Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > joinlmuladdmuli | Structured version Visualization version GIF version |
Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.) |
Ref | Expression |
---|---|
joinlmuladdmuli.1 | ⊢ 𝐴 ∈ ℂ |
joinlmuladdmuli.2 | ⊢ 𝐵 ∈ ℂ |
joinlmuladdmuli.3 | ⊢ 𝐶 ∈ ℂ |
joinlmuladdmuli.4 | ⊢ ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷 |
Ref | Expression |
---|---|
joinlmuladdmuli | ⊢ ((𝐴 + 𝐶) · 𝐵) = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | joinlmuladdmuli.1 | . . . 4 ⊢ 𝐴 ∈ ℂ | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 ∈ ℂ) |
3 | joinlmuladdmuli.2 | . . . 4 ⊢ 𝐵 ∈ ℂ | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 ∈ ℂ) |
5 | joinlmuladdmuli.3 | . . . 4 ⊢ 𝐶 ∈ ℂ | |
6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → 𝐶 ∈ ℂ) |
7 | joinlmuladdmuli.4 | . . . 4 ⊢ ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷 | |
8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷) |
9 | 2, 4, 6, 8 | joinlmuladdmuld 11002 | . 2 ⊢ (⊤ → ((𝐴 + 𝐶) · 𝐵) = 𝐷) |
10 | 9 | mptru 1546 | 1 ⊢ ((𝐴 + 𝐶) · 𝐵) = 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊤wtru 1540 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 + caddc 10874 · cmul 10876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-addcl 10931 ax-mulcom 10935 ax-distr 10938 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |