Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnrlnm Structured version   Visualization version   GIF version

Theorem lnrlnm 43125
Description: Left-Noetherian rings have Noetherian associated modules. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
lnrlnm (𝐴 ∈ LNoeR → (ringLMod‘𝐴) ∈ LNoeM)

Proof of Theorem lnrlnm
StepHypRef Expression
1 islnr 43123 . 2 (𝐴 ∈ LNoeR ↔ (𝐴 ∈ Ring ∧ (ringLMod‘𝐴) ∈ LNoeM))
21simprbi 496 1 (𝐴 ∈ LNoeR → (ringLMod‘𝐴) ∈ LNoeM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  cfv 6477  Ringcrg 20144  ringLModcrglmod 21099  LNoeMclnm 43087  LNoeRclnr 43121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-iota 6433  df-fv 6485  df-lnr 43122
This theorem is referenced by:  lnrfrlm  43130
  Copyright terms: Public domain W3C validator