MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abrexex Structured version   Visualization version   GIF version

Theorem abrexex 7976
Description: Existence of a class abstraction of existentially restricted sets. See the comment of abrexexg 7974. See also abrexex2 7983. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
abrexex.1 𝐴 ∈ V
Assertion
Ref Expression
abrexex {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem abrexex
StepHypRef Expression
1 abrexex.1 . 2 𝐴 ∈ V
2 abrexexg 7974 . 2 (𝐴 ∈ V → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
31, 2ax-mp 5 1 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  {cab 2703  wrex 3060  Vcvv 3462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-rep 5290
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1537  df-ex 1775  df-sb 2061  df-mo 2529  df-clab 2704  df-cleq 2718  df-clel 2803  df-rex 3061  df-v 3464
This theorem is referenced by:  ab2rexex  7993  kmlem10  10202  cshwsexa  14832  shftfval  15075  dvdsrval  20343  cmpsublem  23394  cmpsub  23395  ptrescn  23634  addsproplem2  27984  negsid  28050  recut  28347  0reno  28348  satfvsuclem1  35187  fmlasuc0  35212  heibor1lem  37510  pointsetN  39440  eldiophb  42414
  Copyright terms: Public domain W3C validator