HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnophmi Structured version   Visualization version   GIF version

Theorem lnophmi 29795
Description: A linear operator is Hermitian if 𝑥 ·ih (𝑇𝑥) takes only real values. Remark in [ReedSimon] p. 195. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnophm.1 𝑇 ∈ LinOp
lnophm.2 𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ
Assertion
Ref Expression
lnophmi 𝑇 ∈ HrmOp
Distinct variable group:   𝑥,𝑇

Proof of Theorem lnophmi
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnophm.1 . . 3 𝑇 ∈ LinOp
21lnopfi 29746 . 2 𝑇: ℋ⟶ ℋ
3 oveq1 7163 . . . . 5 (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0) → (𝑦 ·ih (𝑇𝑧)) = (if(𝑦 ∈ ℋ, 𝑦, 0) ·ih (𝑇𝑧)))
4 fveq2 6670 . . . . . 6 (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0) → (𝑇𝑦) = (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0)))
54oveq1d 7171 . . . . 5 (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0) → ((𝑇𝑦) ·ih 𝑧) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0)) ·ih 𝑧))
63, 5eqeq12d 2837 . . . 4 (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0) → ((𝑦 ·ih (𝑇𝑧)) = ((𝑇𝑦) ·ih 𝑧) ↔ (if(𝑦 ∈ ℋ, 𝑦, 0) ·ih (𝑇𝑧)) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0)) ·ih 𝑧)))
7 fveq2 6670 . . . . . 6 (𝑧 = if(𝑧 ∈ ℋ, 𝑧, 0) → (𝑇𝑧) = (𝑇‘if(𝑧 ∈ ℋ, 𝑧, 0)))
87oveq2d 7172 . . . . 5 (𝑧 = if(𝑧 ∈ ℋ, 𝑧, 0) → (if(𝑦 ∈ ℋ, 𝑦, 0) ·ih (𝑇𝑧)) = (if(𝑦 ∈ ℋ, 𝑦, 0) ·ih (𝑇‘if(𝑧 ∈ ℋ, 𝑧, 0))))
9 oveq2 7164 . . . . 5 (𝑧 = if(𝑧 ∈ ℋ, 𝑧, 0) → ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0)) ·ih 𝑧) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0)) ·ih if(𝑧 ∈ ℋ, 𝑧, 0)))
108, 9eqeq12d 2837 . . . 4 (𝑧 = if(𝑧 ∈ ℋ, 𝑧, 0) → ((if(𝑦 ∈ ℋ, 𝑦, 0) ·ih (𝑇𝑧)) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0)) ·ih 𝑧) ↔ (if(𝑦 ∈ ℋ, 𝑦, 0) ·ih (𝑇‘if(𝑧 ∈ ℋ, 𝑧, 0))) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0)) ·ih if(𝑧 ∈ ℋ, 𝑧, 0))))
11 ifhvhv0 28799 . . . . 5 if(𝑦 ∈ ℋ, 𝑦, 0) ∈ ℋ
12 ifhvhv0 28799 . . . . 5 if(𝑧 ∈ ℋ, 𝑧, 0) ∈ ℋ
13 lnophm.2 . . . . 5 𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ
1411, 12, 1, 13lnophmlem2 29794 . . . 4 (if(𝑦 ∈ ℋ, 𝑦, 0) ·ih (𝑇‘if(𝑧 ∈ ℋ, 𝑧, 0))) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0)) ·ih if(𝑧 ∈ ℋ, 𝑧, 0))
156, 10, 14dedth2h 4524 . . 3 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 ·ih (𝑇𝑧)) = ((𝑇𝑦) ·ih 𝑧))
1615rgen2 3203 . 2 𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑦 ·ih (𝑇𝑧)) = ((𝑇𝑦) ·ih 𝑧)
17 elhmop 29650 . 2 (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑦 ·ih (𝑇𝑧)) = ((𝑇𝑦) ·ih 𝑧)))
182, 16, 17mpbir2an 709 1 𝑇 ∈ HrmOp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2114  wral 3138  ifcif 4467  wf 6351  cfv 6355  (class class class)co 7156  cr 10536  chba 28696   ·ih csp 28699  0c0v 28701  LinOpclo 28724  HrmOpcho 28727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-hilex 28776  ax-hfvadd 28777  ax-hvcom 28778  ax-hvass 28779  ax-hv0cl 28780  ax-hvaddid 28781  ax-hfvmul 28782  ax-hvmulid 28783  ax-hvmulass 28784  ax-hvdistr1 28785  ax-hvdistr2 28786  ax-hvmul0 28787  ax-hfi 28856  ax-his1 28859  ax-his2 28860  ax-his3 28861
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-2 11701  df-3 11702  df-4 11703  df-cj 14458  df-re 14459  df-im 14460  df-hvsub 28748  df-lnop 29618  df-hmop 29621
This theorem is referenced by:  lnophm  29796
  Copyright terms: Public domain W3C validator