Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnrring Structured version   Visualization version   GIF version

Theorem lnrring 42567
Description: Left-Noetherian rings are rings. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
lnrring (𝐴 ∈ LNoeR β†’ 𝐴 ∈ Ring)

Proof of Theorem lnrring
StepHypRef Expression
1 islnr 42566 . 2 (𝐴 ∈ LNoeR ↔ (𝐴 ∈ Ring ∧ (ringLModβ€˜π΄) ∈ LNoeM))
21simplbi 496 1 (𝐴 ∈ LNoeR β†’ 𝐴 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2098  β€˜cfv 6553  Ringcrg 20180  ringLModcrglmod 21064  LNoeMclnm 42530  LNoeRclnr 42564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-iota 6505  df-fv 6561  df-lnr 42565
This theorem is referenced by:  lnr2i  42571  hbtlem6  42584  hbt  42585
  Copyright terms: Public domain W3C validator