| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abrexex | Structured version Visualization version GIF version | ||
| Description: Existence of a class abstraction of existentially restricted sets. See the comment of abrexexg 7939. See also abrexex2 7948. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| abrexex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| abrexex | ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abrexex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | abrexexg 7939 | . 2 ⊢ (𝐴 ∈ V → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 Vcvv 3447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-rep 5234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-v 3449 |
| This theorem is referenced by: ab2rexex 7958 kmlem10 10113 cshwsexa 14789 shftfval 15036 dvdsrval 20270 cmpsublem 23286 cmpsub 23287 ptrescn 23526 addsproplem2 27877 negsid 27947 onaddscl 28174 recut 28347 0reno 28348 satfvsuclem1 35346 fmlasuc0 35371 heibor1lem 37803 pointsetN 39735 eldiophb 42745 |
| Copyright terms: Public domain | W3C validator |