| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nzrnz | Structured version Visualization version GIF version | ||
| Description: One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| isnzr.o | ⊢ 1 = (1r‘𝑅) |
| isnzr.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| nzrnz | ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnzr.o | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 2 | isnzr.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 3 | 1, 2 | isnzr 20474 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) |
| 4 | 3 | simprbi 496 | 1 ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ‘cfv 6531 0gc0g 17453 1rcur 20141 Ringcrg 20193 NzRingcnzr 20472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-nzr 20473 |
| This theorem is referenced by: nzrunit 20484 nrhmzr 20497 lringnz 20503 subrgnzr 20554 rrgnz 20664 fidomndrng 20733 uvcf1 21752 lindfind2 21778 nm1 24606 deg1pw 26078 ply1nz 26079 ply1nzb 26080 mon1pid 26111 lgsqrlem4 27312 unitnz 33234 domnprodn0 33270 fracfld 33302 drngidl 33448 drngidlhash 33449 drnglidl1ne0 33490 drng0mxidl 33491 qsdrngi 33510 ply1moneq 33599 deg1vr 33602 vr1nz 33603 dimlssid 33672 ply1annnr 33737 algextdeglem4 33754 rtelextdg2lem 33760 zrhnm 33998 idomnnzpownz 42145 idomnnzgmulnz 42146 deg1gprod 42153 deg1pow 42154 domnexpgn0cl 42546 abvexp 42555 fiabv 42559 uvcn0 42565 deg1mhm 43224 |
| Copyright terms: Public domain | W3C validator |