![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nzrnz | Structured version Visualization version GIF version |
Description: One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
isnzr.o | ⊢ 1 = (1r‘𝑅) |
isnzr.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
nzrnz | ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnzr.o | . . 3 ⊢ 1 = (1r‘𝑅) | |
2 | isnzr.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
3 | 1, 2 | isnzr 20531 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) |
4 | 3 | simprbi 496 | 1 ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ‘cfv 6563 0gc0g 17486 1rcur 20199 Ringcrg 20251 NzRingcnzr 20529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-nzr 20530 |
This theorem is referenced by: nzrunit 20541 nrhmzr 20554 lringnz 20560 subrgnzr 20611 rrgnz 20721 fidomndrng 20791 uvcf1 21830 lindfind2 21856 nm1 24704 deg1pw 26175 ply1nz 26176 ply1nzb 26177 mon1pid 26208 lgsqrlem4 27408 unitnz 33229 domnprodn0 33262 fracfld 33290 drngidl 33441 drngidlhash 33442 drnglidl1ne0 33483 drng0mxidl 33484 qsdrngi 33503 ply1moneq 33591 deg1vr 33594 dimlssid 33660 ply1annnr 33711 algextdeglem4 33726 rtelextdg2lem 33732 zrhnm 33930 idomnnzpownz 42114 idomnnzgmulnz 42115 deg1gprod 42122 deg1pow 42123 domnexpgn0cl 42510 abvexp 42519 fiabv 42523 uvcn0 42529 deg1mhm 43189 |
Copyright terms: Public domain | W3C validator |