Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnrlnm Structured version   Visualization version   GIF version

Theorem lnrlnm 43118
Description: Left-Noetherian rings have Noetherian associated modules. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
lnrlnm (𝐴 ∈ LNoeR → (ringLMod‘𝐴) ∈ LNoeM)

Proof of Theorem lnrlnm
StepHypRef Expression
1 islnr 43116 . 2 (𝐴 ∈ LNoeR ↔ (𝐴 ∈ Ring ∧ (ringLMod‘𝐴) ∈ LNoeM))
21simprbi 496 1 (𝐴 ∈ LNoeR → (ringLMod‘𝐴) ∈ LNoeM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cfv 6569  Ringcrg 20260  ringLModcrglmod 21198  LNoeMclnm 43080  LNoeRclnr 43114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-iota 6522  df-fv 6577  df-lnr 43115
This theorem is referenced by:  lnrfrlm  43123
  Copyright terms: Public domain W3C validator