MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nzrnz Structured version   Visualization version   GIF version

Theorem nzrnz 20475
Description: One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
isnzr.o 1 = (1r𝑅)
isnzr.z 0 = (0g𝑅)
Assertion
Ref Expression
nzrnz (𝑅 ∈ NzRing → 10 )

Proof of Theorem nzrnz
StepHypRef Expression
1 isnzr.o . . 3 1 = (1r𝑅)
2 isnzr.z . . 3 0 = (0g𝑅)
31, 2isnzr 20474 . 2 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 10 ))
43simprbi 496 1 (𝑅 ∈ NzRing → 10 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wne 2932  cfv 6531  0gc0g 17453  1rcur 20141  Ringcrg 20193  NzRingcnzr 20472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-nzr 20473
This theorem is referenced by:  nzrunit  20484  nrhmzr  20497  lringnz  20503  subrgnzr  20554  rrgnz  20664  fidomndrng  20733  uvcf1  21752  lindfind2  21778  nm1  24606  deg1pw  26078  ply1nz  26079  ply1nzb  26080  mon1pid  26111  lgsqrlem4  27312  unitnz  33234  domnprodn0  33270  fracfld  33302  drngidl  33448  drngidlhash  33449  drnglidl1ne0  33490  drng0mxidl  33491  qsdrngi  33510  ply1moneq  33599  deg1vr  33602  vr1nz  33603  dimlssid  33672  ply1annnr  33737  algextdeglem4  33754  rtelextdg2lem  33760  zrhnm  33998  idomnnzpownz  42145  idomnnzgmulnz  42146  deg1gprod  42153  deg1pow  42154  domnexpgn0cl  42546  abvexp  42555  fiabv  42559  uvcn0  42565  deg1mhm  43224
  Copyright terms: Public domain W3C validator