| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abrexex | Structured version Visualization version GIF version | ||
| Description: Existence of a class abstraction of existentially restricted sets. See the comment of abrexexg 7959. See also abrexex2 7968. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| abrexex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| abrexex | ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abrexex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | abrexexg 7959 | . 2 ⊢ (𝐴 ∈ V → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 {cab 2713 ∃wrex 3060 Vcvv 3459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-rep 5249 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-rex 3061 df-v 3461 |
| This theorem is referenced by: ab2rexex 7978 kmlem10 10174 cshwsexa 14842 shftfval 15089 dvdsrval 20321 cmpsublem 23337 cmpsub 23338 ptrescn 23577 addsproplem2 27929 negsid 27999 onaddscl 28226 recut 28399 0reno 28400 satfvsuclem1 35381 fmlasuc0 35406 heibor1lem 37833 pointsetN 39760 eldiophb 42780 |
| Copyright terms: Public domain | W3C validator |