| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nzrnz | Structured version Visualization version GIF version | ||
| Description: One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| isnzr.o | ⊢ 1 = (1r‘𝑅) |
| isnzr.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| nzrnz | ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnzr.o | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 2 | isnzr.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 3 | 1, 2 | isnzr 20434 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) |
| 4 | 3 | simprbi 496 | 1 ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6499 0gc0g 17378 1rcur 20101 Ringcrg 20153 NzRingcnzr 20432 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-nzr 20433 |
| This theorem is referenced by: nzrunit 20444 nrhmzr 20457 lringnz 20463 subrgnzr 20514 rrgnz 20624 fidomndrng 20693 uvcf1 21734 lindfind2 21760 nm1 24588 deg1pw 26059 ply1nz 26060 ply1nzb 26061 mon1pid 26092 lgsqrlem4 27293 unitnz 33206 domnprodn0 33242 fracfld 33274 drngidl 33397 drngidlhash 33398 drnglidl1ne0 33439 drng0mxidl 33440 qsdrngi 33459 ply1moneq 33548 deg1vr 33551 vr1nz 33552 dimlssid 33621 ply1annnr 33686 algextdeglem4 33703 rtelextdg2lem 33709 zrhnm 33950 idomnnzpownz 42113 idomnnzgmulnz 42114 deg1gprod 42121 deg1pow 42122 domnexpgn0cl 42504 abvexp 42513 fiabv 42517 uvcn0 42523 deg1mhm 43182 |
| Copyright terms: Public domain | W3C validator |