Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnrlnm Structured version   Visualization version   GIF version

Theorem lnrlnm 43220
Description: Left-Noetherian rings have Noetherian associated modules. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
lnrlnm (𝐴 ∈ LNoeR → (ringLMod‘𝐴) ∈ LNoeM)

Proof of Theorem lnrlnm
StepHypRef Expression
1 islnr 43218 . 2 (𝐴 ∈ LNoeR ↔ (𝐴 ∈ Ring ∧ (ringLMod‘𝐴) ∈ LNoeM))
21simprbi 496 1 (𝐴 ∈ LNoeR → (ringLMod‘𝐴) ∈ LNoeM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  cfv 6489  Ringcrg 20161  ringLModcrglmod 21116  LNoeMclnm 43182  LNoeRclnr 43216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-lnr 43217
This theorem is referenced by:  lnrfrlm  43225
  Copyright terms: Public domain W3C validator