| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nzrnz | Structured version Visualization version GIF version | ||
| Description: One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| isnzr.o | ⊢ 1 = (1r‘𝑅) |
| isnzr.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| nzrnz | ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnzr.o | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 2 | isnzr.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 3 | 1, 2 | isnzr 20429 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) |
| 4 | 3 | simprbi 496 | 1 ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ‘cfv 6481 0gc0g 17343 1rcur 20099 Ringcrg 20151 NzRingcnzr 20427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-nzr 20428 |
| This theorem is referenced by: nzrunit 20439 nrhmzr 20452 lringnz 20458 subrgnzr 20509 rrgnz 20619 fidomndrng 20688 uvcf1 21729 lindfind2 21755 nm1 24582 deg1pw 26053 ply1nz 26054 ply1nzb 26055 mon1pid 26086 lgsqrlem4 27287 unitnz 33206 domnprodn0 33242 fracfld 33274 drngidl 33398 drngidlhash 33399 drnglidl1ne0 33440 drng0mxidl 33441 qsdrngi 33460 ply1moneq 33550 deg1vr 33553 vr1nz 33554 dimlssid 33645 ply1annnr 33716 algextdeglem4 33733 rtelextdg2lem 33739 zrhnm 33980 idomnnzpownz 42235 idomnnzgmulnz 42236 deg1gprod 42243 deg1pow 42244 domnexpgn0cl 42626 abvexp 42635 fiabv 42639 uvcn0 42645 deg1mhm 43303 |
| Copyright terms: Public domain | W3C validator |