MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem10 Structured version   Visualization version   GIF version

Theorem kmlem10 9915
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.)
Hypothesis
Ref Expression
kmlem9.1 𝐴 = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}
Assertion
Ref Expression
kmlem10 (∀(∀𝑧𝑤 (𝑧𝑤 → (𝑧𝑤) = ∅) → ∃𝑦𝑧 𝜑) → ∃𝑦𝑧𝐴 𝜑)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑢,𝑡,   𝑦,𝐴,𝑧,𝑤,   𝜑,
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑢,𝑡)   𝐴(𝑥,𝑢,𝑡)

Proof of Theorem kmlem10
StepHypRef Expression
1 kmlem9.1 . . 3 𝐴 = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}
21kmlem9 9914 . 2 𝑧𝐴𝑤𝐴 (𝑧𝑤 → (𝑧𝑤) = ∅)
3 vex 3436 . . . . 5 𝑥 ∈ V
43abrexex 7805 . . . 4 {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))} ∈ V
51, 4eqeltri 2835 . . 3 𝐴 ∈ V
6 raleq 3342 . . . . 5 ( = 𝐴 → (∀𝑤 (𝑧𝑤 → (𝑧𝑤) = ∅) ↔ ∀𝑤𝐴 (𝑧𝑤 → (𝑧𝑤) = ∅)))
76raleqbi1dv 3340 . . . 4 ( = 𝐴 → (∀𝑧𝑤 (𝑧𝑤 → (𝑧𝑤) = ∅) ↔ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤 → (𝑧𝑤) = ∅)))
8 raleq 3342 . . . . 5 ( = 𝐴 → (∀𝑧 𝜑 ↔ ∀𝑧𝐴 𝜑))
98exbidv 1924 . . . 4 ( = 𝐴 → (∃𝑦𝑧 𝜑 ↔ ∃𝑦𝑧𝐴 𝜑))
107, 9imbi12d 345 . . 3 ( = 𝐴 → ((∀𝑧𝑤 (𝑧𝑤 → (𝑧𝑤) = ∅) → ∃𝑦𝑧 𝜑) ↔ (∀𝑧𝐴𝑤𝐴 (𝑧𝑤 → (𝑧𝑤) = ∅) → ∃𝑦𝑧𝐴 𝜑)))
115, 10spcv 3544 . 2 (∀(∀𝑧𝑤 (𝑧𝑤 → (𝑧𝑤) = ∅) → ∃𝑦𝑧 𝜑) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤 → (𝑧𝑤) = ∅) → ∃𝑦𝑧𝐴 𝜑))
122, 11mpi 20 1 (∀(∀𝑧𝑤 (𝑧𝑤 → (𝑧𝑤) = ∅) → ∃𝑦𝑧 𝜑) → ∃𝑦𝑧𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537   = wceq 1539  wex 1782  {cab 2715  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cdif 3884  cin 3886  c0 4256  {csn 4561   cuni 4839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-rep 5209
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-nul 4257  df-sn 4562  df-uni 4840
This theorem is referenced by:  kmlem13  9918
  Copyright terms: Public domain W3C validator