MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lveclmodd Structured version   Visualization version   GIF version

Theorem lveclmodd 21020
Description: A vector space is a left module. (Contributed by SN, 16-May-2024.)
Hypothesis
Ref Expression
lveclmodd.1 (𝜑𝑊 ∈ LVec)
Assertion
Ref Expression
lveclmodd (𝜑𝑊 ∈ LMod)

Proof of Theorem lveclmodd
StepHypRef Expression
1 lveclmodd.1 . 2 (𝜑𝑊 ∈ LVec)
2 lveclmod 21019 . 2 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 1 (𝜑𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  LModclmod 20772  LVecclvec 21015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-iota 6472  df-fv 6527  df-lvec 21016
This theorem is referenced by:  lvecgrpd  21021  quslvec  33339  ply1degltdimlem  33626  dimlssid  33636  algextdeglem8  33722  prjspner1  42586
  Copyright terms: Public domain W3C validator