HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnophmlem1 Structured version   Visualization version   GIF version

Theorem lnophmlem1 30279
Description: Lemma for lnophmi 30281. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnophmlem.1 𝐴 ∈ ℋ
lnophmlem.2 𝐵 ∈ ℋ
lnophmlem.3 𝑇 ∈ LinOp
lnophmlem.4 𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ
Assertion
Ref Expression
lnophmlem1 (𝐴 ·ih (𝑇𝐴)) ∈ ℝ
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑇

Proof of Theorem lnophmlem1
StepHypRef Expression
1 lnophmlem.1 . 2 𝐴 ∈ ℋ
2 lnophmlem.4 . 2 𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ
3 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
4 fveq2 6756 . . . . 5 (𝑥 = 𝐴 → (𝑇𝑥) = (𝑇𝐴))
53, 4oveq12d 7273 . . . 4 (𝑥 = 𝐴 → (𝑥 ·ih (𝑇𝑥)) = (𝐴 ·ih (𝑇𝐴)))
65eleq1d 2823 . . 3 (𝑥 = 𝐴 → ((𝑥 ·ih (𝑇𝑥)) ∈ ℝ ↔ (𝐴 ·ih (𝑇𝐴)) ∈ ℝ))
76rspcv 3547 . 2 (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ → (𝐴 ·ih (𝑇𝐴)) ∈ ℝ))
81, 2, 7mp2 9 1 (𝐴 ·ih (𝑇𝐴)) ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  wral 3063  cfv 6418  (class class class)co 7255  cr 10801  chba 29182   ·ih csp 29185  LinOpclo 29210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by:  lnophmlem2  30280
  Copyright terms: Public domain W3C validator