|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > kmlem10 | Structured version Visualization version GIF version | ||
| Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.) | 
| Ref | Expression | 
|---|---|
| kmlem9.1 | ⊢ 𝐴 = {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} | 
| Ref | Expression | 
|---|---|
| kmlem10 | ⊢ (∀ℎ(∀𝑧 ∈ ℎ ∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ ℎ 𝜑) → ∃𝑦∀𝑧 ∈ 𝐴 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | kmlem9.1 | . . 3 ⊢ 𝐴 = {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} | |
| 2 | 1 | kmlem9 10200 | . 2 ⊢ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) | 
| 3 | vex 3483 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 4 | 3 | abrexex 7988 | . . . 4 ⊢ {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} ∈ V | 
| 5 | 1, 4 | eqeltri 2836 | . . 3 ⊢ 𝐴 ∈ V | 
| 6 | raleq 3322 | . . . . 5 ⊢ (ℎ = 𝐴 → (∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) ↔ ∀𝑤 ∈ 𝐴 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅))) | |
| 7 | 6 | raleqbi1dv 3337 | . . . 4 ⊢ (ℎ = 𝐴 → (∀𝑧 ∈ ℎ ∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅))) | 
| 8 | raleq 3322 | . . . . 5 ⊢ (ℎ = 𝐴 → (∀𝑧 ∈ ℎ 𝜑 ↔ ∀𝑧 ∈ 𝐴 𝜑)) | |
| 9 | 8 | exbidv 1920 | . . . 4 ⊢ (ℎ = 𝐴 → (∃𝑦∀𝑧 ∈ ℎ 𝜑 ↔ ∃𝑦∀𝑧 ∈ 𝐴 𝜑)) | 
| 10 | 7, 9 | imbi12d 344 | . . 3 ⊢ (ℎ = 𝐴 → ((∀𝑧 ∈ ℎ ∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ ℎ 𝜑) ↔ (∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ 𝐴 𝜑))) | 
| 11 | 5, 10 | spcv 3604 | . 2 ⊢ (∀ℎ(∀𝑧 ∈ ℎ ∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ ℎ 𝜑) → (∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ 𝐴 𝜑)) | 
| 12 | 2, 11 | mpi 20 | 1 ⊢ (∀ℎ(∀𝑧 ∈ ℎ ∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ ℎ 𝜑) → ∃𝑦∀𝑧 ∈ 𝐴 𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1537 = wceq 1539 ∃wex 1778 {cab 2713 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 Vcvv 3479 ∖ cdif 3947 ∩ cin 3949 ∅c0 4332 {csn 4625 ∪ cuni 4906 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-rep 5278 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-mo 2539 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-in 3957 df-ss 3967 df-nul 4333 df-sn 4626 df-uni 4907 | 
| This theorem is referenced by: kmlem13 10204 | 
| Copyright terms: Public domain | W3C validator |