Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  joinlmuladdmuli Structured version   Visualization version   GIF version

Theorem joinlmuladdmuli 49884
Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.)
Hypotheses
Ref Expression
joinlmuladdmuli.1 𝐴 ∈ ℂ
joinlmuladdmuli.2 𝐵 ∈ ℂ
joinlmuladdmuli.3 𝐶 ∈ ℂ
joinlmuladdmuli.4 ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷
Assertion
Ref Expression
joinlmuladdmuli ((𝐴 + 𝐶) · 𝐵) = 𝐷

Proof of Theorem joinlmuladdmuli
StepHypRef Expression
1 joinlmuladdmuli.1 . . . 4 𝐴 ∈ ℂ
21a1i 11 . . 3 (⊤ → 𝐴 ∈ ℂ)
3 joinlmuladdmuli.2 . . . 4 𝐵 ∈ ℂ
43a1i 11 . . 3 (⊤ → 𝐵 ∈ ℂ)
5 joinlmuladdmuli.3 . . . 4 𝐶 ∈ ℂ
65a1i 11 . . 3 (⊤ → 𝐶 ∈ ℂ)
7 joinlmuladdmuli.4 . . . 4 ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷
87a1i 11 . . 3 (⊤ → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷)
92, 4, 6, 8joinlmuladdmuld 11139 . 2 (⊤ → ((𝐴 + 𝐶) · 𝐵) = 𝐷)
109mptru 1548 1 ((𝐴 + 𝐶) · 𝐵) = 𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wtru 1542  wcel 2111  (class class class)co 7346  cc 11004   + caddc 11009   · cmul 11011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-addcl 11066  ax-mulcom 11070  ax-distr 11073
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-ov 7349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator