Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nzrnz | Structured version Visualization version GIF version |
Description: One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
isnzr.o | ⊢ 1 = (1r‘𝑅) |
isnzr.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
nzrnz | ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnzr.o | . . 3 ⊢ 1 = (1r‘𝑅) | |
2 | isnzr.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
3 | 1, 2 | isnzr 20443 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) |
4 | 3 | simprbi 496 | 1 ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ‘cfv 6418 0gc0g 17067 1rcur 19652 Ringcrg 19698 NzRingcnzr 20441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-nzr 20442 |
This theorem is referenced by: nzrunit 20451 subrgnzr 20452 fidomndrng 20492 uvcf1 20909 lindfind2 20935 nm1 23737 deg1pw 25190 ply1nz 25191 ply1nzb 25192 lgsqrlem4 26402 zrhnm 31819 uvcn0 40190 mon1pid 40946 deg1mhm 40948 nrhmzr 45319 |
Copyright terms: Public domain | W3C validator |