![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nzrnz | Structured version Visualization version GIF version |
Description: One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
isnzr.o | ⊢ 1 = (1r‘𝑅) |
isnzr.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
nzrnz | ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnzr.o | . . 3 ⊢ 1 = (1r‘𝑅) | |
2 | isnzr.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
3 | 1, 2 | isnzr 20470 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) |
4 | 3 | simprbi 495 | 1 ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ‘cfv 6549 0gc0g 17429 1rcur 20138 Ringcrg 20190 NzRingcnzr 20468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-iota 6501 df-fv 6557 df-nzr 20469 |
This theorem is referenced by: nzrunit 20478 nrhmzr 20491 lringnz 20497 subrgnzr 20550 fidomndrng 21283 uvcf1 21748 lindfind2 21774 nm1 24633 deg1pw 26106 ply1nz 26107 ply1nzb 26108 mon1pid 26139 lgsqrlem4 27332 unitnz 33044 domnprodn0 33070 rrgnz 33075 fracfld 33099 drngidl 33250 drngidlhash 33251 drnglidl1ne0 33292 drng0mxidl 33293 qsdrngi 33312 ply1moneq 33397 ply1annnr 33507 algextdeglem4 33521 zrhnm 33703 idomnnzpownz 41737 idomnnzgmulnz 41738 deg1gprod 41745 deg1pow 41746 uvcn0 41912 deg1mhm 42772 |
Copyright terms: Public domain | W3C validator |