| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnophmi | Structured version Visualization version GIF version | ||
| Description: A linear operator is Hermitian if 𝑥 ·ih (𝑇‘𝑥) takes only real values. Remark in [ReedSimon] p. 195. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnophm.1 | ⊢ 𝑇 ∈ LinOp |
| lnophm.2 | ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ |
| Ref | Expression |
|---|---|
| lnophmi | ⊢ 𝑇 ∈ HrmOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnophm.1 | . . 3 ⊢ 𝑇 ∈ LinOp | |
| 2 | 1 | lnopfi 31955 | . 2 ⊢ 𝑇: ℋ⟶ ℋ |
| 3 | oveq1 7417 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → (𝑦 ·ih (𝑇‘𝑧)) = (if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘𝑧))) | |
| 4 | fveq2 6881 | . . . . . 6 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → (𝑇‘𝑦) = (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ))) | |
| 5 | 4 | oveq1d 7425 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → ((𝑇‘𝑦) ·ih 𝑧) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih 𝑧)) |
| 6 | 3, 5 | eqeq12d 2752 | . . . 4 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → ((𝑦 ·ih (𝑇‘𝑧)) = ((𝑇‘𝑦) ·ih 𝑧) ↔ (if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘𝑧)) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih 𝑧))) |
| 7 | fveq2 6881 | . . . . . 6 ⊢ (𝑧 = if(𝑧 ∈ ℋ, 𝑧, 0ℎ) → (𝑇‘𝑧) = (𝑇‘if(𝑧 ∈ ℋ, 𝑧, 0ℎ))) | |
| 8 | 7 | oveq2d 7426 | . . . . 5 ⊢ (𝑧 = if(𝑧 ∈ ℋ, 𝑧, 0ℎ) → (if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘𝑧)) = (if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘if(𝑧 ∈ ℋ, 𝑧, 0ℎ)))) |
| 9 | oveq2 7418 | . . . . 5 ⊢ (𝑧 = if(𝑧 ∈ ℋ, 𝑧, 0ℎ) → ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih 𝑧) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih if(𝑧 ∈ ℋ, 𝑧, 0ℎ))) | |
| 10 | 8, 9 | eqeq12d 2752 | . . . 4 ⊢ (𝑧 = if(𝑧 ∈ ℋ, 𝑧, 0ℎ) → ((if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘𝑧)) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih 𝑧) ↔ (if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘if(𝑧 ∈ ℋ, 𝑧, 0ℎ))) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih if(𝑧 ∈ ℋ, 𝑧, 0ℎ)))) |
| 11 | ifhvhv0 31008 | . . . . 5 ⊢ if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ∈ ℋ | |
| 12 | ifhvhv0 31008 | . . . . 5 ⊢ if(𝑧 ∈ ℋ, 𝑧, 0ℎ) ∈ ℋ | |
| 13 | lnophm.2 | . . . . 5 ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ | |
| 14 | 11, 12, 1, 13 | lnophmlem2 32003 | . . . 4 ⊢ (if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘if(𝑧 ∈ ℋ, 𝑧, 0ℎ))) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih if(𝑧 ∈ ℋ, 𝑧, 0ℎ)) |
| 15 | 6, 10, 14 | dedth2h 4565 | . . 3 ⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 ·ih (𝑇‘𝑧)) = ((𝑇‘𝑦) ·ih 𝑧)) |
| 16 | 15 | rgen2 3185 | . 2 ⊢ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑦 ·ih (𝑇‘𝑧)) = ((𝑇‘𝑦) ·ih 𝑧) |
| 17 | elhmop 31859 | . 2 ⊢ (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑦 ·ih (𝑇‘𝑧)) = ((𝑇‘𝑦) ·ih 𝑧))) | |
| 18 | 2, 16, 17 | mpbir2an 711 | 1 ⊢ 𝑇 ∈ HrmOp |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3052 ifcif 4505 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ℝcr 11133 ℋchba 30905 ·ih csp 30908 0ℎc0v 30910 LinOpclo 30933 HrmOpcho 30936 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-hilex 30985 ax-hfvadd 30986 ax-hvcom 30987 ax-hvass 30988 ax-hv0cl 30989 ax-hvaddid 30990 ax-hfvmul 30991 ax-hvmulid 30992 ax-hvmulass 30993 ax-hvdistr1 30994 ax-hvdistr2 30995 ax-hvmul0 30996 ax-hfi 31065 ax-his1 31068 ax-his2 31069 ax-his3 31070 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-cj 15123 df-re 15124 df-im 15125 df-hvsub 30957 df-lnop 31827 df-hmop 31830 |
| This theorem is referenced by: lnophm 32005 |
| Copyright terms: Public domain | W3C validator |