MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgred Structured version   Visualization version   GIF version

Theorem efgred 18358
Description: The reduced word that forms the base of the sequence in efgsval 18341 is uniquely determined, given the terminal point. (Contributed by Mario Carneiro, 28-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgred ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ∧ (𝑆𝐴) = (𝑆𝐵)) → (𝐴‘0) = (𝐵‘0))
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgred
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . 8 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
2 fviss 6473 . . . . . . . 8 ( I ‘Word (𝐼 × 2𝑜)) ⊆ Word (𝐼 × 2𝑜)
31, 2eqsstri 3832 . . . . . . 7 𝑊 ⊆ Word (𝐼 × 2𝑜)
4 efgval.r . . . . . . . . . . 11 = ( ~FG𝐼)
5 efgval2.m . . . . . . . . . . 11 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
6 efgval2.t . . . . . . . . . . 11 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
7 efgred.d . . . . . . . . . . 11 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
8 efgred.s . . . . . . . . . . 11 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
91, 4, 5, 6, 7, 8efgsf 18339 . . . . . . . . . 10 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊
109fdmi 6262 . . . . . . . . . . 11 dom 𝑆 = {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}
1110feq2i 6244 . . . . . . . . . 10 (𝑆:dom 𝑆𝑊𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊)
129, 11mpbir 222 . . . . . . . . 9 𝑆:dom 𝑆𝑊
1312ffvelrni 6576 . . . . . . . 8 (𝐴 ∈ dom 𝑆 → (𝑆𝐴) ∈ 𝑊)
1413adantr 468 . . . . . . 7 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (𝑆𝐴) ∈ 𝑊)
153, 14sseldi 3796 . . . . . 6 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (𝑆𝐴) ∈ Word (𝐼 × 2𝑜))
16 lencl 13531 . . . . . 6 ((𝑆𝐴) ∈ Word (𝐼 × 2𝑜) → (♯‘(𝑆𝐴)) ∈ ℕ0)
1715, 16syl 17 . . . . 5 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (♯‘(𝑆𝐴)) ∈ ℕ0)
18 peano2nn0 11595 . . . . 5 ((♯‘(𝑆𝐴)) ∈ ℕ0 → ((♯‘(𝑆𝐴)) + 1) ∈ ℕ0)
1917, 18syl 17 . . . 4 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → ((♯‘(𝑆𝐴)) + 1) ∈ ℕ0)
20 breq2 4848 . . . . . . 7 (𝑐 = 0 → ((♯‘(𝑆𝑎)) < 𝑐 ↔ (♯‘(𝑆𝑎)) < 0))
2120imbi1d 332 . . . . . 6 (𝑐 = 0 → (((♯‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆𝑎)) < 0 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
22212ralbidv 3177 . . . . 5 (𝑐 = 0 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 0 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
23 breq2 4848 . . . . . . 7 (𝑐 = 𝑖 → ((♯‘(𝑆𝑎)) < 𝑐 ↔ (♯‘(𝑆𝑎)) < 𝑖))
2423imbi1d 332 . . . . . 6 (𝑐 = 𝑖 → (((♯‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
25242ralbidv 3177 . . . . 5 (𝑐 = 𝑖 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
26 breq2 4848 . . . . . . 7 (𝑐 = (𝑖 + 1) → ((♯‘(𝑆𝑎)) < 𝑐 ↔ (♯‘(𝑆𝑎)) < (𝑖 + 1)))
2726imbi1d 332 . . . . . 6 (𝑐 = (𝑖 + 1) → (((♯‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
28272ralbidv 3177 . . . . 5 (𝑐 = (𝑖 + 1) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
29 breq2 4848 . . . . . . 7 (𝑐 = ((♯‘(𝑆𝐴)) + 1) → ((♯‘(𝑆𝑎)) < 𝑐 ↔ (♯‘(𝑆𝑎)) < ((♯‘(𝑆𝐴)) + 1)))
3029imbi1d 332 . . . . . 6 (𝑐 = ((♯‘(𝑆𝐴)) + 1) → (((♯‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆𝑎)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
31302ralbidv 3177 . . . . 5 (𝑐 = ((♯‘(𝑆𝐴)) + 1) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
3212ffvelrni 6576 . . . . . . . . . . 11 (𝑎 ∈ dom 𝑆 → (𝑆𝑎) ∈ 𝑊)
333, 32sseldi 3796 . . . . . . . . . 10 (𝑎 ∈ dom 𝑆 → (𝑆𝑎) ∈ Word (𝐼 × 2𝑜))
34 lencl 13531 . . . . . . . . . 10 ((𝑆𝑎) ∈ Word (𝐼 × 2𝑜) → (♯‘(𝑆𝑎)) ∈ ℕ0)
3533, 34syl 17 . . . . . . . . 9 (𝑎 ∈ dom 𝑆 → (♯‘(𝑆𝑎)) ∈ ℕ0)
36 nn0nlt0 11581 . . . . . . . . 9 ((♯‘(𝑆𝑎)) ∈ ℕ0 → ¬ (♯‘(𝑆𝑎)) < 0)
3735, 36syl 17 . . . . . . . 8 (𝑎 ∈ dom 𝑆 → ¬ (♯‘(𝑆𝑎)) < 0)
3837pm2.21d 119 . . . . . . 7 (𝑎 ∈ dom 𝑆 → ((♯‘(𝑆𝑎)) < 0 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
3938adantr 468 . . . . . 6 ((𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆) → ((♯‘(𝑆𝑎)) < 0 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
4039rgen2a 3165 . . . . 5 𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 0 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))
41 simpl1 1235 . . . . . . . . . . . . . 14 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
42 simpl3l 1294 . . . . . . . . . . . . . . 15 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → (♯‘(𝑆𝑐)) = 𝑖)
43 breq2 4848 . . . . . . . . . . . . . . . . 17 ((♯‘(𝑆𝑐)) = 𝑖 → ((♯‘(𝑆𝑎)) < (♯‘(𝑆𝑐)) ↔ (♯‘(𝑆𝑎)) < 𝑖))
4443imbi1d 332 . . . . . . . . . . . . . . . 16 ((♯‘(𝑆𝑐)) = 𝑖 → (((♯‘(𝑆𝑎)) < (♯‘(𝑆𝑐)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
45442ralbidv 3177 . . . . . . . . . . . . . . 15 ((♯‘(𝑆𝑐)) = 𝑖 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝑐)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
4642, 45syl 17 . . . . . . . . . . . . . 14 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝑐)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
4741, 46mpbird 248 . . . . . . . . . . . . 13 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝑐)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
48 simpl2l 1290 . . . . . . . . . . . . 13 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → 𝑐 ∈ dom 𝑆)
49 simpl2r 1292 . . . . . . . . . . . . 13 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → 𝑑 ∈ dom 𝑆)
50 simpl3r 1296 . . . . . . . . . . . . 13 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → (𝑆𝑐) = (𝑆𝑑))
51 simpr 473 . . . . . . . . . . . . 13 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → ¬ (𝑐‘0) = (𝑑‘0))
521, 4, 5, 6, 7, 8, 47, 48, 49, 50, 51efgredlem 18357 . . . . . . . . . . . 12 ¬ ((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0))
53 iman 390 . . . . . . . . . . . 12 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) → (𝑐‘0) = (𝑑‘0)) ↔ ¬ ((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)))
5452, 53mpbir 222 . . . . . . . . . . 11 ((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) → (𝑐‘0) = (𝑑‘0))
55543expia 1143 . . . . . . . . . 10 ((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆)) → (((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑)) → (𝑐‘0) = (𝑑‘0)))
5655expd 402 . . . . . . . . 9 ((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆)) → ((♯‘(𝑆𝑐)) = 𝑖 → ((𝑆𝑐) = (𝑆𝑑) → (𝑐‘0) = (𝑑‘0))))
5756ralrimivva 3159 . . . . . . . 8 (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) → ∀𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆((♯‘(𝑆𝑐)) = 𝑖 → ((𝑆𝑐) = (𝑆𝑑) → (𝑐‘0) = (𝑑‘0))))
58 2fveq3 6409 . . . . . . . . . . 11 (𝑐 = 𝑎 → (♯‘(𝑆𝑐)) = (♯‘(𝑆𝑎)))
5958eqeq1d 2808 . . . . . . . . . 10 (𝑐 = 𝑎 → ((♯‘(𝑆𝑐)) = 𝑖 ↔ (♯‘(𝑆𝑎)) = 𝑖))
60 fveqeq2 6413 . . . . . . . . . . 11 (𝑐 = 𝑎 → ((𝑆𝑐) = (𝑆𝑑) ↔ (𝑆𝑎) = (𝑆𝑑)))
61 fveq1 6403 . . . . . . . . . . . 12 (𝑐 = 𝑎 → (𝑐‘0) = (𝑎‘0))
6261eqeq1d 2808 . . . . . . . . . . 11 (𝑐 = 𝑎 → ((𝑐‘0) = (𝑑‘0) ↔ (𝑎‘0) = (𝑑‘0)))
6360, 62imbi12d 335 . . . . . . . . . 10 (𝑐 = 𝑎 → (((𝑆𝑐) = (𝑆𝑑) → (𝑐‘0) = (𝑑‘0)) ↔ ((𝑆𝑎) = (𝑆𝑑) → (𝑎‘0) = (𝑑‘0))))
6459, 63imbi12d 335 . . . . . . . . 9 (𝑐 = 𝑎 → (((♯‘(𝑆𝑐)) = 𝑖 → ((𝑆𝑐) = (𝑆𝑑) → (𝑐‘0) = (𝑑‘0))) ↔ ((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑑) → (𝑎‘0) = (𝑑‘0)))))
65 fveq2 6404 . . . . . . . . . . . 12 (𝑑 = 𝑏 → (𝑆𝑑) = (𝑆𝑏))
6665eqeq2d 2816 . . . . . . . . . . 11 (𝑑 = 𝑏 → ((𝑆𝑎) = (𝑆𝑑) ↔ (𝑆𝑎) = (𝑆𝑏)))
67 fveq1 6403 . . . . . . . . . . . 12 (𝑑 = 𝑏 → (𝑑‘0) = (𝑏‘0))
6867eqeq2d 2816 . . . . . . . . . . 11 (𝑑 = 𝑏 → ((𝑎‘0) = (𝑑‘0) ↔ (𝑎‘0) = (𝑏‘0)))
6966, 68imbi12d 335 . . . . . . . . . 10 (𝑑 = 𝑏 → (((𝑆𝑎) = (𝑆𝑑) → (𝑎‘0) = (𝑑‘0)) ↔ ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
7069imbi2d 331 . . . . . . . . 9 (𝑑 = 𝑏 → (((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑑) → (𝑎‘0) = (𝑑‘0))) ↔ ((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
7164, 70cbvral2v 3368 . . . . . . . 8 (∀𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆((♯‘(𝑆𝑐)) = 𝑖 → ((𝑆𝑐) = (𝑆𝑑) → (𝑐‘0) = (𝑑‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
7257, 71sylib 209 . . . . . . 7 (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
7372ancli 540 . . . . . 6 (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
7435adantr 468 . . . . . . . . . . 11 ((𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆) → (♯‘(𝑆𝑎)) ∈ ℕ0)
75 nn0leltp1 11698 . . . . . . . . . . . . 13 (((♯‘(𝑆𝑎)) ∈ ℕ0𝑖 ∈ ℕ0) → ((♯‘(𝑆𝑎)) ≤ 𝑖 ↔ (♯‘(𝑆𝑎)) < (𝑖 + 1)))
76 nn0re 11564 . . . . . . . . . . . . . 14 ((♯‘(𝑆𝑎)) ∈ ℕ0 → (♯‘(𝑆𝑎)) ∈ ℝ)
77 nn0re 11564 . . . . . . . . . . . . . 14 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
78 leloe 10405 . . . . . . . . . . . . . 14 (((♯‘(𝑆𝑎)) ∈ ℝ ∧ 𝑖 ∈ ℝ) → ((♯‘(𝑆𝑎)) ≤ 𝑖 ↔ ((♯‘(𝑆𝑎)) < 𝑖 ∨ (♯‘(𝑆𝑎)) = 𝑖)))
7976, 77, 78syl2an 585 . . . . . . . . . . . . 13 (((♯‘(𝑆𝑎)) ∈ ℕ0𝑖 ∈ ℕ0) → ((♯‘(𝑆𝑎)) ≤ 𝑖 ↔ ((♯‘(𝑆𝑎)) < 𝑖 ∨ (♯‘(𝑆𝑎)) = 𝑖)))
8075, 79bitr3d 272 . . . . . . . . . . . 12 (((♯‘(𝑆𝑎)) ∈ ℕ0𝑖 ∈ ℕ0) → ((♯‘(𝑆𝑎)) < (𝑖 + 1) ↔ ((♯‘(𝑆𝑎)) < 𝑖 ∨ (♯‘(𝑆𝑎)) = 𝑖)))
8180ancoms 448 . . . . . . . . . . 11 ((𝑖 ∈ ℕ0 ∧ (♯‘(𝑆𝑎)) ∈ ℕ0) → ((♯‘(𝑆𝑎)) < (𝑖 + 1) ↔ ((♯‘(𝑆𝑎)) < 𝑖 ∨ (♯‘(𝑆𝑎)) = 𝑖)))
8274, 81sylan2 582 . . . . . . . . . 10 ((𝑖 ∈ ℕ0 ∧ (𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆)) → ((♯‘(𝑆𝑎)) < (𝑖 + 1) ↔ ((♯‘(𝑆𝑎)) < 𝑖 ∨ (♯‘(𝑆𝑎)) = 𝑖)))
8382imbi1d 332 . . . . . . . . 9 ((𝑖 ∈ ℕ0 ∧ (𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆)) → (((♯‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ (((♯‘(𝑆𝑎)) < 𝑖 ∨ (♯‘(𝑆𝑎)) = 𝑖) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
84 jaob 975 . . . . . . . . 9 ((((♯‘(𝑆𝑎)) < 𝑖 ∨ (♯‘(𝑆𝑎)) = 𝑖) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ (((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
8583, 84syl6bb 278 . . . . . . . 8 ((𝑖 ∈ ℕ0 ∧ (𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆)) → (((♯‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ (((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))))
86852ralbidva 3176 . . . . . . 7 (𝑖 ∈ ℕ0 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆(((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))))
87 r19.26-2 3253 . . . . . . 7 (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆(((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))) ↔ (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
8886, 87syl6bb 278 . . . . . 6 (𝑖 ∈ ℕ0 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))))
8973, 88syl5ibr 237 . . . . 5 (𝑖 ∈ ℕ0 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
9022, 25, 28, 31, 40, 89nn0ind 11734 . . . 4 (((♯‘(𝑆𝐴)) + 1) ∈ ℕ0 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
9119, 90syl 17 . . 3 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
9217nn0red 11614 . . . 4 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (♯‘(𝑆𝐴)) ∈ ℝ)
9392ltp1d 11235 . . 3 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (♯‘(𝑆𝐴)) < ((♯‘(𝑆𝐴)) + 1))
94 2fveq3 6409 . . . . . 6 (𝑎 = 𝐴 → (♯‘(𝑆𝑎)) = (♯‘(𝑆𝐴)))
9594breq1d 4854 . . . . 5 (𝑎 = 𝐴 → ((♯‘(𝑆𝑎)) < ((♯‘(𝑆𝐴)) + 1) ↔ (♯‘(𝑆𝐴)) < ((♯‘(𝑆𝐴)) + 1)))
96 fveqeq2 6413 . . . . . 6 (𝑎 = 𝐴 → ((𝑆𝑎) = (𝑆𝑏) ↔ (𝑆𝐴) = (𝑆𝑏)))
97 fveq1 6403 . . . . . . 7 (𝑎 = 𝐴 → (𝑎‘0) = (𝐴‘0))
9897eqeq1d 2808 . . . . . 6 (𝑎 = 𝐴 → ((𝑎‘0) = (𝑏‘0) ↔ (𝐴‘0) = (𝑏‘0)))
9996, 98imbi12d 335 . . . . 5 (𝑎 = 𝐴 → (((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)) ↔ ((𝑆𝐴) = (𝑆𝑏) → (𝐴‘0) = (𝑏‘0))))
10095, 99imbi12d 335 . . . 4 (𝑎 = 𝐴 → (((♯‘(𝑆𝑎)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆𝐴)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝐴) = (𝑆𝑏) → (𝐴‘0) = (𝑏‘0)))))
101 fveq2 6404 . . . . . . 7 (𝑏 = 𝐵 → (𝑆𝑏) = (𝑆𝐵))
102101eqeq2d 2816 . . . . . 6 (𝑏 = 𝐵 → ((𝑆𝐴) = (𝑆𝑏) ↔ (𝑆𝐴) = (𝑆𝐵)))
103 fveq1 6403 . . . . . . 7 (𝑏 = 𝐵 → (𝑏‘0) = (𝐵‘0))
104103eqeq2d 2816 . . . . . 6 (𝑏 = 𝐵 → ((𝐴‘0) = (𝑏‘0) ↔ (𝐴‘0) = (𝐵‘0)))
105102, 104imbi12d 335 . . . . 5 (𝑏 = 𝐵 → (((𝑆𝐴) = (𝑆𝑏) → (𝐴‘0) = (𝑏‘0)) ↔ ((𝑆𝐴) = (𝑆𝐵) → (𝐴‘0) = (𝐵‘0))))
106105imbi2d 331 . . . 4 (𝑏 = 𝐵 → (((♯‘(𝑆𝐴)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝐴) = (𝑆𝑏) → (𝐴‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆𝐴)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝐴) = (𝑆𝐵) → (𝐴‘0) = (𝐵‘0)))))
107100, 106rspc2v 3515 . . 3 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) → ((♯‘(𝑆𝐴)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝐴) = (𝑆𝐵) → (𝐴‘0) = (𝐵‘0)))))
10891, 93, 107mp2d 49 . 2 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → ((𝑆𝐴) = (𝑆𝐵) → (𝐴‘0) = (𝐵‘0)))
1091083impia 1138 1 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ∧ (𝑆𝐴) = (𝑆𝐵)) → (𝐴‘0) = (𝐵‘0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 865  w3a 1100   = wceq 1637  wcel 2156  wral 3096  {crab 3100  cdif 3766  c0 4116  {csn 4370  cop 4376  cotp 4378   ciun 4712   class class class wbr 4844  cmpt 4923   I cid 5218   × cxp 5309  dom cdm 5311  ran crn 5312  wf 6093  cfv 6097  (class class class)co 6870  cmpt2 6872  1𝑜c1o 7785  2𝑜c2o 7786  cr 10216  0cc0 10217  1c1 10218   + caddc 10220   < clt 10355  cle 10356  cmin 10547  0cn0 11555  ...cfz 12545  ..^cfzo 12685  chash 13333  Word cword 13498   splice csplice 13503  ⟨“cs2 13806   ~FG cefg 18316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-cnex 10273  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-ot 4379  df-uni 4631  df-int 4670  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-om 7292  df-1st 7394  df-2nd 7395  df-wrecs 7638  df-recs 7700  df-rdg 7738  df-1o 7792  df-2o 7793  df-oadd 7796  df-er 7975  df-map 8090  df-pm 8091  df-en 8189  df-dom 8190  df-sdom 8191  df-fin 8192  df-card 9044  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550  df-nn 11302  df-2 11360  df-n0 11556  df-z 11640  df-uz 11901  df-rp 12043  df-fz 12546  df-fzo 12686  df-hash 13334  df-word 13506  df-concat 13508  df-s1 13509  df-substr 13510  df-splice 13511  df-s2 13813
This theorem is referenced by:  efgrelexlemb  18360
  Copyright terms: Public domain W3C validator