![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abrexex | Structured version Visualization version GIF version |
Description: Existence of a class abstraction of existentially restricted sets. See the comment of abrexexg 7974. See also abrexex2 7983. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
abrexex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
abrexex | ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abrexex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | abrexexg 7974 | . 2 ⊢ (𝐴 ∈ V → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 {cab 2703 ∃wrex 3060 Vcvv 3462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-rep 5290 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-ex 1775 df-sb 2061 df-mo 2529 df-clab 2704 df-cleq 2718 df-clel 2803 df-rex 3061 df-v 3464 |
This theorem is referenced by: ab2rexex 7993 kmlem10 10202 cshwsexa 14832 shftfval 15075 dvdsrval 20343 cmpsublem 23394 cmpsub 23395 ptrescn 23634 addsproplem2 27984 negsid 28050 recut 28347 0reno 28348 satfvsuclem1 35187 fmlasuc0 35212 heibor1lem 37510 pointsetN 39440 eldiophb 42414 |
Copyright terms: Public domain | W3C validator |