MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lveclmodd Structured version   Visualization version   GIF version

Theorem lveclmodd 21073
Description: A vector space is a left module. (Contributed by SN, 16-May-2024.)
Hypothesis
Ref Expression
lveclmodd.1 (𝜑𝑊 ∈ LVec)
Assertion
Ref Expression
lveclmodd (𝜑𝑊 ∈ LMod)

Proof of Theorem lveclmodd
StepHypRef Expression
1 lveclmodd.1 . 2 (𝜑𝑊 ∈ LVec)
2 lveclmod 21072 . 2 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 1 (𝜑𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  LModclmod 20825  LVecclvec 21068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-iota 6493  df-fv 6548  df-lvec 21069
This theorem is referenced by:  lvecgrpd  21074  quslvec  33314  ply1degltdimlem  33599  dimlssid  33609  algextdeglem8  33695  prjspner1  42574
  Copyright terms: Public domain W3C validator