| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnophmlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for lnophmi 32009. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnophmlem.1 | ⊢ 𝐴 ∈ ℋ |
| lnophmlem.2 | ⊢ 𝐵 ∈ ℋ |
| lnophmlem.3 | ⊢ 𝑇 ∈ LinOp |
| lnophmlem.4 | ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ |
| Ref | Expression |
|---|---|
| lnophmlem1 | ⊢ (𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnophmlem.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
| 2 | lnophmlem.4 | . 2 ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ | |
| 3 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 4 | fveq2 6831 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑇‘𝑥) = (𝑇‘𝐴)) | |
| 5 | 3, 4 | oveq12d 7373 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ·ih (𝑇‘𝑥)) = (𝐴 ·ih (𝑇‘𝐴))) |
| 6 | 5 | eleq1d 2818 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ ↔ (𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ)) |
| 7 | 6 | rspcv 3570 | . 2 ⊢ (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ → (𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ)) |
| 8 | 1, 2, 7 | mp2 9 | 1 ⊢ (𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ∀wral 3049 ‘cfv 6489 (class class class)co 7355 ℝcr 11015 ℋchba 30910 ·ih csp 30913 LinOpclo 30938 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3050 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 |
| This theorem is referenced by: lnophmlem2 32008 |
| Copyright terms: Public domain | W3C validator |