![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abrexex | Structured version Visualization version GIF version |
Description: Existence of a class abstraction of existentially restricted sets. See the comment of abrexexg 7951. See also abrexex2 7960. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
abrexex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
abrexex | ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abrexex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | abrexexg 7951 | . 2 ⊢ (𝐴 ∈ V → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 {cab 2708 ∃wrex 3069 Vcvv 3473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-rep 5285 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-mo 2533 df-clab 2709 df-cleq 2723 df-clel 2809 df-rex 3070 df-v 3475 |
This theorem is referenced by: ab2rexex 7970 kmlem10 10160 cshwsexa 14781 shftfval 15024 dvdsrval 20259 cmpsublem 23223 cmpsub 23224 ptrescn 23463 addsproplem2 27801 negsid 27867 recut 28105 0reno 28106 satfvsuclem1 34815 fmlasuc0 34840 heibor1lem 37143 pointsetN 39078 eldiophb 41960 |
Copyright terms: Public domain | W3C validator |