Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnrring Structured version   Visualization version   GIF version

Theorem lnrring 41844
Description: Left-Noetherian rings are rings. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
lnrring (𝐴 ∈ LNoeR β†’ 𝐴 ∈ Ring)

Proof of Theorem lnrring
StepHypRef Expression
1 islnr 41843 . 2 (𝐴 ∈ LNoeR ↔ (𝐴 ∈ Ring ∧ (ringLModβ€˜π΄) ∈ LNoeM))
21simplbi 498 1 (𝐴 ∈ LNoeR β†’ 𝐴 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2106  β€˜cfv 6543  Ringcrg 20055  ringLModcrglmod 20781  LNoeMclnm 41807  LNoeRclnr 41841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-lnr 41842
This theorem is referenced by:  lnr2i  41848  hbtlem6  41861  hbt  41862
  Copyright terms: Public domain W3C validator