| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nzrnz | Structured version Visualization version GIF version | ||
| Description: One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| isnzr.o | ⊢ 1 = (1r‘𝑅) |
| isnzr.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| nzrnz | ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnzr.o | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 2 | isnzr.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 3 | 1, 2 | isnzr 20430 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) |
| 4 | 3 | simprbi 496 | 1 ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6514 0gc0g 17409 1rcur 20097 Ringcrg 20149 NzRingcnzr 20428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-nzr 20429 |
| This theorem is referenced by: nzrunit 20440 nrhmzr 20453 lringnz 20459 subrgnzr 20510 rrgnz 20620 fidomndrng 20689 uvcf1 21708 lindfind2 21734 nm1 24562 deg1pw 26033 ply1nz 26034 ply1nzb 26035 mon1pid 26066 lgsqrlem4 27267 unitnz 33197 domnprodn0 33233 fracfld 33265 drngidl 33411 drngidlhash 33412 drnglidl1ne0 33453 drng0mxidl 33454 qsdrngi 33473 ply1moneq 33562 deg1vr 33565 vr1nz 33566 dimlssid 33635 ply1annnr 33700 algextdeglem4 33717 rtelextdg2lem 33723 zrhnm 33964 idomnnzpownz 42127 idomnnzgmulnz 42128 deg1gprod 42135 deg1pow 42136 domnexpgn0cl 42518 abvexp 42527 fiabv 42531 uvcn0 42537 deg1mhm 43196 |
| Copyright terms: Public domain | W3C validator |