| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kmlem10 | Structured version Visualization version GIF version | ||
| Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.) |
| Ref | Expression |
|---|---|
| kmlem9.1 | ⊢ 𝐴 = {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} |
| Ref | Expression |
|---|---|
| kmlem10 | ⊢ (∀ℎ(∀𝑧 ∈ ℎ ∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ ℎ 𝜑) → ∃𝑦∀𝑧 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kmlem9.1 | . . 3 ⊢ 𝐴 = {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} | |
| 2 | 1 | kmlem9 10119 | . 2 ⊢ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) |
| 3 | vex 3454 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 4 | 3 | abrexex 7944 | . . . 4 ⊢ {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} ∈ V |
| 5 | 1, 4 | eqeltri 2825 | . . 3 ⊢ 𝐴 ∈ V |
| 6 | raleq 3298 | . . . . 5 ⊢ (ℎ = 𝐴 → (∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) ↔ ∀𝑤 ∈ 𝐴 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅))) | |
| 7 | 6 | raleqbi1dv 3313 | . . . 4 ⊢ (ℎ = 𝐴 → (∀𝑧 ∈ ℎ ∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅))) |
| 8 | raleq 3298 | . . . . 5 ⊢ (ℎ = 𝐴 → (∀𝑧 ∈ ℎ 𝜑 ↔ ∀𝑧 ∈ 𝐴 𝜑)) | |
| 9 | 8 | exbidv 1921 | . . . 4 ⊢ (ℎ = 𝐴 → (∃𝑦∀𝑧 ∈ ℎ 𝜑 ↔ ∃𝑦∀𝑧 ∈ 𝐴 𝜑)) |
| 10 | 7, 9 | imbi12d 344 | . . 3 ⊢ (ℎ = 𝐴 → ((∀𝑧 ∈ ℎ ∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ ℎ 𝜑) ↔ (∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ 𝐴 𝜑))) |
| 11 | 5, 10 | spcv 3574 | . 2 ⊢ (∀ℎ(∀𝑧 ∈ ℎ ∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ ℎ 𝜑) → (∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ 𝐴 𝜑)) |
| 12 | 2, 11 | mpi 20 | 1 ⊢ (∀ℎ(∀𝑧 ∈ ℎ ∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ ℎ 𝜑) → ∃𝑦∀𝑧 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 ∃wex 1779 {cab 2708 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 Vcvv 3450 ∖ cdif 3914 ∩ cin 3916 ∅c0 4299 {csn 4592 ∪ cuni 4874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-rep 5237 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-in 3924 df-ss 3934 df-nul 4300 df-sn 4593 df-uni 4875 |
| This theorem is referenced by: kmlem13 10123 |
| Copyright terms: Public domain | W3C validator |