| Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > joinlmuladdmuli | Structured version Visualization version GIF version | ||
| Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.) |
| Ref | Expression |
|---|---|
| joinlmuladdmuli.1 | ⊢ 𝐴 ∈ ℂ |
| joinlmuladdmuli.2 | ⊢ 𝐵 ∈ ℂ |
| joinlmuladdmuli.3 | ⊢ 𝐶 ∈ ℂ |
| joinlmuladdmuli.4 | ⊢ ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷 |
| Ref | Expression |
|---|---|
| joinlmuladdmuli | ⊢ ((𝐴 + 𝐶) · 𝐵) = 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joinlmuladdmuli.1 | . . . 4 ⊢ 𝐴 ∈ ℂ | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 ∈ ℂ) |
| 3 | joinlmuladdmuli.2 | . . . 4 ⊢ 𝐵 ∈ ℂ | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 ∈ ℂ) |
| 5 | joinlmuladdmuli.3 | . . . 4 ⊢ 𝐶 ∈ ℂ | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → 𝐶 ∈ ℂ) |
| 7 | joinlmuladdmuli.4 | . . . 4 ⊢ ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷 | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷) |
| 9 | 2, 4, 6, 8 | joinlmuladdmuld 11201 | . 2 ⊢ (⊤ → ((𝐴 + 𝐶) · 𝐵) = 𝐷) |
| 10 | 9 | mptru 1547 | 1 ⊢ ((𝐴 + 𝐶) · 𝐵) = 𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 + caddc 11071 · cmul 11073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-addcl 11128 ax-mulcom 11132 ax-distr 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |