![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nzrnz | Structured version Visualization version GIF version |
Description: One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
isnzr.o | ⊢ 1 = (1r‘𝑅) |
isnzr.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
nzrnz | ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnzr.o | . . 3 ⊢ 1 = (1r‘𝑅) | |
2 | isnzr.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
3 | 1, 2 | isnzr 20540 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) |
4 | 3 | simprbi 496 | 1 ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ‘cfv 6573 0gc0g 17499 1rcur 20208 Ringcrg 20260 NzRingcnzr 20538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-nzr 20539 |
This theorem is referenced by: nzrunit 20550 nrhmzr 20563 lringnz 20569 subrgnzr 20622 rrgnz 20726 fidomndrng 20796 uvcf1 21835 lindfind2 21861 nm1 24709 deg1pw 26180 ply1nz 26181 ply1nzb 26182 mon1pid 26213 lgsqrlem4 27411 unitnz 33219 domnprodn0 33247 fracfld 33275 drngidl 33426 drngidlhash 33427 drnglidl1ne0 33468 drng0mxidl 33469 qsdrngi 33488 ply1moneq 33576 deg1vr 33579 dimlssid 33645 ply1annnr 33696 algextdeglem4 33711 rtelextdg2lem 33717 zrhnm 33915 idomnnzpownz 42089 idomnnzgmulnz 42090 deg1gprod 42097 deg1pow 42098 domnexpgn0cl 42478 abvexp 42487 fiabv 42491 uvcn0 42497 deg1mhm 43161 |
Copyright terms: Public domain | W3C validator |