| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abrexex | Structured version Visualization version GIF version | ||
| Description: Existence of a class abstraction of existentially restricted sets. See the comment of abrexexg 7942. See also abrexex2 7951. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| abrexex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| abrexex | ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abrexex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | abrexexg 7942 | . 2 ⊢ (𝐴 ∈ V → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2708 ∃wrex 3054 Vcvv 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-rep 5237 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3055 df-v 3452 |
| This theorem is referenced by: ab2rexex 7961 kmlem10 10120 cshwsexa 14796 shftfval 15043 dvdsrval 20277 cmpsublem 23293 cmpsub 23294 ptrescn 23533 addsproplem2 27884 negsid 27954 onaddscl 28181 recut 28354 0reno 28355 satfvsuclem1 35353 fmlasuc0 35378 heibor1lem 37810 pointsetN 39742 eldiophb 42752 |
| Copyright terms: Public domain | W3C validator |