MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nzrnz Structured version   Visualization version   GIF version

Theorem nzrnz 20541
Description: One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
isnzr.o 1 = (1r𝑅)
isnzr.z 0 = (0g𝑅)
Assertion
Ref Expression
nzrnz (𝑅 ∈ NzRing → 10 )

Proof of Theorem nzrnz
StepHypRef Expression
1 isnzr.o . . 3 1 = (1r𝑅)
2 isnzr.z . . 3 0 = (0g𝑅)
31, 2isnzr 20540 . 2 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 10 ))
43simprbi 496 1 (𝑅 ∈ NzRing → 10 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wne 2946  cfv 6573  0gc0g 17499  1rcur 20208  Ringcrg 20260  NzRingcnzr 20538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-nzr 20539
This theorem is referenced by:  nzrunit  20550  nrhmzr  20563  lringnz  20569  subrgnzr  20622  rrgnz  20726  fidomndrng  20796  uvcf1  21835  lindfind2  21861  nm1  24709  deg1pw  26180  ply1nz  26181  ply1nzb  26182  mon1pid  26213  lgsqrlem4  27411  unitnz  33219  domnprodn0  33247  fracfld  33275  drngidl  33426  drngidlhash  33427  drnglidl1ne0  33468  drng0mxidl  33469  qsdrngi  33488  ply1moneq  33576  deg1vr  33579  dimlssid  33645  ply1annnr  33696  algextdeglem4  33711  rtelextdg2lem  33717  zrhnm  33915  idomnnzpownz  42089  idomnnzgmulnz  42090  deg1gprod  42097  deg1pow  42098  domnexpgn0cl  42478  abvexp  42487  fiabv  42491  uvcn0  42497  deg1mhm  43161
  Copyright terms: Public domain W3C validator