Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nzrnz | Structured version Visualization version GIF version |
Description: One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
isnzr.o | ⊢ 1 = (1r‘𝑅) |
isnzr.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
nzrnz | ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnzr.o | . . 3 ⊢ 1 = (1r‘𝑅) | |
2 | isnzr.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
3 | 1, 2 | isnzr 20528 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) |
4 | 3 | simprbi 497 | 1 ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ‘cfv 6432 0gc0g 17148 1rcur 19735 Ringcrg 19781 NzRingcnzr 20526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ne 2946 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-iota 6390 df-fv 6440 df-nzr 20527 |
This theorem is referenced by: nzrunit 20536 subrgnzr 20537 fidomndrng 20577 uvcf1 20997 lindfind2 21023 nm1 23829 deg1pw 25283 ply1nz 25284 ply1nzb 25285 lgsqrlem4 26495 zrhnm 31915 uvcn0 40262 mon1pid 41027 deg1mhm 41029 nrhmzr 45400 |
Copyright terms: Public domain | W3C validator |