| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnophmlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for lnophmi 31988. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnophmlem.1 | ⊢ 𝐴 ∈ ℋ |
| lnophmlem.2 | ⊢ 𝐵 ∈ ℋ |
| lnophmlem.3 | ⊢ 𝑇 ∈ LinOp |
| lnophmlem.4 | ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ |
| Ref | Expression |
|---|---|
| lnophmlem1 | ⊢ (𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnophmlem.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
| 2 | lnophmlem.4 | . 2 ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ | |
| 3 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 4 | fveq2 6817 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑇‘𝑥) = (𝑇‘𝐴)) | |
| 5 | 3, 4 | oveq12d 7359 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ·ih (𝑇‘𝑥)) = (𝐴 ·ih (𝑇‘𝐴))) |
| 6 | 5 | eleq1d 2814 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ ↔ (𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ)) |
| 7 | 6 | rspcv 3571 | . 2 ⊢ (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ → (𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ)) |
| 8 | 1, 2, 7 | mp2 9 | 1 ⊢ (𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2110 ∀wral 3045 ‘cfv 6477 (class class class)co 7341 ℝcr 10997 ℋchba 30889 ·ih csp 30892 LinOpclo 30917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-iota 6433 df-fv 6485 df-ov 7344 |
| This theorem is referenced by: lnophmlem2 31987 |
| Copyright terms: Public domain | W3C validator |