’
(((βπ β
dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β§ (π β dom π β§ π β dom π) β§ ((β―β(πβπ)) = π β§ (πβπ) = (πβπ))) β§ Β¬ (πβ0) = (πβ0)) β βπ β dom πβπ β dom π((β―β(πβπ)) < (β―β(πβπ)) β ((πβπ) = (πβπ) β (πβ0) = (πβ0)))) |
48 | | simpl2l 1226 |
. . . . . . . . . . . . 13
β’
(((βπ β
dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β§ (π β dom π β§ π β dom π) β§ ((β―β(πβπ)) = π β§ (πβπ) = (πβπ))) β§ Β¬ (πβ0) = (πβ0)) β π β dom π) |
49 | | simpl2r 1227 |
. . . . . . . . . . . . 13
β’
(((βπ β
dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β§ (π β dom π β§ π β dom π) β§ ((β―β(πβπ)) = π β§ (πβπ) = (πβπ))) β§ Β¬ (πβ0) = (πβ0)) β π β dom π) |
50 | | simpl3r 1229 |
. . . . . . . . . . . . 13
β’
(((βπ β
dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β§ (π β dom π β§ π β dom π) β§ ((β―β(πβπ)) = π β§ (πβπ) = (πβπ))) β§ Β¬ (πβ0) = (πβ0)) β (πβπ) = (πβπ)) |
51 | | simpr 485 |
. . . . . . . . . . . . 13
β’
(((βπ β
dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β§ (π β dom π β§ π β dom π) β§ ((β―β(πβπ)) = π β§ (πβπ) = (πβπ))) β§ Β¬ (πβ0) = (πβ0)) β Β¬ (πβ0) = (πβ0)) |
52 | 1, 4, 5, 6, 7, 8, 47, 48, 49, 50, 51 | efgredlem 19609 |
. . . . . . . . . . . 12
β’ Β¬
((βπ β dom
πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β§ (π β dom π β§ π β dom π) β§ ((β―β(πβπ)) = π β§ (πβπ) = (πβπ))) β§ Β¬ (πβ0) = (πβ0)) |
53 | | iman 402 |
. . . . . . . . . . . 12
β’
(((βπ β
dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β§ (π β dom π β§ π β dom π) β§ ((β―β(πβπ)) = π β§ (πβπ) = (πβπ))) β (πβ0) = (πβ0)) β Β¬ ((βπ β dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β§ (π β dom π β§ π β dom π) β§ ((β―β(πβπ)) = π β§ (πβπ) = (πβπ))) β§ Β¬ (πβ0) = (πβ0))) |
54 | 52, 53 | mpbir 230 |
. . . . . . . . . . 11
β’
((βπ β
dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β§ (π β dom π β§ π β dom π) β§ ((β―β(πβπ)) = π β§ (πβπ) = (πβπ))) β (πβ0) = (πβ0)) |
55 | 54 | 3expia 1121 |
. . . . . . . . . 10
β’
((βπ β
dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β§ (π β dom π β§ π β dom π)) β (((β―β(πβπ)) = π β§ (πβπ) = (πβπ)) β (πβ0) = (πβ0))) |
56 | 55 | expd 416 |
. . . . . . . . 9
β’
((βπ β
dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β§ (π β dom π β§ π β dom π)) β ((β―β(πβπ)) = π β ((πβπ) = (πβπ) β (πβ0) = (πβ0)))) |
57 | 56 | ralrimivva 3200 |
. . . . . . . 8
β’
(βπ β
dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β βπ β dom πβπ β dom π((β―β(πβπ)) = π β ((πβπ) = (πβπ) β (πβ0) = (πβ0)))) |
58 | | 2fveq3 6893 |
. . . . . . . . . . 11
β’ (π = π β (β―β(πβπ)) = (β―β(πβπ))) |
59 | 58 | eqeq1d 2734 |
. . . . . . . . . 10
β’ (π = π β ((β―β(πβπ)) = π β (β―β(πβπ)) = π)) |
60 | | fveqeq2 6897 |
. . . . . . . . . . 11
β’ (π = π β ((πβπ) = (πβπ) β (πβπ) = (πβπ))) |
61 | | fveq1 6887 |
. . . . . . . . . . . 12
β’ (π = π β (πβ0) = (πβ0)) |
62 | 61 | eqeq1d 2734 |
. . . . . . . . . . 11
β’ (π = π β ((πβ0) = (πβ0) β (πβ0) = (πβ0))) |
63 | 60, 62 | imbi12d 344 |
. . . . . . . . . 10
β’ (π = π β (((πβπ) = (πβπ) β (πβ0) = (πβ0)) β ((πβπ) = (πβπ) β (πβ0) = (πβ0)))) |
64 | 59, 63 | imbi12d 344 |
. . . . . . . . 9
β’ (π = π β (((β―β(πβπ)) = π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β ((β―β(πβπ)) = π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))))) |
65 | | fveq2 6888 |
. . . . . . . . . . . 12
β’ (π = π β (πβπ) = (πβπ)) |
66 | 65 | eqeq2d 2743 |
. . . . . . . . . . 11
β’ (π = π β ((πβπ) = (πβπ) β (πβπ) = (πβπ))) |
67 | | fveq1 6887 |
. . . . . . . . . . . 12
β’ (π = π β (πβ0) = (πβ0)) |
68 | 67 | eqeq2d 2743 |
. . . . . . . . . . 11
β’ (π = π β ((πβ0) = (πβ0) β (πβ0) = (πβ0))) |
69 | 66, 68 | imbi12d 344 |
. . . . . . . . . 10
β’ (π = π β (((πβπ) = (πβπ) β (πβ0) = (πβ0)) β ((πβπ) = (πβπ) β (πβ0) = (πβ0)))) |
70 | 69 | imbi2d 340 |
. . . . . . . . 9
β’ (π = π β (((β―β(πβπ)) = π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β ((β―β(πβπ)) = π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))))) |
71 | 64, 70 | cbvral2vw 3238 |
. . . . . . . 8
β’
(βπ β
dom πβπ β dom π((β―β(πβπ)) = π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β βπ β dom πβπ β dom π((β―β(πβπ)) = π β ((πβπ) = (πβπ) β (πβ0) = (πβ0)))) |
72 | 57, 71 | sylib 217 |
. . . . . . 7
β’
(βπ β
dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β βπ β dom πβπ β dom π((β―β(πβπ)) = π β ((πβπ) = (πβπ) β (πβ0) = (πβ0)))) |
73 | 72 | ancli 549 |
. . . . . 6
β’
(βπ β
dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β (βπ β dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β§ βπ β dom πβπ β dom π((β―β(πβπ)) = π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))))) |
74 | 35 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β dom π β§ π β dom π) β (β―β(πβπ)) β
β0) |
75 | | nn0leltp1 12617 |
. . . . . . . . . . . . 13
β’
(((β―β(πβπ)) β β0 β§ π β β0)
β ((β―β(πβπ)) β€ π β (β―β(πβπ)) < (π + 1))) |
76 | | nn0re 12477 |
. . . . . . . . . . . . . 14
β’
((β―β(πβπ)) β β0 β
(β―β(πβπ)) β β) |
77 | | nn0re 12477 |
. . . . . . . . . . . . . 14
β’ (π β β0
β π β
β) |
78 | | leloe 11296 |
. . . . . . . . . . . . . 14
β’
(((β―β(πβπ)) β β β§ π β β) β
((β―β(πβπ)) β€ π β ((β―β(πβπ)) < π β¨ (β―β(πβπ)) = π))) |
79 | 76, 77, 78 | syl2an 596 |
. . . . . . . . . . . . 13
β’
(((β―β(πβπ)) β β0 β§ π β β0)
β ((β―β(πβπ)) β€ π β ((β―β(πβπ)) < π β¨ (β―β(πβπ)) = π))) |
80 | 75, 79 | bitr3d 280 |
. . . . . . . . . . . 12
β’
(((β―β(πβπ)) β β0 β§ π β β0)
β ((β―β(πβπ)) < (π + 1) β ((β―β(πβπ)) < π β¨ (β―β(πβπ)) = π))) |
81 | 80 | ancoms 459 |
. . . . . . . . . . 11
β’ ((π β β0
β§ (β―β(πβπ)) β β0) β
((β―β(πβπ)) < (π + 1) β ((β―β(πβπ)) < π β¨ (β―β(πβπ)) = π))) |
82 | 74, 81 | sylan2 593 |
. . . . . . . . . 10
β’ ((π β β0
β§ (π β dom π β§ π β dom π)) β ((β―β(πβπ)) < (π + 1) β ((β―β(πβπ)) < π β¨ (β―β(πβπ)) = π))) |
83 | 82 | imbi1d 341 |
. . . . . . . . 9
β’ ((π β β0
β§ (π β dom π β§ π β dom π)) β (((β―β(πβπ)) < (π + 1) β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β (((β―β(πβπ)) < π β¨ (β―β(πβπ)) = π) β ((πβπ) = (πβπ) β (πβ0) = (πβ0))))) |
84 | | jaob 960 |
. . . . . . . . 9
β’
((((β―β(πβπ)) < π β¨ (β―β(πβπ)) = π) β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β (((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β§ ((β―β(πβπ)) = π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))))) |
85 | 83, 84 | bitrdi 286 |
. . . . . . . 8
β’ ((π β β0
β§ (π β dom π β§ π β dom π)) β (((β―β(πβπ)) < (π + 1) β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β (((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β§ ((β―β(πβπ)) = π β ((πβπ) = (πβπ) β (πβ0) = (πβ0)))))) |
86 | 85 | 2ralbidva 3216 |
. . . . . . 7
β’ (π β β0
β (βπ β
dom πβπ β dom π((β―β(πβπ)) < (π + 1) β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β βπ β dom πβπ β dom π(((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β§ ((β―β(πβπ)) = π β ((πβπ) = (πβπ) β (πβ0) = (πβ0)))))) |
87 | | r19.26-2 3138 |
. . . . . . 7
β’
(βπ β
dom πβπ β dom π(((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β§ ((β―β(πβπ)) = π β ((πβπ) = (πβπ) β (πβ0) = (πβ0)))) β (βπ β dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β§ βπ β dom πβπ β dom π((β―β(πβπ)) = π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))))) |
88 | 86, 87 | bitrdi 286 |
. . . . . 6
β’ (π β β0
β (βπ β
dom πβπ β dom π((β―β(πβπ)) < (π + 1) β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β (βπ β dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β§ βπ β dom πβπ β dom π((β―β(πβπ)) = π β ((πβπ) = (πβπ) β (πβ0) = (πβ0)))))) |
89 | 73, 88 | imbitrrid 245 |
. . . . 5
β’ (π β β0
β (βπ β
dom πβπ β dom π((β―β(πβπ)) < π β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β βπ β dom πβπ β dom π((β―β(πβπ)) < (π + 1) β ((πβπ) = (πβπ) β (πβ0) = (πβ0))))) |
90 | 22, 25, 28, 31, 40, 89 | nn0ind 12653 |
. . . 4
β’
(((β―β(πβπ΄)) + 1) β β0 β
βπ β dom πβπ β dom π((β―β(πβπ)) < ((β―β(πβπ΄)) + 1) β ((πβπ) = (πβπ) β (πβ0) = (πβ0)))) |
91 | 19, 90 | syl 17 |
. . 3
β’ ((π΄ β dom π β§ π΅ β dom π) β βπ β dom πβπ β dom π((β―β(πβπ)) < ((β―β(πβπ΄)) + 1) β ((πβπ) = (πβπ) β (πβ0) = (πβ0)))) |
92 | 17 | nn0red 12529 |
. . . 4
β’ ((π΄ β dom π β§ π΅ β dom π) β (β―β(πβπ΄)) β β) |
93 | 92 | ltp1d 12140 |
. . 3
β’ ((π΄ β dom π β§ π΅ β dom π) β (β―β(πβπ΄)) < ((β―β(πβπ΄)) + 1)) |
94 | | 2fveq3 6893 |
. . . . . 6
β’ (π = π΄ β (β―β(πβπ)) = (β―β(πβπ΄))) |
95 | 94 | breq1d 5157 |
. . . . 5
β’ (π = π΄ β ((β―β(πβπ)) < ((β―β(πβπ΄)) + 1) β (β―β(πβπ΄)) < ((β―β(πβπ΄)) + 1))) |
96 | | fveqeq2 6897 |
. . . . . 6
β’ (π = π΄ β ((πβπ) = (πβπ) β (πβπ΄) = (πβπ))) |
97 | | fveq1 6887 |
. . . . . . 7
β’ (π = π΄ β (πβ0) = (π΄β0)) |
98 | 97 | eqeq1d 2734 |
. . . . . 6
β’ (π = π΄ β ((πβ0) = (πβ0) β (π΄β0) = (πβ0))) |
99 | 96, 98 | imbi12d 344 |
. . . . 5
β’ (π = π΄ β (((πβπ) = (πβπ) β (πβ0) = (πβ0)) β ((πβπ΄) = (πβπ) β (π΄β0) = (πβ0)))) |
100 | 95, 99 | imbi12d 344 |
. . . 4
β’ (π = π΄ β (((β―β(πβπ)) < ((β―β(πβπ΄)) + 1) β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β ((β―β(πβπ΄)) < ((β―β(πβπ΄)) + 1) β ((πβπ΄) = (πβπ) β (π΄β0) = (πβ0))))) |
101 | | fveq2 6888 |
. . . . . . 7
β’ (π = π΅ β (πβπ) = (πβπ΅)) |
102 | 101 | eqeq2d 2743 |
. . . . . 6
β’ (π = π΅ β ((πβπ΄) = (πβπ) β (πβπ΄) = (πβπ΅))) |
103 | | fveq1 6887 |
. . . . . . 7
β’ (π = π΅ β (πβ0) = (π΅β0)) |
104 | 103 | eqeq2d 2743 |
. . . . . 6
β’ (π = π΅ β ((π΄β0) = (πβ0) β (π΄β0) = (π΅β0))) |
105 | 102, 104 | imbi12d 344 |
. . . . 5
β’ (π = π΅ β (((πβπ΄) = (πβπ) β (π΄β0) = (πβ0)) β ((πβπ΄) = (πβπ΅) β (π΄β0) = (π΅β0)))) |
106 | 105 | imbi2d 340 |
. . . 4
β’ (π = π΅ β (((β―β(πβπ΄)) < ((β―β(πβπ΄)) + 1) β ((πβπ΄) = (πβπ) β (π΄β0) = (πβ0))) β ((β―β(πβπ΄)) < ((β―β(πβπ΄)) + 1) β ((πβπ΄) = (πβπ΅) β (π΄β0) = (π΅β0))))) |
107 | 100, 106 | rspc2v 3621 |
. . 3
β’ ((π΄ β dom π β§ π΅ β dom π) β (βπ β dom πβπ β dom π((β―β(πβπ)) < ((β―β(πβπ΄)) + 1) β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β ((β―β(πβπ΄)) < ((β―β(πβπ΄)) + 1) β ((πβπ΄) = (πβπ΅) β (π΄β0) = (π΅β0))))) |
108 | 91, 93, 107 | mp2d 49 |
. 2
β’ ((π΄ β dom π β§ π΅ β dom π) β ((πβπ΄) = (πβπ΅) β (π΄β0) = (π΅β0))) |
109 | 108 | 3impia 1117 |
1
β’ ((π΄ β dom π β§ π΅ β dom π β§ (πβπ΄) = (πβπ΅)) β (π΄β0) = (π΅β0)) |