| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nzrnz | Structured version Visualization version GIF version | ||
| Description: One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| isnzr.o | ⊢ 1 = (1r‘𝑅) |
| isnzr.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| nzrnz | ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnzr.o | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 2 | isnzr.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 3 | 1, 2 | isnzr 20423 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) |
| 4 | 3 | simprbi 496 | 1 ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6511 0gc0g 17402 1rcur 20090 Ringcrg 20142 NzRingcnzr 20421 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-nzr 20422 |
| This theorem is referenced by: nzrunit 20433 nrhmzr 20446 lringnz 20452 subrgnzr 20503 rrgnz 20613 fidomndrng 20682 uvcf1 21701 lindfind2 21727 nm1 24555 deg1pw 26026 ply1nz 26027 ply1nzb 26028 mon1pid 26059 lgsqrlem4 27260 unitnz 33190 domnprodn0 33226 fracfld 33258 drngidl 33404 drngidlhash 33405 drnglidl1ne0 33446 drng0mxidl 33447 qsdrngi 33466 ply1moneq 33555 deg1vr 33558 vr1nz 33559 dimlssid 33628 ply1annnr 33693 algextdeglem4 33710 rtelextdg2lem 33716 zrhnm 33957 idomnnzpownz 42120 idomnnzgmulnz 42121 deg1gprod 42128 deg1pow 42129 domnexpgn0cl 42511 abvexp 42520 fiabv 42524 uvcn0 42530 deg1mhm 43189 |
| Copyright terms: Public domain | W3C validator |