![]() |
Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > joinlmuladdmuli | Structured version Visualization version GIF version |
Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.) |
Ref | Expression |
---|---|
joinlmuladdmuli.1 | ⊢ 𝐴 ∈ ℂ |
joinlmuladdmuli.2 | ⊢ 𝐵 ∈ ℂ |
joinlmuladdmuli.3 | ⊢ 𝐶 ∈ ℂ |
joinlmuladdmuli.4 | ⊢ ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷 |
Ref | Expression |
---|---|
joinlmuladdmuli | ⊢ ((𝐴 + 𝐶) · 𝐵) = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | joinlmuladdmuli.1 | . . . 4 ⊢ 𝐴 ∈ ℂ | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 ∈ ℂ) |
3 | joinlmuladdmuli.2 | . . . 4 ⊢ 𝐵 ∈ ℂ | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 ∈ ℂ) |
5 | joinlmuladdmuli.3 | . . . 4 ⊢ 𝐶 ∈ ℂ | |
6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → 𝐶 ∈ ℂ) |
7 | joinlmuladdmuli.4 | . . . 4 ⊢ ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷 | |
8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷) |
9 | 2, 4, 6, 8 | joinlmuladdmuld 11295 | . 2 ⊢ (⊤ → ((𝐴 + 𝐶) · 𝐵) = 𝐷) |
10 | 9 | mptru 1546 | 1 ⊢ ((𝐴 + 𝐶) · 𝐵) = 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 (class class class)co 7438 ℂcc 11160 + caddc 11165 · cmul 11167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-addcl 11222 ax-mulcom 11226 ax-distr 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-iota 6522 df-fv 6577 df-ov 7441 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |