![]() |
Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > assraddsubi | Structured version Visualization version GIF version |
Description: Associate RHS addition-subtraction. (Contributed by David A. Wheeler, 11-Oct-2018.) |
Ref | Expression |
---|---|
assraddsubi.1 | ⊢ 𝐵 ∈ ℂ |
assraddsubi.2 | ⊢ 𝐶 ∈ ℂ |
assraddsubi.3 | ⊢ 𝐷 ∈ ℂ |
assraddsubi.4 | ⊢ 𝐴 = ((𝐵 + 𝐶) − 𝐷) |
Ref | Expression |
---|---|
assraddsubi | ⊢ 𝐴 = (𝐵 + (𝐶 − 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | assraddsubi.4 | . 2 ⊢ 𝐴 = ((𝐵 + 𝐶) − 𝐷) | |
2 | assraddsubi.1 | . . 3 ⊢ 𝐵 ∈ ℂ | |
3 | assraddsubi.2 | . . 3 ⊢ 𝐶 ∈ ℂ | |
4 | assraddsubi.3 | . . 3 ⊢ 𝐷 ∈ ℂ | |
5 | 2, 3, 4 | addsubassi 11607 | . 2 ⊢ ((𝐵 + 𝐶) − 𝐷) = (𝐵 + (𝐶 − 𝐷)) |
6 | 1, 5 | eqtri 2765 | 1 ⊢ 𝐴 = (𝐵 + (𝐶 − 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 (class class class)co 7438 ℂcc 11160 + caddc 11165 − cmin 11499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-po 5601 df-so 5602 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-ltxr 11307 df-sub 11501 |
This theorem is referenced by: i2linesi 49134 |
Copyright terms: Public domain | W3C validator |