| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lveclmodd | Structured version Visualization version GIF version | ||
| Description: A vector space is a left module. (Contributed by SN, 16-May-2024.) |
| Ref | Expression |
|---|---|
| lveclmodd.1 | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| Ref | Expression |
|---|---|
| lveclmodd | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lveclmodd.1 | . 2 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 2 | lveclmod 21019 | . 2 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 LModclmod 20772 LVecclvec 21015 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-iota 6472 df-fv 6527 df-lvec 21016 |
| This theorem is referenced by: lvecgrpd 21021 quslvec 33339 ply1degltdimlem 33626 dimlssid 33636 algextdeglem8 33722 prjspner1 42586 |
| Copyright terms: Public domain | W3C validator |