MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem10 Structured version   Visualization version   GIF version

Theorem kmlem10 10229
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.)
Hypothesis
Ref Expression
kmlem9.1 𝐴 = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}
Assertion
Ref Expression
kmlem10 (∀(∀𝑧𝑤 (𝑧𝑤 → (𝑧𝑤) = ∅) → ∃𝑦𝑧 𝜑) → ∃𝑦𝑧𝐴 𝜑)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑢,𝑡,   𝑦,𝐴,𝑧,𝑤,   𝜑,
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑢,𝑡)   𝐴(𝑥,𝑢,𝑡)

Proof of Theorem kmlem10
StepHypRef Expression
1 kmlem9.1 . . 3 𝐴 = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}
21kmlem9 10228 . 2 𝑧𝐴𝑤𝐴 (𝑧𝑤 → (𝑧𝑤) = ∅)
3 vex 3492 . . . . 5 𝑥 ∈ V
43abrexex 8003 . . . 4 {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))} ∈ V
51, 4eqeltri 2840 . . 3 𝐴 ∈ V
6 raleq 3331 . . . . 5 ( = 𝐴 → (∀𝑤 (𝑧𝑤 → (𝑧𝑤) = ∅) ↔ ∀𝑤𝐴 (𝑧𝑤 → (𝑧𝑤) = ∅)))
76raleqbi1dv 3346 . . . 4 ( = 𝐴 → (∀𝑧𝑤 (𝑧𝑤 → (𝑧𝑤) = ∅) ↔ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤 → (𝑧𝑤) = ∅)))
8 raleq 3331 . . . . 5 ( = 𝐴 → (∀𝑧 𝜑 ↔ ∀𝑧𝐴 𝜑))
98exbidv 1920 . . . 4 ( = 𝐴 → (∃𝑦𝑧 𝜑 ↔ ∃𝑦𝑧𝐴 𝜑))
107, 9imbi12d 344 . . 3 ( = 𝐴 → ((∀𝑧𝑤 (𝑧𝑤 → (𝑧𝑤) = ∅) → ∃𝑦𝑧 𝜑) ↔ (∀𝑧𝐴𝑤𝐴 (𝑧𝑤 → (𝑧𝑤) = ∅) → ∃𝑦𝑧𝐴 𝜑)))
115, 10spcv 3618 . 2 (∀(∀𝑧𝑤 (𝑧𝑤 → (𝑧𝑤) = ∅) → ∃𝑦𝑧 𝜑) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤 → (𝑧𝑤) = ∅) → ∃𝑦𝑧𝐴 𝜑))
122, 11mpi 20 1 (∀(∀𝑧𝑤 (𝑧𝑤 → (𝑧𝑤) = ∅) → ∃𝑦𝑧 𝜑) → ∃𝑦𝑧𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535   = wceq 1537  wex 1777  {cab 2717  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cdif 3973  cin 3975  c0 4352  {csn 4648   cuni 4931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-rep 5303
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-in 3983  df-ss 3993  df-nul 4353  df-sn 4649  df-uni 4932
This theorem is referenced by:  kmlem13  10232
  Copyright terms: Public domain W3C validator