Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  joinlmuladdmuli Structured version   Visualization version   GIF version

Theorem joinlmuladdmuli 46477
Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.)
Hypotheses
Ref Expression
joinlmuladdmuli.1 𝐴 ∈ ℂ
joinlmuladdmuli.2 𝐵 ∈ ℂ
joinlmuladdmuli.3 𝐶 ∈ ℂ
joinlmuladdmuli.4 ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷
Assertion
Ref Expression
joinlmuladdmuli ((𝐴 + 𝐶) · 𝐵) = 𝐷

Proof of Theorem joinlmuladdmuli
StepHypRef Expression
1 joinlmuladdmuli.1 . . . 4 𝐴 ∈ ℂ
21a1i 11 . . 3 (⊤ → 𝐴 ∈ ℂ)
3 joinlmuladdmuli.2 . . . 4 𝐵 ∈ ℂ
43a1i 11 . . 3 (⊤ → 𝐵 ∈ ℂ)
5 joinlmuladdmuli.3 . . . 4 𝐶 ∈ ℂ
65a1i 11 . . 3 (⊤ → 𝐶 ∈ ℂ)
7 joinlmuladdmuli.4 . . . 4 ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷
87a1i 11 . . 3 (⊤ → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷)
92, 4, 6, 8joinlmuladdmuld 11002 . 2 (⊤ → ((𝐴 + 𝐶) · 𝐵) = 𝐷)
109mptru 1546 1 ((𝐴 + 𝐶) · 𝐵) = 𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wtru 1540  wcel 2106  (class class class)co 7275  cc 10869   + caddc 10874   · cmul 10876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-addcl 10931  ax-mulcom 10935  ax-distr 10938
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator