![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abrexex | Structured version Visualization version GIF version |
Description: Existence of a class abstraction of existentially restricted sets. See the comment of abrexexg 8001. See also abrexex2 8010. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
abrexex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
abrexex | ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abrexex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | abrexexg 8001 | . 2 ⊢ (𝐴 ∈ V → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-rep 5303 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-v 3490 |
This theorem is referenced by: ab2rexex 8020 kmlem10 10229 cshwsexa 14872 shftfval 15119 dvdsrval 20387 cmpsublem 23428 cmpsub 23429 ptrescn 23668 addsproplem2 28021 negsid 28091 onaddscl 28304 recut 28446 0reno 28447 satfvsuclem1 35327 fmlasuc0 35352 heibor1lem 37769 pointsetN 39698 eldiophb 42713 |
Copyright terms: Public domain | W3C validator |