MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abrexex Structured version   Visualization version   GIF version

Theorem abrexex 7900
Description: Existence of a class abstraction of existentially restricted sets. See the comment of abrexexg 7899. See also abrexex2 7907. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
abrexex.1 𝐴 ∈ V
Assertion
Ref Expression
abrexex {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem abrexex
StepHypRef Expression
1 abrexex.1 . 2 𝐴 ∈ V
2 abrexexg 7899 . 2 (𝐴 ∈ V → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
31, 2ax-mp 5 1 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  {cab 2711  wrex 3057  Vcvv 3437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-rep 5219
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-mo 2537  df-clab 2712  df-cleq 2725  df-clel 2808  df-rex 3058  df-v 3439
This theorem is referenced by:  ab2rexex  7917  kmlem10  10058  cshwsexa  14733  shftfval  14979  dvdsrval  20281  cmpsublem  23315  cmpsub  23316  ptrescn  23555  addsproplem2  27914  negsid  27984  onaddscl  28211  recut  28399  0reno  28400  satfvsuclem1  35424  fmlasuc0  35449  heibor1lem  37869  pointsetN  39860  eldiophb  42874
  Copyright terms: Public domain W3C validator