MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abrexex Structured version   Visualization version   GIF version

Theorem abrexex 7961
Description: Existence of a class abstraction of existentially restricted sets. See the comment of abrexexg 7959. See also abrexex2 7968. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
abrexex.1 𝐴 ∈ V
Assertion
Ref Expression
abrexex {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem abrexex
StepHypRef Expression
1 abrexex.1 . 2 𝐴 ∈ V
2 abrexexg 7959 . 2 (𝐴 ∈ V → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
31, 2ax-mp 5 1 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  {cab 2713  wrex 3060  Vcvv 3459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-rep 5249
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-mo 2539  df-clab 2714  df-cleq 2727  df-clel 2809  df-rex 3061  df-v 3461
This theorem is referenced by:  ab2rexex  7978  kmlem10  10174  cshwsexa  14842  shftfval  15089  dvdsrval  20321  cmpsublem  23337  cmpsub  23338  ptrescn  23577  addsproplem2  27929  negsid  27999  onaddscl  28226  recut  28399  0reno  28400  satfvsuclem1  35381  fmlasuc0  35406  heibor1lem  37833  pointsetN  39760  eldiophb  42780
  Copyright terms: Public domain W3C validator