| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnophmi | Structured version Visualization version GIF version | ||
| Description: A linear operator is Hermitian if 𝑥 ·ih (𝑇‘𝑥) takes only real values. Remark in [ReedSimon] p. 195. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnophm.1 | ⊢ 𝑇 ∈ LinOp |
| lnophm.2 | ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ |
| Ref | Expression |
|---|---|
| lnophmi | ⊢ 𝑇 ∈ HrmOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnophm.1 | . . 3 ⊢ 𝑇 ∈ LinOp | |
| 2 | 1 | lnopfi 31898 | . 2 ⊢ 𝑇: ℋ⟶ ℋ |
| 3 | oveq1 7394 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → (𝑦 ·ih (𝑇‘𝑧)) = (if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘𝑧))) | |
| 4 | fveq2 6858 | . . . . . 6 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → (𝑇‘𝑦) = (𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ))) | |
| 5 | 4 | oveq1d 7402 | . . . . 5 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → ((𝑇‘𝑦) ·ih 𝑧) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih 𝑧)) |
| 6 | 3, 5 | eqeq12d 2745 | . . . 4 ⊢ (𝑦 = if(𝑦 ∈ ℋ, 𝑦, 0ℎ) → ((𝑦 ·ih (𝑇‘𝑧)) = ((𝑇‘𝑦) ·ih 𝑧) ↔ (if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘𝑧)) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih 𝑧))) |
| 7 | fveq2 6858 | . . . . . 6 ⊢ (𝑧 = if(𝑧 ∈ ℋ, 𝑧, 0ℎ) → (𝑇‘𝑧) = (𝑇‘if(𝑧 ∈ ℋ, 𝑧, 0ℎ))) | |
| 8 | 7 | oveq2d 7403 | . . . . 5 ⊢ (𝑧 = if(𝑧 ∈ ℋ, 𝑧, 0ℎ) → (if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘𝑧)) = (if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘if(𝑧 ∈ ℋ, 𝑧, 0ℎ)))) |
| 9 | oveq2 7395 | . . . . 5 ⊢ (𝑧 = if(𝑧 ∈ ℋ, 𝑧, 0ℎ) → ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih 𝑧) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih if(𝑧 ∈ ℋ, 𝑧, 0ℎ))) | |
| 10 | 8, 9 | eqeq12d 2745 | . . . 4 ⊢ (𝑧 = if(𝑧 ∈ ℋ, 𝑧, 0ℎ) → ((if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘𝑧)) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih 𝑧) ↔ (if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘if(𝑧 ∈ ℋ, 𝑧, 0ℎ))) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih if(𝑧 ∈ ℋ, 𝑧, 0ℎ)))) |
| 11 | ifhvhv0 30951 | . . . . 5 ⊢ if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ∈ ℋ | |
| 12 | ifhvhv0 30951 | . . . . 5 ⊢ if(𝑧 ∈ ℋ, 𝑧, 0ℎ) ∈ ℋ | |
| 13 | lnophm.2 | . . . . 5 ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ | |
| 14 | 11, 12, 1, 13 | lnophmlem2 31946 | . . . 4 ⊢ (if(𝑦 ∈ ℋ, 𝑦, 0ℎ) ·ih (𝑇‘if(𝑧 ∈ ℋ, 𝑧, 0ℎ))) = ((𝑇‘if(𝑦 ∈ ℋ, 𝑦, 0ℎ)) ·ih if(𝑧 ∈ ℋ, 𝑧, 0ℎ)) |
| 15 | 6, 10, 14 | dedth2h 4548 | . . 3 ⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 ·ih (𝑇‘𝑧)) = ((𝑇‘𝑦) ·ih 𝑧)) |
| 16 | 15 | rgen2 3177 | . 2 ⊢ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑦 ·ih (𝑇‘𝑧)) = ((𝑇‘𝑦) ·ih 𝑧) |
| 17 | elhmop 31802 | . 2 ⊢ (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑦 ·ih (𝑇‘𝑧)) = ((𝑇‘𝑦) ·ih 𝑧))) | |
| 18 | 2, 16, 17 | mpbir2an 711 | 1 ⊢ 𝑇 ∈ HrmOp |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3044 ifcif 4488 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 ℋchba 30848 ·ih csp 30851 0ℎc0v 30853 LinOpclo 30876 HrmOpcho 30879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-hilex 30928 ax-hfvadd 30929 ax-hvcom 30930 ax-hvass 30931 ax-hv0cl 30932 ax-hvaddid 30933 ax-hfvmul 30934 ax-hvmulid 30935 ax-hvmulass 30936 ax-hvdistr1 30937 ax-hvdistr2 30938 ax-hvmul0 30939 ax-hfi 31008 ax-his1 31011 ax-his2 31012 ax-his3 31013 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-cj 15065 df-re 15066 df-im 15067 df-hvsub 30900 df-lnop 31770 df-hmop 31773 |
| This theorem is referenced by: lnophm 31948 |
| Copyright terms: Public domain | W3C validator |