![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnophmi | Structured version Visualization version GIF version |
Description: A linear operator is Hermitian if 𝑥 ·ih (𝑇‘𝑥) takes only real values. Remark in [ReedSimon] p. 195. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnophm.1 | ⊢ 𝑇 ∈ LinOp |
lnophm.2 | ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ |
Ref | Expression |
---|---|
lnophmi | ⊢ 𝑇 ∈ HrmOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnophm.1 | . . 3 ⊢ 𝑇 ∈ LinOp | |
2 | 1 | lnopfi 31694 | . 2 ⊢ 𝑇: ℋ⟶ ℋ |
3 | oveq1 7409 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → (𝑦 ·ih (𝑇‘𝑧)) = (if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘𝑧))) | |
4 | fveq2 6882 | . . . . . 6 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → (𝑇‘𝑦) = (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ))) | |
5 | 4 | oveq1d 7417 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → ((𝑇‘𝑦) ·ih 𝑧) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih 𝑧)) |
6 | 3, 5 | eqeq12d 2740 | . . . 4 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → ((𝑦 ·ih (𝑇‘𝑧)) = ((𝑇‘𝑦) ·ih 𝑧) ↔ (if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘𝑧)) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih 𝑧))) |
7 | fveq2 6882 | . . . . . 6 ⊢ (𝑧 = if(𝑧 ∈ ℋ, 𝑧, 0ℎ) → (𝑇‘𝑧) = (𝑇‘if(𝑧 ∈ ℋ, 𝑧, 0ℎ))) | |
8 | 7 | oveq2d 7418 | . . . . 5 ⊢ (𝑧 = if(𝑧 ∈ ℋ, 𝑧, 0ℎ) → (if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘𝑧)) = (if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘if(𝑧 ∈ ℋ, 𝑧, 0ℎ)))) |
9 | oveq2 7410 | . . . . 5 ⊢ (𝑧 = if(𝑧 ∈ ℋ, 𝑧, 0ℎ) → ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih 𝑧) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih if(𝑧 ∈ ℋ, 𝑧, 0ℎ))) | |
10 | 8, 9 | eqeq12d 2740 | . . . 4 ⊢ (𝑧 = if(𝑧 ∈ ℋ, 𝑧, 0ℎ) → ((if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘𝑧)) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih 𝑧) ↔ (if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘if(𝑧 ∈ ℋ, 𝑧, 0ℎ))) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih if(𝑧 ∈ ℋ, 𝑧, 0ℎ)))) |
11 | ifhvhv0 30747 | . . . . 5 ⊢ if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ∈ ℋ | |
12 | ifhvhv0 30747 | . . . . 5 ⊢ if(𝑧 ∈ ℋ, 𝑧, 0ℎ) ∈ ℋ | |
13 | lnophm.2 | . . . . 5 ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ | |
14 | 11, 12, 1, 13 | lnophmlem2 31742 | . . . 4 ⊢ (if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘if(𝑧 ∈ ℋ, 𝑧, 0ℎ))) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih if(𝑧 ∈ ℋ, 𝑧, 0ℎ)) |
15 | 6, 10, 14 | dedth2h 4580 | . . 3 ⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 ·ih (𝑇‘𝑧)) = ((𝑇‘𝑦) ·ih 𝑧)) |
16 | 15 | rgen2 3189 | . 2 ⊢ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑦 ·ih (𝑇‘𝑧)) = ((𝑇‘𝑦) ·ih 𝑧) |
17 | elhmop 31598 | . 2 ⊢ (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑦 ·ih (𝑇‘𝑧)) = ((𝑇‘𝑦) ·ih 𝑧))) | |
18 | 2, 16, 17 | mpbir2an 708 | 1 ⊢ 𝑇 ∈ HrmOp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 ∀wral 3053 ifcif 4521 ⟶wf 6530 ‘cfv 6534 (class class class)co 7402 ℝcr 11106 ℋchba 30644 ·ih csp 30647 0ℎc0v 30649 LinOpclo 30672 HrmOpcho 30675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-hilex 30724 ax-hfvadd 30725 ax-hvcom 30726 ax-hvass 30727 ax-hv0cl 30728 ax-hvaddid 30729 ax-hfvmul 30730 ax-hvmulid 30731 ax-hvmulass 30732 ax-hvdistr1 30733 ax-hvdistr2 30734 ax-hvmul0 30735 ax-hfi 30804 ax-his1 30807 ax-his2 30808 ax-his3 30809 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-po 5579 df-so 5580 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-div 11870 df-2 12273 df-3 12274 df-4 12275 df-cj 15044 df-re 15045 df-im 15046 df-hvsub 30696 df-lnop 31566 df-hmop 31569 |
This theorem is referenced by: lnophm 31744 |
Copyright terms: Public domain | W3C validator |