Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > lnophmlem1 | Structured version Visualization version GIF version |
Description: Lemma for lnophmi 30380. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnophmlem.1 | ⊢ 𝐴 ∈ ℋ |
lnophmlem.2 | ⊢ 𝐵 ∈ ℋ |
lnophmlem.3 | ⊢ 𝑇 ∈ LinOp |
lnophmlem.4 | ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ |
Ref | Expression |
---|---|
lnophmlem1 | ⊢ (𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnophmlem.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
2 | lnophmlem.4 | . 2 ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ | |
3 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
4 | fveq2 6774 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑇‘𝑥) = (𝑇‘𝐴)) | |
5 | 3, 4 | oveq12d 7293 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ·ih (𝑇‘𝑥)) = (𝐴 ·ih (𝑇‘𝐴))) |
6 | 5 | eleq1d 2823 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ ↔ (𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ)) |
7 | 6 | rspcv 3557 | . 2 ⊢ (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ → (𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ)) |
8 | 1, 2, 7 | mp2 9 | 1 ⊢ (𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ∀wral 3064 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 ℋchba 29281 ·ih csp 29284 LinOpclo 29309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: lnophmlem2 30379 |
Copyright terms: Public domain | W3C validator |