![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islnr2 | Structured version Visualization version GIF version |
Description: Property of being a left-Noetherian ring in terms of finite generation of ideals (the usual "pure ring theory" definition). (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
islnr2.b | ⊢ 𝐵 = (Base‘𝑅) |
islnr2.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
islnr2.n | ⊢ 𝑁 = (RSpan‘𝑅) |
Ref | Expression |
---|---|
islnr2 | ⊢ (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ ∀𝑖 ∈ 𝑈 ∃𝑔 ∈ (𝒫 𝐵 ∩ Fin)𝑖 = (𝑁‘𝑔))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islnr 41786 | . 2 ⊢ (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ (ringLMod‘𝑅) ∈ LNoeM)) | |
2 | rlmlmod 20814 | . . . 4 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
3 | islnr2.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
4 | rlmbas 20804 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘(ringLMod‘𝑅)) | |
5 | 3, 4 | eqtri 2761 | . . . . . 6 ⊢ 𝐵 = (Base‘(ringLMod‘𝑅)) |
6 | islnr2.u | . . . . . . 7 ⊢ 𝑈 = (LIdeal‘𝑅) | |
7 | lidlval 20801 | . . . . . . 7 ⊢ (LIdeal‘𝑅) = (LSubSp‘(ringLMod‘𝑅)) | |
8 | 6, 7 | eqtri 2761 | . . . . . 6 ⊢ 𝑈 = (LSubSp‘(ringLMod‘𝑅)) |
9 | islnr2.n | . . . . . . 7 ⊢ 𝑁 = (RSpan‘𝑅) | |
10 | rspval 20802 | . . . . . . 7 ⊢ (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅)) | |
11 | 9, 10 | eqtri 2761 | . . . . . 6 ⊢ 𝑁 = (LSpan‘(ringLMod‘𝑅)) |
12 | 5, 8, 11 | islnm2 41753 | . . . . 5 ⊢ ((ringLMod‘𝑅) ∈ LNoeM ↔ ((ringLMod‘𝑅) ∈ LMod ∧ ∀𝑖 ∈ 𝑈 ∃𝑔 ∈ (𝒫 𝐵 ∩ Fin)𝑖 = (𝑁‘𝑔))) |
13 | 12 | baib 537 | . . . 4 ⊢ ((ringLMod‘𝑅) ∈ LMod → ((ringLMod‘𝑅) ∈ LNoeM ↔ ∀𝑖 ∈ 𝑈 ∃𝑔 ∈ (𝒫 𝐵 ∩ Fin)𝑖 = (𝑁‘𝑔))) |
14 | 2, 13 | syl 17 | . . 3 ⊢ (𝑅 ∈ Ring → ((ringLMod‘𝑅) ∈ LNoeM ↔ ∀𝑖 ∈ 𝑈 ∃𝑔 ∈ (𝒫 𝐵 ∩ Fin)𝑖 = (𝑁‘𝑔))) |
15 | 14 | pm5.32i 576 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (ringLMod‘𝑅) ∈ LNoeM) ↔ (𝑅 ∈ Ring ∧ ∀𝑖 ∈ 𝑈 ∃𝑔 ∈ (𝒫 𝐵 ∩ Fin)𝑖 = (𝑁‘𝑔))) |
16 | 1, 15 | bitri 275 | 1 ⊢ (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ ∀𝑖 ∈ 𝑈 ∃𝑔 ∈ (𝒫 𝐵 ∩ Fin)𝑖 = (𝑁‘𝑔))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 ∩ cin 3946 𝒫 cpw 4601 ‘cfv 6540 Fincfn 8935 Basecbs 17140 Ringcrg 20047 LModclmod 20459 LSubSpclss 20530 LSpanclspn 20570 ringLModcrglmod 20770 LIdealclidl 20771 RSpancrsp 20772 LNoeMclnm 41750 LNoeRclnr 41784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-1st 7970 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-sbg 18820 df-subg 18997 df-mgp 19980 df-ur 19997 df-ring 20049 df-subrg 20349 df-lmod 20461 df-lss 20531 df-lsp 20571 df-sra 20773 df-rgmod 20774 df-lidl 20775 df-rsp 20776 df-lfig 41743 df-lnm 41751 df-lnr 41785 |
This theorem is referenced by: islnr3 41790 lnr2i 41791 lpirlnr 41792 hbt 41805 |
Copyright terms: Public domain | W3C validator |