| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kmlem10 | Structured version Visualization version GIF version | ||
| Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.) |
| Ref | Expression |
|---|---|
| kmlem9.1 | ⊢ 𝐴 = {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} |
| Ref | Expression |
|---|---|
| kmlem10 | ⊢ (∀ℎ(∀𝑧 ∈ ℎ ∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ ℎ 𝜑) → ∃𝑦∀𝑧 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kmlem9.1 | . . 3 ⊢ 𝐴 = {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} | |
| 2 | 1 | kmlem9 10057 | . 2 ⊢ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) |
| 3 | vex 3441 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 4 | 3 | abrexex 7900 | . . . 4 ⊢ {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} ∈ V |
| 5 | 1, 4 | eqeltri 2829 | . . 3 ⊢ 𝐴 ∈ V |
| 6 | raleq 3290 | . . . . 5 ⊢ (ℎ = 𝐴 → (∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) ↔ ∀𝑤 ∈ 𝐴 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅))) | |
| 7 | 6 | raleqbi1dv 3305 | . . . 4 ⊢ (ℎ = 𝐴 → (∀𝑧 ∈ ℎ ∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅))) |
| 8 | raleq 3290 | . . . . 5 ⊢ (ℎ = 𝐴 → (∀𝑧 ∈ ℎ 𝜑 ↔ ∀𝑧 ∈ 𝐴 𝜑)) | |
| 9 | 8 | exbidv 1922 | . . . 4 ⊢ (ℎ = 𝐴 → (∃𝑦∀𝑧 ∈ ℎ 𝜑 ↔ ∃𝑦∀𝑧 ∈ 𝐴 𝜑)) |
| 10 | 7, 9 | imbi12d 344 | . . 3 ⊢ (ℎ = 𝐴 → ((∀𝑧 ∈ ℎ ∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ ℎ 𝜑) ↔ (∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ 𝐴 𝜑))) |
| 11 | 5, 10 | spcv 3556 | . 2 ⊢ (∀ℎ(∀𝑧 ∈ ℎ ∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ ℎ 𝜑) → (∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ 𝐴 𝜑)) |
| 12 | 2, 11 | mpi 20 | 1 ⊢ (∀ℎ(∀𝑧 ∈ ℎ ∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ ℎ 𝜑) → ∃𝑦∀𝑧 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 = wceq 1541 ∃wex 1780 {cab 2711 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 Vcvv 3437 ∖ cdif 3895 ∩ cin 3897 ∅c0 4282 {csn 4575 ∪ cuni 4858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-rep 5219 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-in 3905 df-ss 3915 df-nul 4283 df-sn 4576 df-uni 4859 |
| This theorem is referenced by: kmlem13 10061 |
| Copyright terms: Public domain | W3C validator |