| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nzrnz | Structured version Visualization version GIF version | ||
| Description: One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| isnzr.o | ⊢ 1 = (1r‘𝑅) |
| isnzr.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| nzrnz | ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnzr.o | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 2 | isnzr.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 3 | 1, 2 | isnzr 20399 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) |
| 4 | 3 | simprbi 496 | 1 ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6482 0gc0g 17343 1rcur 20066 Ringcrg 20118 NzRingcnzr 20397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-nzr 20398 |
| This theorem is referenced by: nzrunit 20409 nrhmzr 20422 lringnz 20428 subrgnzr 20479 rrgnz 20589 fidomndrng 20658 uvcf1 21699 lindfind2 21725 nm1 24553 deg1pw 26024 ply1nz 26025 ply1nzb 26026 mon1pid 26057 lgsqrlem4 27258 unitnz 33180 domnprodn0 33216 fracfld 33248 drngidl 33371 drngidlhash 33372 drnglidl1ne0 33413 drng0mxidl 33414 qsdrngi 33433 ply1moneq 33523 deg1vr 33526 vr1nz 33527 dimlssid 33605 ply1annnr 33676 algextdeglem4 33693 rtelextdg2lem 33699 zrhnm 33940 idomnnzpownz 42115 idomnnzgmulnz 42116 deg1gprod 42123 deg1pow 42124 domnexpgn0cl 42506 abvexp 42515 fiabv 42519 uvcn0 42525 deg1mhm 43183 |
| Copyright terms: Public domain | W3C validator |