HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnophmlem1 Structured version   Visualization version   GIF version

Theorem lnophmlem1 31986
Description: Lemma for lnophmi 31988. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnophmlem.1 𝐴 ∈ ℋ
lnophmlem.2 𝐵 ∈ ℋ
lnophmlem.3 𝑇 ∈ LinOp
lnophmlem.4 𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ
Assertion
Ref Expression
lnophmlem1 (𝐴 ·ih (𝑇𝐴)) ∈ ℝ
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑇

Proof of Theorem lnophmlem1
StepHypRef Expression
1 lnophmlem.1 . 2 𝐴 ∈ ℋ
2 lnophmlem.4 . 2 𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ
3 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
4 fveq2 6817 . . . . 5 (𝑥 = 𝐴 → (𝑇𝑥) = (𝑇𝐴))
53, 4oveq12d 7359 . . . 4 (𝑥 = 𝐴 → (𝑥 ·ih (𝑇𝑥)) = (𝐴 ·ih (𝑇𝐴)))
65eleq1d 2814 . . 3 (𝑥 = 𝐴 → ((𝑥 ·ih (𝑇𝑥)) ∈ ℝ ↔ (𝐴 ·ih (𝑇𝐴)) ∈ ℝ))
76rspcv 3571 . 2 (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ → (𝐴 ·ih (𝑇𝐴)) ∈ ℝ))
81, 2, 7mp2 9 1 (𝐴 ·ih (𝑇𝐴)) ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2110  wral 3045  cfv 6477  (class class class)co 7341  cr 10997  chba 30889   ·ih csp 30892  LinOpclo 30917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-iota 6433  df-fv 6485  df-ov 7344
This theorem is referenced by:  lnophmlem2  31987
  Copyright terms: Public domain W3C validator