Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > lnophmlem1 | Structured version Visualization version GIF version |
Description: Lemma for lnophmi 30581. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnophmlem.1 | ⊢ 𝐴 ∈ ℋ |
lnophmlem.2 | ⊢ 𝐵 ∈ ℋ |
lnophmlem.3 | ⊢ 𝑇 ∈ LinOp |
lnophmlem.4 | ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ |
Ref | Expression |
---|---|
lnophmlem1 | ⊢ (𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnophmlem.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
2 | lnophmlem.4 | . 2 ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ | |
3 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
4 | fveq2 6819 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑇‘𝑥) = (𝑇‘𝐴)) | |
5 | 3, 4 | oveq12d 7347 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ·ih (𝑇‘𝑥)) = (𝐴 ·ih (𝑇‘𝐴))) |
6 | 5 | eleq1d 2821 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ ↔ (𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ)) |
7 | 6 | rspcv 3566 | . 2 ⊢ (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ → (𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ)) |
8 | 1, 2, 7 | mp2 9 | 1 ⊢ (𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 ∀wral 3061 ‘cfv 6473 (class class class)co 7329 ℝcr 10963 ℋchba 29482 ·ih csp 29485 LinOpclo 29510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-iota 6425 df-fv 6481 df-ov 7332 |
This theorem is referenced by: lnophmlem2 30580 |
Copyright terms: Public domain | W3C validator |