MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgred Structured version   Visualization version   GIF version

Theorem efgred 18810
Description: The reduced word that forms the base of the sequence in efgsval 18793 is uniquely determined, given the terminal point. (Contributed by Mario Carneiro, 28-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgred ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ∧ (𝑆𝐴) = (𝑆𝐵)) → (𝐴‘0) = (𝐵‘0))
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgred
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . 8 𝑊 = ( I ‘Word (𝐼 × 2o))
2 fviss 6740 . . . . . . . 8 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
31, 2eqsstri 4005 . . . . . . 7 𝑊 ⊆ Word (𝐼 × 2o)
4 efgval.r . . . . . . . . . . 11 = ( ~FG𝐼)
5 efgval2.m . . . . . . . . . . 11 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
6 efgval2.t . . . . . . . . . . 11 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
7 efgred.d . . . . . . . . . . 11 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
8 efgred.s . . . . . . . . . . 11 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
91, 4, 5, 6, 7, 8efgsf 18791 . . . . . . . . . 10 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊
109fdmi 6523 . . . . . . . . . . 11 dom 𝑆 = {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}
1110feq2i 6505 . . . . . . . . . 10 (𝑆:dom 𝑆𝑊𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊)
129, 11mpbir 232 . . . . . . . . 9 𝑆:dom 𝑆𝑊
1312ffvelrni 6848 . . . . . . . 8 (𝐴 ∈ dom 𝑆 → (𝑆𝐴) ∈ 𝑊)
1413adantr 481 . . . . . . 7 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (𝑆𝐴) ∈ 𝑊)
153, 14sseldi 3969 . . . . . 6 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (𝑆𝐴) ∈ Word (𝐼 × 2o))
16 lencl 13878 . . . . . 6 ((𝑆𝐴) ∈ Word (𝐼 × 2o) → (♯‘(𝑆𝐴)) ∈ ℕ0)
1715, 16syl 17 . . . . 5 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (♯‘(𝑆𝐴)) ∈ ℕ0)
18 peano2nn0 11931 . . . . 5 ((♯‘(𝑆𝐴)) ∈ ℕ0 → ((♯‘(𝑆𝐴)) + 1) ∈ ℕ0)
1917, 18syl 17 . . . 4 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → ((♯‘(𝑆𝐴)) + 1) ∈ ℕ0)
20 breq2 5067 . . . . . . 7 (𝑐 = 0 → ((♯‘(𝑆𝑎)) < 𝑐 ↔ (♯‘(𝑆𝑎)) < 0))
2120imbi1d 343 . . . . . 6 (𝑐 = 0 → (((♯‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆𝑎)) < 0 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
22212ralbidv 3204 . . . . 5 (𝑐 = 0 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 0 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
23 breq2 5067 . . . . . . 7 (𝑐 = 𝑖 → ((♯‘(𝑆𝑎)) < 𝑐 ↔ (♯‘(𝑆𝑎)) < 𝑖))
2423imbi1d 343 . . . . . 6 (𝑐 = 𝑖 → (((♯‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
25242ralbidv 3204 . . . . 5 (𝑐 = 𝑖 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
26 breq2 5067 . . . . . . 7 (𝑐 = (𝑖 + 1) → ((♯‘(𝑆𝑎)) < 𝑐 ↔ (♯‘(𝑆𝑎)) < (𝑖 + 1)))
2726imbi1d 343 . . . . . 6 (𝑐 = (𝑖 + 1) → (((♯‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
28272ralbidv 3204 . . . . 5 (𝑐 = (𝑖 + 1) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
29 breq2 5067 . . . . . . 7 (𝑐 = ((♯‘(𝑆𝐴)) + 1) → ((♯‘(𝑆𝑎)) < 𝑐 ↔ (♯‘(𝑆𝑎)) < ((♯‘(𝑆𝐴)) + 1)))
3029imbi1d 343 . . . . . 6 (𝑐 = ((♯‘(𝑆𝐴)) + 1) → (((♯‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆𝑎)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
31302ralbidv 3204 . . . . 5 (𝑐 = ((♯‘(𝑆𝐴)) + 1) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
3212ffvelrni 6848 . . . . . . . . . . 11 (𝑎 ∈ dom 𝑆 → (𝑆𝑎) ∈ 𝑊)
333, 32sseldi 3969 . . . . . . . . . 10 (𝑎 ∈ dom 𝑆 → (𝑆𝑎) ∈ Word (𝐼 × 2o))
34 lencl 13878 . . . . . . . . . 10 ((𝑆𝑎) ∈ Word (𝐼 × 2o) → (♯‘(𝑆𝑎)) ∈ ℕ0)
3533, 34syl 17 . . . . . . . . 9 (𝑎 ∈ dom 𝑆 → (♯‘(𝑆𝑎)) ∈ ℕ0)
36 nn0nlt0 11917 . . . . . . . . 9 ((♯‘(𝑆𝑎)) ∈ ℕ0 → ¬ (♯‘(𝑆𝑎)) < 0)
3735, 36syl 17 . . . . . . . 8 (𝑎 ∈ dom 𝑆 → ¬ (♯‘(𝑆𝑎)) < 0)
3837pm2.21d 121 . . . . . . 7 (𝑎 ∈ dom 𝑆 → ((♯‘(𝑆𝑎)) < 0 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
3938adantr 481 . . . . . 6 ((𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆) → ((♯‘(𝑆𝑎)) < 0 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
4039rgen2 3208 . . . . 5 𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 0 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))
41 simpl1 1185 . . . . . . . . . . . . . 14 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
42 simpl3l 1222 . . . . . . . . . . . . . . 15 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → (♯‘(𝑆𝑐)) = 𝑖)
43 breq2 5067 . . . . . . . . . . . . . . . . 17 ((♯‘(𝑆𝑐)) = 𝑖 → ((♯‘(𝑆𝑎)) < (♯‘(𝑆𝑐)) ↔ (♯‘(𝑆𝑎)) < 𝑖))
4443imbi1d 343 . . . . . . . . . . . . . . . 16 ((♯‘(𝑆𝑐)) = 𝑖 → (((♯‘(𝑆𝑎)) < (♯‘(𝑆𝑐)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
45442ralbidv 3204 . . . . . . . . . . . . . . 15 ((♯‘(𝑆𝑐)) = 𝑖 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝑐)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
4642, 45syl 17 . . . . . . . . . . . . . 14 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝑐)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
4741, 46mpbird 258 . . . . . . . . . . . . 13 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝑐)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
48 simpl2l 1220 . . . . . . . . . . . . 13 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → 𝑐 ∈ dom 𝑆)
49 simpl2r 1221 . . . . . . . . . . . . 13 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → 𝑑 ∈ dom 𝑆)
50 simpl3r 1223 . . . . . . . . . . . . 13 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → (𝑆𝑐) = (𝑆𝑑))
51 simpr 485 . . . . . . . . . . . . 13 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → ¬ (𝑐‘0) = (𝑑‘0))
521, 4, 5, 6, 7, 8, 47, 48, 49, 50, 51efgredlem 18809 . . . . . . . . . . . 12 ¬ ((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0))
53 iman 402 . . . . . . . . . . . 12 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) → (𝑐‘0) = (𝑑‘0)) ↔ ¬ ((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)))
5452, 53mpbir 232 . . . . . . . . . . 11 ((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) → (𝑐‘0) = (𝑑‘0))
55543expia 1115 . . . . . . . . . 10 ((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆)) → (((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑)) → (𝑐‘0) = (𝑑‘0)))
5655expd 416 . . . . . . . . 9 ((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆)) → ((♯‘(𝑆𝑐)) = 𝑖 → ((𝑆𝑐) = (𝑆𝑑) → (𝑐‘0) = (𝑑‘0))))
5756ralrimivva 3196 . . . . . . . 8 (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) → ∀𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆((♯‘(𝑆𝑐)) = 𝑖 → ((𝑆𝑐) = (𝑆𝑑) → (𝑐‘0) = (𝑑‘0))))
58 2fveq3 6674 . . . . . . . . . . 11 (𝑐 = 𝑎 → (♯‘(𝑆𝑐)) = (♯‘(𝑆𝑎)))
5958eqeq1d 2828 . . . . . . . . . 10 (𝑐 = 𝑎 → ((♯‘(𝑆𝑐)) = 𝑖 ↔ (♯‘(𝑆𝑎)) = 𝑖))
60 fveqeq2 6678 . . . . . . . . . . 11 (𝑐 = 𝑎 → ((𝑆𝑐) = (𝑆𝑑) ↔ (𝑆𝑎) = (𝑆𝑑)))
61 fveq1 6668 . . . . . . . . . . . 12 (𝑐 = 𝑎 → (𝑐‘0) = (𝑎‘0))
6261eqeq1d 2828 . . . . . . . . . . 11 (𝑐 = 𝑎 → ((𝑐‘0) = (𝑑‘0) ↔ (𝑎‘0) = (𝑑‘0)))
6360, 62imbi12d 346 . . . . . . . . . 10 (𝑐 = 𝑎 → (((𝑆𝑐) = (𝑆𝑑) → (𝑐‘0) = (𝑑‘0)) ↔ ((𝑆𝑎) = (𝑆𝑑) → (𝑎‘0) = (𝑑‘0))))
6459, 63imbi12d 346 . . . . . . . . 9 (𝑐 = 𝑎 → (((♯‘(𝑆𝑐)) = 𝑖 → ((𝑆𝑐) = (𝑆𝑑) → (𝑐‘0) = (𝑑‘0))) ↔ ((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑑) → (𝑎‘0) = (𝑑‘0)))))
65 fveq2 6669 . . . . . . . . . . . 12 (𝑑 = 𝑏 → (𝑆𝑑) = (𝑆𝑏))
6665eqeq2d 2837 . . . . . . . . . . 11 (𝑑 = 𝑏 → ((𝑆𝑎) = (𝑆𝑑) ↔ (𝑆𝑎) = (𝑆𝑏)))
67 fveq1 6668 . . . . . . . . . . . 12 (𝑑 = 𝑏 → (𝑑‘0) = (𝑏‘0))
6867eqeq2d 2837 . . . . . . . . . . 11 (𝑑 = 𝑏 → ((𝑎‘0) = (𝑑‘0) ↔ (𝑎‘0) = (𝑏‘0)))
6966, 68imbi12d 346 . . . . . . . . . 10 (𝑑 = 𝑏 → (((𝑆𝑎) = (𝑆𝑑) → (𝑎‘0) = (𝑑‘0)) ↔ ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
7069imbi2d 342 . . . . . . . . 9 (𝑑 = 𝑏 → (((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑑) → (𝑎‘0) = (𝑑‘0))) ↔ ((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
7164, 70cbvral2vw 3467 . . . . . . . 8 (∀𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆((♯‘(𝑆𝑐)) = 𝑖 → ((𝑆𝑐) = (𝑆𝑑) → (𝑐‘0) = (𝑑‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
7257, 71sylib 219 . . . . . . 7 (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
7372ancli 549 . . . . . 6 (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
7435adantr 481 . . . . . . . . . . 11 ((𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆) → (♯‘(𝑆𝑎)) ∈ ℕ0)
75 nn0leltp1 12035 . . . . . . . . . . . . 13 (((♯‘(𝑆𝑎)) ∈ ℕ0𝑖 ∈ ℕ0) → ((♯‘(𝑆𝑎)) ≤ 𝑖 ↔ (♯‘(𝑆𝑎)) < (𝑖 + 1)))
76 nn0re 11900 . . . . . . . . . . . . . 14 ((♯‘(𝑆𝑎)) ∈ ℕ0 → (♯‘(𝑆𝑎)) ∈ ℝ)
77 nn0re 11900 . . . . . . . . . . . . . 14 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
78 leloe 10721 . . . . . . . . . . . . . 14 (((♯‘(𝑆𝑎)) ∈ ℝ ∧ 𝑖 ∈ ℝ) → ((♯‘(𝑆𝑎)) ≤ 𝑖 ↔ ((♯‘(𝑆𝑎)) < 𝑖 ∨ (♯‘(𝑆𝑎)) = 𝑖)))
7976, 77, 78syl2an 595 . . . . . . . . . . . . 13 (((♯‘(𝑆𝑎)) ∈ ℕ0𝑖 ∈ ℕ0) → ((♯‘(𝑆𝑎)) ≤ 𝑖 ↔ ((♯‘(𝑆𝑎)) < 𝑖 ∨ (♯‘(𝑆𝑎)) = 𝑖)))
8075, 79bitr3d 282 . . . . . . . . . . . 12 (((♯‘(𝑆𝑎)) ∈ ℕ0𝑖 ∈ ℕ0) → ((♯‘(𝑆𝑎)) < (𝑖 + 1) ↔ ((♯‘(𝑆𝑎)) < 𝑖 ∨ (♯‘(𝑆𝑎)) = 𝑖)))
8180ancoms 459 . . . . . . . . . . 11 ((𝑖 ∈ ℕ0 ∧ (♯‘(𝑆𝑎)) ∈ ℕ0) → ((♯‘(𝑆𝑎)) < (𝑖 + 1) ↔ ((♯‘(𝑆𝑎)) < 𝑖 ∨ (♯‘(𝑆𝑎)) = 𝑖)))
8274, 81sylan2 592 . . . . . . . . . 10 ((𝑖 ∈ ℕ0 ∧ (𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆)) → ((♯‘(𝑆𝑎)) < (𝑖 + 1) ↔ ((♯‘(𝑆𝑎)) < 𝑖 ∨ (♯‘(𝑆𝑎)) = 𝑖)))
8382imbi1d 343 . . . . . . . . 9 ((𝑖 ∈ ℕ0 ∧ (𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆)) → (((♯‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ (((♯‘(𝑆𝑎)) < 𝑖 ∨ (♯‘(𝑆𝑎)) = 𝑖) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
84 jaob 957 . . . . . . . . 9 ((((♯‘(𝑆𝑎)) < 𝑖 ∨ (♯‘(𝑆𝑎)) = 𝑖) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ (((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
8583, 84syl6bb 288 . . . . . . . 8 ((𝑖 ∈ ℕ0 ∧ (𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆)) → (((♯‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ (((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))))
86852ralbidva 3203 . . . . . . 7 (𝑖 ∈ ℕ0 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆(((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))))
87 r19.26-2 3176 . . . . . . 7 (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆(((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))) ↔ (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
8886, 87syl6bb 288 . . . . . 6 (𝑖 ∈ ℕ0 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))))
8973, 88syl5ibr 247 . . . . 5 (𝑖 ∈ ℕ0 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
9022, 25, 28, 31, 40, 89nn0ind 12071 . . . 4 (((♯‘(𝑆𝐴)) + 1) ∈ ℕ0 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
9119, 90syl 17 . . 3 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
9217nn0red 11950 . . . 4 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (♯‘(𝑆𝐴)) ∈ ℝ)
9392ltp1d 11564 . . 3 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (♯‘(𝑆𝐴)) < ((♯‘(𝑆𝐴)) + 1))
94 2fveq3 6674 . . . . . 6 (𝑎 = 𝐴 → (♯‘(𝑆𝑎)) = (♯‘(𝑆𝐴)))
9594breq1d 5073 . . . . 5 (𝑎 = 𝐴 → ((♯‘(𝑆𝑎)) < ((♯‘(𝑆𝐴)) + 1) ↔ (♯‘(𝑆𝐴)) < ((♯‘(𝑆𝐴)) + 1)))
96 fveqeq2 6678 . . . . . 6 (𝑎 = 𝐴 → ((𝑆𝑎) = (𝑆𝑏) ↔ (𝑆𝐴) = (𝑆𝑏)))
97 fveq1 6668 . . . . . . 7 (𝑎 = 𝐴 → (𝑎‘0) = (𝐴‘0))
9897eqeq1d 2828 . . . . . 6 (𝑎 = 𝐴 → ((𝑎‘0) = (𝑏‘0) ↔ (𝐴‘0) = (𝑏‘0)))
9996, 98imbi12d 346 . . . . 5 (𝑎 = 𝐴 → (((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)) ↔ ((𝑆𝐴) = (𝑆𝑏) → (𝐴‘0) = (𝑏‘0))))
10095, 99imbi12d 346 . . . 4 (𝑎 = 𝐴 → (((♯‘(𝑆𝑎)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆𝐴)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝐴) = (𝑆𝑏) → (𝐴‘0) = (𝑏‘0)))))
101 fveq2 6669 . . . . . . 7 (𝑏 = 𝐵 → (𝑆𝑏) = (𝑆𝐵))
102101eqeq2d 2837 . . . . . 6 (𝑏 = 𝐵 → ((𝑆𝐴) = (𝑆𝑏) ↔ (𝑆𝐴) = (𝑆𝐵)))
103 fveq1 6668 . . . . . . 7 (𝑏 = 𝐵 → (𝑏‘0) = (𝐵‘0))
104103eqeq2d 2837 . . . . . 6 (𝑏 = 𝐵 → ((𝐴‘0) = (𝑏‘0) ↔ (𝐴‘0) = (𝐵‘0)))
105102, 104imbi12d 346 . . . . 5 (𝑏 = 𝐵 → (((𝑆𝐴) = (𝑆𝑏) → (𝐴‘0) = (𝑏‘0)) ↔ ((𝑆𝐴) = (𝑆𝐵) → (𝐴‘0) = (𝐵‘0))))
106105imbi2d 342 . . . 4 (𝑏 = 𝐵 → (((♯‘(𝑆𝐴)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝐴) = (𝑆𝑏) → (𝐴‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆𝐴)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝐴) = (𝑆𝐵) → (𝐴‘0) = (𝐵‘0)))))
107100, 106rspc2v 3637 . . 3 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) → ((♯‘(𝑆𝐴)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝐴) = (𝑆𝐵) → (𝐴‘0) = (𝐵‘0)))))
10891, 93, 107mp2d 49 . 2 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → ((𝑆𝐴) = (𝑆𝐵) → (𝐴‘0) = (𝐵‘0)))
1091083impia 1111 1 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ∧ (𝑆𝐴) = (𝑆𝐵)) → (𝐴‘0) = (𝐵‘0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 843  w3a 1081   = wceq 1530  wcel 2107  wral 3143  {crab 3147  cdif 3937  c0 4295  {csn 4564  cop 4570  cotp 4572   ciun 4917   class class class wbr 5063  cmpt 5143   I cid 5458   × cxp 5552  dom cdm 5554  ran crn 5555  wf 6350  cfv 6354  (class class class)co 7150  cmpo 7152  1oc1o 8091  2oc2o 8092  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   < clt 10669  cle 10670  cmin 10864  0cn0 11891  ...cfz 12887  ..^cfzo 13028  chash 13685  Word cword 13856   splice csplice 14106  ⟨“cs2 14198   ~FG cefg 18768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-ot 4573  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8284  df-map 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-rp 12385  df-fz 12888  df-fzo 13029  df-hash 13686  df-word 13857  df-concat 13918  df-s1 13945  df-substr 13998  df-pfx 14028  df-splice 14107  df-s2 14205
This theorem is referenced by:  efgrelexlemb  18812
  Copyright terms: Public domain W3C validator