| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abrexex | Structured version Visualization version GIF version | ||
| Description: Existence of a class abstraction of existentially restricted sets. See the comment of abrexexg 7893. See also abrexex2 7901. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| abrexex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| abrexex | ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abrexex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | abrexexg 7893 | . 2 ⊢ (𝐴 ∈ V → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-rep 5217 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-v 3438 |
| This theorem is referenced by: ab2rexex 7911 kmlem10 10048 cshwsexa 14728 shftfval 14974 dvdsrval 20277 cmpsublem 23312 cmpsub 23313 ptrescn 23552 addsproplem2 27911 negsid 27981 onaddscl 28208 recut 28396 0reno 28397 satfvsuclem1 35391 fmlasuc0 35416 heibor1lem 37848 pointsetN 39779 eldiophb 42789 |
| Copyright terms: Public domain | W3C validator |