| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abrexex | Structured version Visualization version GIF version | ||
| Description: Existence of a class abstraction of existentially restricted sets. See the comment of abrexexg 7899. See also abrexex2 7907. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| abrexex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| abrexex | ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abrexex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | abrexexg 7899 | . 2 ⊢ (𝐴 ∈ V → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 {cab 2711 ∃wrex 3057 Vcvv 3437 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-rep 5219 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-rex 3058 df-v 3439 |
| This theorem is referenced by: ab2rexex 7917 kmlem10 10058 cshwsexa 14733 shftfval 14979 dvdsrval 20281 cmpsublem 23315 cmpsub 23316 ptrescn 23555 addsproplem2 27914 negsid 27984 onaddscl 28211 recut 28399 0reno 28400 satfvsuclem1 35424 fmlasuc0 35449 heibor1lem 37869 pointsetN 39860 eldiophb 42874 |
| Copyright terms: Public domain | W3C validator |