Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  algextdeglem8 Structured version   Visualization version   GIF version

Theorem algextdeglem8 33730
Description: Lemma for algextdeg 33731. The dimension of the univariate polynomial remainder ring (𝐻s 𝑃) is the degree of the minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
algextdeg.k 𝐾 = (𝐸s 𝐹)
algextdeg.l 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
algextdeg.d 𝐷 = (deg1𝐸)
algextdeg.m 𝑀 = (𝐸 minPoly 𝐹)
algextdeg.f (𝜑𝐸 ∈ Field)
algextdeg.e (𝜑𝐹 ∈ (SubDRing‘𝐸))
algextdeg.a (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
algextdeglem.o 𝑂 = (𝐸 evalSub1 𝐹)
algextdeglem.y 𝑃 = (Poly1𝐾)
algextdeglem.u 𝑈 = (Base‘𝑃)
algextdeglem.g 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
algextdeglem.n 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
algextdeglem.z 𝑍 = (𝐺 “ {(0g𝐿)})
algextdeglem.q 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
algextdeglem.j 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
algextdeglem.r 𝑅 = (rem1p𝐾)
algextdeglem.h 𝐻 = (𝑝𝑈 ↦ (𝑝𝑅(𝑀𝐴)))
algextdeglem.t 𝑇 = ((deg1𝐾) “ (-∞[,)(𝐷‘(𝑀𝐴))))
Assertion
Ref Expression
algextdeglem8 (𝜑 → (dim‘(𝐻s 𝑃)) = (𝐷‘(𝑀𝐴)))
Distinct variable groups:   𝐴,𝑝   𝐸,𝑝   𝐹,𝑝,𝑥   𝐺,𝑝,𝑥   𝐻,𝑝,𝑥   𝐽,𝑝,𝑥   𝐾,𝑝   𝐿,𝑝,𝑥   𝑀,𝑝   𝑥,𝑁   𝑂,𝑝   𝑃,𝑝,𝑥   𝑄,𝑝,𝑥   𝑅,𝑝   𝑇,𝑝,𝑥   𝑈,𝑝,𝑥   𝑍,𝑝,𝑥   𝜑,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐷(𝑥,𝑝)   𝑅(𝑥)   𝐸(𝑥)   𝐾(𝑥)   𝑀(𝑥)   𝑁(𝑝)   𝑂(𝑥)

Proof of Theorem algextdeglem8
Dummy variables 𝑞 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2736 . . . 4 (𝜑 → (𝐻s 𝑃) = (𝐻s 𝑃))
2 algextdeglem.u . . . . 5 𝑈 = (Base‘𝑃)
32a1i 11 . . . 4 (𝜑𝑈 = (Base‘𝑃))
4 algextdeg.e . . . . . . . . . . 11 (𝜑𝐹 ∈ (SubDRing‘𝐸))
5 algextdeg.k . . . . . . . . . . . 12 𝐾 = (𝐸s 𝐹)
65sdrgdrng 20808 . . . . . . . . . . 11 (𝐹 ∈ (SubDRing‘𝐸) → 𝐾 ∈ DivRing)
74, 6syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ DivRing)
87drngringd 20754 . . . . . . . . 9 (𝜑𝐾 ∈ Ring)
98adantr 480 . . . . . . . 8 ((𝜑𝑝𝑈) → 𝐾 ∈ Ring)
10 simpr 484 . . . . . . . 8 ((𝜑𝑝𝑈) → 𝑝𝑈)
11 eqid 2735 . . . . . . . . . . 11 (0g‘(Poly1𝐸)) = (0g‘(Poly1𝐸))
12 algextdeg.f . . . . . . . . . . 11 (𝜑𝐸 ∈ Field)
13 algextdeg.m . . . . . . . . . . 11 𝑀 = (𝐸 minPoly 𝐹)
14 algextdeg.a . . . . . . . . . . 11 (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
155fveq2i 6910 . . . . . . . . . . 11 (Monic1p𝐾) = (Monic1p‘(𝐸s 𝐹))
1611, 12, 4, 13, 14, 15minplym1p 33721 . . . . . . . . . 10 (𝜑 → (𝑀𝐴) ∈ (Monic1p𝐾))
1716adantr 480 . . . . . . . . 9 ((𝜑𝑝𝑈) → (𝑀𝐴) ∈ (Monic1p𝐾))
18 eqid 2735 . . . . . . . . . 10 (Unic1p𝐾) = (Unic1p𝐾)
19 eqid 2735 . . . . . . . . . 10 (Monic1p𝐾) = (Monic1p𝐾)
2018, 19mon1puc1p 26205 . . . . . . . . 9 ((𝐾 ∈ Ring ∧ (𝑀𝐴) ∈ (Monic1p𝐾)) → (𝑀𝐴) ∈ (Unic1p𝐾))
219, 17, 20syl2anc 584 . . . . . . . 8 ((𝜑𝑝𝑈) → (𝑀𝐴) ∈ (Unic1p𝐾))
22 algextdeglem.r . . . . . . . . 9 𝑅 = (rem1p𝐾)
23 algextdeglem.y . . . . . . . . 9 𝑃 = (Poly1𝐾)
2422, 23, 2, 18r1pcl 26213 . . . . . . . 8 ((𝐾 ∈ Ring ∧ 𝑝𝑈 ∧ (𝑀𝐴) ∈ (Unic1p𝐾)) → (𝑝𝑅(𝑀𝐴)) ∈ 𝑈)
259, 10, 21, 24syl3anc 1370 . . . . . . 7 ((𝜑𝑝𝑈) → (𝑝𝑅(𝑀𝐴)) ∈ 𝑈)
26 eqid 2735 . . . . . . . . . 10 (deg1𝐾) = (deg1𝐾)
2722, 23, 2, 18, 26r1pdeglt 26214 . . . . . . . . 9 ((𝐾 ∈ Ring ∧ 𝑝𝑈 ∧ (𝑀𝐴) ∈ (Unic1p𝐾)) → ((deg1𝐾)‘(𝑝𝑅(𝑀𝐴))) < ((deg1𝐾)‘(𝑀𝐴)))
289, 10, 21, 27syl3anc 1370 . . . . . . . 8 ((𝜑𝑝𝑈) → ((deg1𝐾)‘(𝑝𝑅(𝑀𝐴))) < ((deg1𝐾)‘(𝑀𝐴)))
29 algextdeg.d . . . . . . . . . 10 𝐷 = (deg1𝐸)
30 algextdeglem.o . . . . . . . . . . . 12 𝑂 = (𝐸 evalSub1 𝐹)
315fveq2i 6910 . . . . . . . . . . . . 13 (Poly1𝐾) = (Poly1‘(𝐸s 𝐹))
3223, 31eqtri 2763 . . . . . . . . . . . 12 𝑃 = (Poly1‘(𝐸s 𝐹))
33 eqid 2735 . . . . . . . . . . . 12 (Base‘𝐸) = (Base‘𝐸)
34 eqid 2735 . . . . . . . . . . . . . 14 (0g𝐸) = (0g𝐸)
3512fldcrngd 20759 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ CRing)
36 sdrgsubrg 20809 . . . . . . . . . . . . . . 15 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
374, 36syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ (SubRing‘𝐸))
3830, 5, 33, 34, 35, 37irngssv 33703 . . . . . . . . . . . . 13 (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸))
3938, 14sseldd 3996 . . . . . . . . . . . 12 (𝜑𝐴 ∈ (Base‘𝐸))
40 eqid 2735 . . . . . . . . . . . 12 {𝑝 ∈ dom 𝑂 ∣ ((𝑂𝑝)‘𝐴) = (0g𝐸)} = {𝑝 ∈ dom 𝑂 ∣ ((𝑂𝑝)‘𝐴) = (0g𝐸)}
41 eqid 2735 . . . . . . . . . . . 12 (RSpan‘𝑃) = (RSpan‘𝑃)
42 eqid 2735 . . . . . . . . . . . 12 (idlGen1p‘(𝐸s 𝐹)) = (idlGen1p‘(𝐸s 𝐹))
4330, 32, 33, 12, 4, 39, 34, 40, 41, 42, 13minplycl 33714 . . . . . . . . . . 11 (𝜑 → (𝑀𝐴) ∈ (Base‘𝑃))
4443, 2eleqtrrdi 2850 . . . . . . . . . 10 (𝜑 → (𝑀𝐴) ∈ 𝑈)
455, 29, 23, 2, 44, 37ressdeg1 33571 . . . . . . . . 9 (𝜑 → (𝐷‘(𝑀𝐴)) = ((deg1𝐾)‘(𝑀𝐴)))
4645adantr 480 . . . . . . . 8 ((𝜑𝑝𝑈) → (𝐷‘(𝑀𝐴)) = ((deg1𝐾)‘(𝑀𝐴)))
4728, 46breqtrrd 5176 . . . . . . 7 ((𝜑𝑝𝑈) → ((deg1𝐾)‘(𝑝𝑅(𝑀𝐴))) < (𝐷‘(𝑀𝐴)))
48 algextdeglem.t . . . . . . . . 9 𝑇 = ((deg1𝐾) “ (-∞[,)(𝐷‘(𝑀𝐴))))
4912flddrngd 20758 . . . . . . . . . . 11 (𝜑𝐸 ∈ DivRing)
5049drngringd 20754 . . . . . . . . . 10 (𝜑𝐸 ∈ Ring)
51 eqid 2735 . . . . . . . . . . . . 13 (Poly1𝐸) = (Poly1𝐸)
52 eqid 2735 . . . . . . . . . . . . 13 (PwSer1𝐾) = (PwSer1𝐾)
53 eqid 2735 . . . . . . . . . . . . 13 (Base‘(PwSer1𝐾)) = (Base‘(PwSer1𝐾))
54 eqid 2735 . . . . . . . . . . . . 13 (Base‘(Poly1𝐸)) = (Base‘(Poly1𝐸))
5551, 5, 23, 2, 37, 52, 53, 54ressply1bas2 22245 . . . . . . . . . . . 12 (𝜑𝑈 = ((Base‘(PwSer1𝐾)) ∩ (Base‘(Poly1𝐸))))
56 inss2 4246 . . . . . . . . . . . 12 ((Base‘(PwSer1𝐾)) ∩ (Base‘(Poly1𝐸))) ⊆ (Base‘(Poly1𝐸))
5755, 56eqsstrdi 4050 . . . . . . . . . . 11 (𝜑𝑈 ⊆ (Base‘(Poly1𝐸)))
5857, 44sseldd 3996 . . . . . . . . . 10 (𝜑 → (𝑀𝐴) ∈ (Base‘(Poly1𝐸)))
5911, 12, 4, 13, 14irngnminplynz 33720 . . . . . . . . . 10 (𝜑 → (𝑀𝐴) ≠ (0g‘(Poly1𝐸)))
6029, 51, 11, 54deg1nn0cl 26142 . . . . . . . . . 10 ((𝐸 ∈ Ring ∧ (𝑀𝐴) ∈ (Base‘(Poly1𝐸)) ∧ (𝑀𝐴) ≠ (0g‘(Poly1𝐸))) → (𝐷‘(𝑀𝐴)) ∈ ℕ0)
6150, 58, 59, 60syl3anc 1370 . . . . . . . . 9 (𝜑 → (𝐷‘(𝑀𝐴)) ∈ ℕ0)
6223, 26, 48, 61, 8, 2ply1degleel 33596 . . . . . . . 8 (𝜑 → ((𝑝𝑅(𝑀𝐴)) ∈ 𝑇 ↔ ((𝑝𝑅(𝑀𝐴)) ∈ 𝑈 ∧ ((deg1𝐾)‘(𝑝𝑅(𝑀𝐴))) < (𝐷‘(𝑀𝐴)))))
6362adantr 480 . . . . . . 7 ((𝜑𝑝𝑈) → ((𝑝𝑅(𝑀𝐴)) ∈ 𝑇 ↔ ((𝑝𝑅(𝑀𝐴)) ∈ 𝑈 ∧ ((deg1𝐾)‘(𝑝𝑅(𝑀𝐴))) < (𝐷‘(𝑀𝐴)))))
6425, 47, 63mpbir2and 713 . . . . . 6 ((𝜑𝑝𝑈) → (𝑝𝑅(𝑀𝐴)) ∈ 𝑇)
6564ralrimiva 3144 . . . . 5 (𝜑 → ∀𝑝𝑈 (𝑝𝑅(𝑀𝐴)) ∈ 𝑇)
66 oveq1 7438 . . . . . . . . 9 (𝑝 = 𝑞 → (𝑝𝑅(𝑀𝐴)) = (𝑞𝑅(𝑀𝐴)))
6766eqeq2d 2746 . . . . . . . 8 (𝑝 = 𝑞 → (𝑞 = (𝑝𝑅(𝑀𝐴)) ↔ 𝑞 = (𝑞𝑅(𝑀𝐴))))
68 eqcom 2742 . . . . . . . 8 (𝑞 = (𝑞𝑅(𝑀𝐴)) ↔ (𝑞𝑅(𝑀𝐴)) = 𝑞)
6967, 68bitrdi 287 . . . . . . 7 (𝑝 = 𝑞 → (𝑞 = (𝑝𝑅(𝑀𝐴)) ↔ (𝑞𝑅(𝑀𝐴)) = 𝑞))
7023, 26, 48, 61, 8, 2ply1degltel 33595 . . . . . . . 8 (𝜑 → (𝑞𝑇 ↔ (𝑞𝑈 ∧ ((deg1𝐾)‘𝑞) ≤ ((𝐷‘(𝑀𝐴)) − 1))))
7170simprbda 498 . . . . . . 7 ((𝜑𝑞𝑇) → 𝑞𝑈)
7270simplbda 499 . . . . . . . . . 10 ((𝜑𝑞𝑇) → ((deg1𝐾)‘𝑞) ≤ ((𝐷‘(𝑀𝐴)) − 1))
7345oveq1d 7446 . . . . . . . . . . 11 (𝜑 → ((𝐷‘(𝑀𝐴)) − 1) = (((deg1𝐾)‘(𝑀𝐴)) − 1))
7473adantr 480 . . . . . . . . . 10 ((𝜑𝑞𝑇) → ((𝐷‘(𝑀𝐴)) − 1) = (((deg1𝐾)‘(𝑀𝐴)) − 1))
7572, 74breqtrd 5174 . . . . . . . . 9 ((𝜑𝑞𝑇) → ((deg1𝐾)‘𝑞) ≤ (((deg1𝐾)‘(𝑀𝐴)) − 1))
7626, 23, 2deg1cl 26137 . . . . . . . . . . 11 (𝑞𝑈 → ((deg1𝐾)‘𝑞) ∈ (ℕ0 ∪ {-∞}))
7771, 76syl 17 . . . . . . . . . 10 ((𝜑𝑞𝑇) → ((deg1𝐾)‘𝑞) ∈ (ℕ0 ∪ {-∞}))
7861nn0zd 12637 . . . . . . . . . . . 12 (𝜑 → (𝐷‘(𝑀𝐴)) ∈ ℤ)
7945, 78eqeltrrd 2840 . . . . . . . . . . 11 (𝜑 → ((deg1𝐾)‘(𝑀𝐴)) ∈ ℤ)
8079adantr 480 . . . . . . . . . 10 ((𝜑𝑞𝑇) → ((deg1𝐾)‘(𝑀𝐴)) ∈ ℤ)
81 degltlem1 26126 . . . . . . . . . 10 ((((deg1𝐾)‘𝑞) ∈ (ℕ0 ∪ {-∞}) ∧ ((deg1𝐾)‘(𝑀𝐴)) ∈ ℤ) → (((deg1𝐾)‘𝑞) < ((deg1𝐾)‘(𝑀𝐴)) ↔ ((deg1𝐾)‘𝑞) ≤ (((deg1𝐾)‘(𝑀𝐴)) − 1)))
8277, 80, 81syl2anc 584 . . . . . . . . 9 ((𝜑𝑞𝑇) → (((deg1𝐾)‘𝑞) < ((deg1𝐾)‘(𝑀𝐴)) ↔ ((deg1𝐾)‘𝑞) ≤ (((deg1𝐾)‘(𝑀𝐴)) − 1)))
8375, 82mpbird 257 . . . . . . . 8 ((𝜑𝑞𝑇) → ((deg1𝐾)‘𝑞) < ((deg1𝐾)‘(𝑀𝐴)))
84 fldsdrgfld 20816 . . . . . . . . . . . . . 14 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
8512, 4, 84syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝐸s 𝐹) ∈ Field)
865, 85eqeltrid 2843 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Field)
87 fldidom 20788 . . . . . . . . . . . 12 (𝐾 ∈ Field → 𝐾 ∈ IDomn)
8886, 87syl 17 . . . . . . . . . . 11 (𝜑𝐾 ∈ IDomn)
8988idomdomd 20743 . . . . . . . . . 10 (𝜑𝐾 ∈ Domn)
9089adantr 480 . . . . . . . . 9 ((𝜑𝑞𝑇) → 𝐾 ∈ Domn)
918, 16, 20syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑀𝐴) ∈ (Unic1p𝐾))
9291adantr 480 . . . . . . . . 9 ((𝜑𝑞𝑇) → (𝑀𝐴) ∈ (Unic1p𝐾))
9323, 2, 18, 22, 26, 90, 71, 92r1pid2 26216 . . . . . . . 8 ((𝜑𝑞𝑇) → ((𝑞𝑅(𝑀𝐴)) = 𝑞 ↔ ((deg1𝐾)‘𝑞) < ((deg1𝐾)‘(𝑀𝐴))))
9483, 93mpbird 257 . . . . . . 7 ((𝜑𝑞𝑇) → (𝑞𝑅(𝑀𝐴)) = 𝑞)
9569, 71, 94rspcedvdw 3625 . . . . . 6 ((𝜑𝑞𝑇) → ∃𝑝𝑈 𝑞 = (𝑝𝑅(𝑀𝐴)))
9695ralrimiva 3144 . . . . 5 (𝜑 → ∀𝑞𝑇𝑝𝑈 𝑞 = (𝑝𝑅(𝑀𝐴)))
97 algextdeglem.h . . . . . 6 𝐻 = (𝑝𝑈 ↦ (𝑝𝑅(𝑀𝐴)))
9897fompt 7138 . . . . 5 (𝐻:𝑈onto𝑇 ↔ (∀𝑝𝑈 (𝑝𝑅(𝑀𝐴)) ∈ 𝑇 ∧ ∀𝑞𝑇𝑝𝑈 𝑞 = (𝑝𝑅(𝑀𝐴))))
9965, 96, 98sylanbrc 583 . . . 4 (𝜑𝐻:𝑈onto𝑇)
10023ply1ring 22265 . . . . 5 (𝐾 ∈ Ring → 𝑃 ∈ Ring)
1018, 100syl 17 . . . 4 (𝜑𝑃 ∈ Ring)
1021, 3, 99, 101imasbas 17559 . . 3 (𝜑𝑇 = (Base‘(𝐻s 𝑃)))
10371ex 412 . . . . 5 (𝜑 → (𝑞𝑇𝑞𝑈))
104103ssrdv 4001 . . . 4 (𝜑𝑇𝑈)
105 eqid 2735 . . . . 5 (𝑃s 𝑇) = (𝑃s 𝑇)
106105, 2ressbas2 17283 . . . 4 (𝑇𝑈𝑇 = (Base‘(𝑃s 𝑇)))
107104, 106syl 17 . . 3 (𝜑𝑇 = (Base‘(𝑃s 𝑇)))
108 ssidd 4019 . . 3 (𝜑𝑇𝑇)
109 eqid 2735 . . . . . . 7 (𝐻s 𝑃) = (𝐻s 𝑃)
110 eqid 2735 . . . . . . 7 (Base‘(𝐻s 𝑃)) = (Base‘(𝐻s 𝑃))
111104ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑇𝑈)
112 simplr 769 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑥𝑇)
113111, 112sseldd 3996 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑥𝑈)
114 simpr 484 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑦𝑇)
115111, 114sseldd 3996 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑦𝑈)
116 foeq3 6819 . . . . . . . . . 10 (𝑇 = (Base‘(𝐻s 𝑃)) → (𝐻:𝑈onto𝑇𝐻:𝑈onto→(Base‘(𝐻s 𝑃))))
117102, 116syl 17 . . . . . . . . 9 (𝜑 → (𝐻:𝑈onto𝑇𝐻:𝑈onto→(Base‘(𝐻s 𝑃))))
11899, 117mpbid 232 . . . . . . . 8 (𝜑𝐻:𝑈onto→(Base‘(𝐻s 𝑃)))
119118ad2antrr 726 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝐻:𝑈onto→(Base‘(𝐻s 𝑃)))
12023, 2, 22, 18, 97, 8, 91r1plmhm 33610 . . . . . . . . . 10 (𝜑𝐻 ∈ (𝑃 LMHom (𝐻s 𝑃)))
121120lmhmghmd 33025 . . . . . . . . 9 (𝜑𝐻 ∈ (𝑃 GrpHom (𝐻s 𝑃)))
122 ghmmhm 19257 . . . . . . . . 9 (𝐻 ∈ (𝑃 GrpHom (𝐻s 𝑃)) → 𝐻 ∈ (𝑃 MndHom (𝐻s 𝑃)))
123121, 122syl 17 . . . . . . . 8 (𝜑𝐻 ∈ (𝑃 MndHom (𝐻s 𝑃)))
124123ad2antrr 726 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝐻 ∈ (𝑃 MndHom (𝐻s 𝑃)))
125 eqid 2735 . . . . . . 7 (+g𝑃) = (+g𝑃)
126 eqid 2735 . . . . . . 7 (+g‘(𝐻s 𝑃)) = (+g‘(𝐻s 𝑃))
127109, 2, 110, 113, 115, 119, 124, 125, 126mhmimasplusg 33026 . . . . . 6 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → ((𝐻𝑥)(+g‘(𝐻s 𝑃))(𝐻𝑦)) = (𝐻‘(𝑥(+g𝑃)𝑦)))
128 algextdeg.l . . . . . . . . 9 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
12912ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝐸 ∈ Field)
1304ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝐹 ∈ (SubDRing‘𝐸))
13114ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝐴 ∈ (𝐸 IntgRing 𝐹))
132 algextdeglem.g . . . . . . . . 9 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
133 algextdeglem.n . . . . . . . . 9 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
134 algextdeglem.z . . . . . . . . 9 𝑍 = (𝐺 “ {(0g𝐿)})
135 algextdeglem.q . . . . . . . . 9 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
136 algextdeglem.j . . . . . . . . 9 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
1375, 128, 29, 13, 129, 130, 131, 30, 23, 2, 132, 133, 134, 135, 136, 22, 97, 48, 113algextdeglem7 33729 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝑥𝑇 ↔ (𝐻𝑥) = 𝑥))
138112, 137mpbid 232 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝐻𝑥) = 𝑥)
1395, 128, 29, 13, 129, 130, 131, 30, 23, 2, 132, 133, 134, 135, 136, 22, 97, 48, 115algextdeglem7 33729 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝑦𝑇 ↔ (𝐻𝑦) = 𝑦))
140114, 139mpbid 232 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝐻𝑦) = 𝑦)
141138, 140oveq12d 7449 . . . . . 6 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → ((𝐻𝑥)(+g‘(𝐻s 𝑃))(𝐻𝑦)) = (𝑥(+g‘(𝐻s 𝑃))𝑦))
142101ringgrpd 20260 . . . . . . . . . 10 (𝜑𝑃 ∈ Grp)
14323, 7ply1lvec 33565 . . . . . . . . . . . 12 (𝜑𝑃 ∈ LVec)
14423, 26, 48, 61, 8ply1degltlss 33597 . . . . . . . . . . . 12 (𝜑𝑇 ∈ (LSubSp‘𝑃))
145 eqid 2735 . . . . . . . . . . . . 13 (LSubSp‘𝑃) = (LSubSp‘𝑃)
146105, 145lsslvec 21126 . . . . . . . . . . . 12 ((𝑃 ∈ LVec ∧ 𝑇 ∈ (LSubSp‘𝑃)) → (𝑃s 𝑇) ∈ LVec)
147143, 144, 146syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑃s 𝑇) ∈ LVec)
148147lvecgrpd 21125 . . . . . . . . . 10 (𝜑 → (𝑃s 𝑇) ∈ Grp)
1492issubg 19157 . . . . . . . . . 10 (𝑇 ∈ (SubGrp‘𝑃) ↔ (𝑃 ∈ Grp ∧ 𝑇𝑈 ∧ (𝑃s 𝑇) ∈ Grp))
150142, 104, 148, 149syl3anbrc 1342 . . . . . . . . 9 (𝜑𝑇 ∈ (SubGrp‘𝑃))
151150ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑇 ∈ (SubGrp‘𝑃))
152125subgcl 19167 . . . . . . . 8 ((𝑇 ∈ (SubGrp‘𝑃) ∧ 𝑥𝑇𝑦𝑇) → (𝑥(+g𝑃)𝑦) ∈ 𝑇)
153151, 112, 114, 152syl3anc 1370 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝑥(+g𝑃)𝑦) ∈ 𝑇)
154142ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑃 ∈ Grp)
1552, 125, 154, 113, 115grpcld 18978 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝑥(+g𝑃)𝑦) ∈ 𝑈)
1565, 128, 29, 13, 129, 130, 131, 30, 23, 2, 132, 133, 134, 135, 136, 22, 97, 48, 155algextdeglem7 33729 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → ((𝑥(+g𝑃)𝑦) ∈ 𝑇 ↔ (𝐻‘(𝑥(+g𝑃)𝑦)) = (𝑥(+g𝑃)𝑦)))
157153, 156mpbid 232 . . . . . 6 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝐻‘(𝑥(+g𝑃)𝑦)) = (𝑥(+g𝑃)𝑦))
158127, 141, 1573eqtr3d 2783 . . . . 5 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝑥(+g‘(𝐻s 𝑃))𝑦) = (𝑥(+g𝑃)𝑦))
159 fvex 6920 . . . . . . . . 9 (deg1𝐾) ∈ V
160 cnvexg 7947 . . . . . . . . 9 ((deg1𝐾) ∈ V → (deg1𝐾) ∈ V)
161 imaexg 7936 . . . . . . . . 9 ((deg1𝐾) ∈ V → ((deg1𝐾) “ (-∞[,)(𝐷‘(𝑀𝐴)))) ∈ V)
162159, 160, 161mp2b 10 . . . . . . . 8 ((deg1𝐾) “ (-∞[,)(𝐷‘(𝑀𝐴)))) ∈ V
16348, 162eqeltri 2835 . . . . . . 7 𝑇 ∈ V
164105, 125ressplusg 17336 . . . . . . 7 (𝑇 ∈ V → (+g𝑃) = (+g‘(𝑃s 𝑇)))
165163, 164ax-mp 5 . . . . . 6 (+g𝑃) = (+g‘(𝑃s 𝑇))
166165oveqi 7444 . . . . 5 (𝑥(+g𝑃)𝑦) = (𝑥(+g‘(𝑃s 𝑇))𝑦)
167158, 166eqtrdi 2791 . . . 4 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝑥(+g‘(𝐻s 𝑃))𝑦) = (𝑥(+g‘(𝑃s 𝑇))𝑦))
168167anasss 466 . . 3 ((𝜑 ∧ (𝑥𝑇𝑦𝑇)) → (𝑥(+g‘(𝐻s 𝑃))𝑦) = (𝑥(+g‘(𝑃s 𝑇))𝑦))
169 simprr 773 . . . . . . 7 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑦𝑇)
17012adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐸 ∈ Field)
1714adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐹 ∈ (SubDRing‘𝐸))
17214adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐴 ∈ (𝐸 IntgRing 𝐹))
173104adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑇𝑈)
174173, 169sseldd 3996 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑦𝑈)
1755, 128, 29, 13, 170, 171, 172, 30, 23, 2, 132, 133, 134, 135, 136, 22, 97, 48, 174algextdeglem7 33729 . . . . . . 7 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑦𝑇 ↔ (𝐻𝑦) = 𝑦))
176169, 175mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝐻𝑦) = 𝑦)
177176oveq2d 7447 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠 ‘(𝐻s 𝑃))(𝐻𝑦)) = (𝑥( ·𝑠 ‘(𝐻s 𝑃))𝑦))
178 simprl 771 . . . . . . 7 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑥𝐹)
17933sdrgss 20811 . . . . . . . . . 10 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ⊆ (Base‘𝐸))
1805, 33ressbas2 17283 . . . . . . . . . 10 (𝐹 ⊆ (Base‘𝐸) → 𝐹 = (Base‘𝐾))
1814, 179, 1803syl 18 . . . . . . . . 9 (𝜑𝐹 = (Base‘𝐾))
18223ply1sca 22270 . . . . . . . . . . 11 (𝐾 ∈ Ring → 𝐾 = (Scalar‘𝑃))
1838, 182syl 17 . . . . . . . . . 10 (𝜑𝐾 = (Scalar‘𝑃))
184183fveq2d 6911 . . . . . . . . 9 (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘𝑃)))
185181, 184eqtrd 2775 . . . . . . . 8 (𝜑𝐹 = (Base‘(Scalar‘𝑃)))
186185adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐹 = (Base‘(Scalar‘𝑃)))
187178, 186eleqtrd 2841 . . . . . 6 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑥 ∈ (Base‘(Scalar‘𝑃)))
188118adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐻:𝑈onto→(Base‘(𝐻s 𝑃)))
189120adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐻 ∈ (𝑃 LMHom (𝐻s 𝑃)))
190 eqid 2735 . . . . . 6 ( ·𝑠𝑃) = ( ·𝑠𝑃)
191 eqid 2735 . . . . . 6 ( ·𝑠 ‘(𝐻s 𝑃)) = ( ·𝑠 ‘(𝐻s 𝑃))
192 eqid 2735 . . . . . 6 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
193109, 2, 110, 187, 174, 188, 189, 190, 191, 192lmhmimasvsca 33027 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠 ‘(𝐻s 𝑃))(𝐻𝑦)) = (𝐻‘(𝑥( ·𝑠𝑃)𝑦)))
194177, 193eqtr3d 2777 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠 ‘(𝐻s 𝑃))𝑦) = (𝐻‘(𝑥( ·𝑠𝑃)𝑦)))
19564, 97fmptd 7134 . . . . . 6 (𝜑𝐻:𝑈𝑇)
196195adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐻:𝑈𝑇)
197 eqid 2735 . . . . . 6 (Scalar‘𝑃) = (Scalar‘𝑃)
198143lveclmodd 21124 . . . . . . 7 (𝜑𝑃 ∈ LMod)
199198adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑃 ∈ LMod)
2002, 197, 190, 192, 199, 187, 174lmodvscld 20894 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠𝑃)𝑦) ∈ 𝑈)
201196, 200ffvelcdmd 7105 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝐻‘(𝑥( ·𝑠𝑃)𝑦)) ∈ 𝑇)
202194, 201eqeltrd 2839 . . 3 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠 ‘(𝐻s 𝑃))𝑦) ∈ 𝑇)
203144adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑇 ∈ (LSubSp‘𝑃))
204197, 190, 192, 145lssvscl 20971 . . . . . 6 (((𝑃 ∈ LMod ∧ 𝑇 ∈ (LSubSp‘𝑃)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑦𝑇)) → (𝑥( ·𝑠𝑃)𝑦) ∈ 𝑇)
205199, 203, 187, 169, 204syl22anc 839 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠𝑃)𝑦) ∈ 𝑇)
2065, 128, 29, 13, 170, 171, 172, 30, 23, 2, 132, 133, 134, 135, 136, 22, 97, 48, 200algextdeglem7 33729 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → ((𝑥( ·𝑠𝑃)𝑦) ∈ 𝑇 ↔ (𝐻‘(𝑥( ·𝑠𝑃)𝑦)) = (𝑥( ·𝑠𝑃)𝑦)))
207205, 206mpbid 232 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝐻‘(𝑥( ·𝑠𝑃)𝑦)) = (𝑥( ·𝑠𝑃)𝑦))
208105, 190ressvsca 17390 . . . . . 6 (𝑇 ∈ V → ( ·𝑠𝑃) = ( ·𝑠 ‘(𝑃s 𝑇)))
209163, 208mp1i 13 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → ( ·𝑠𝑃) = ( ·𝑠 ‘(𝑃s 𝑇)))
210209oveqd 7448 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠𝑃)𝑦) = (𝑥( ·𝑠 ‘(𝑃s 𝑇))𝑦))
211194, 207, 2103eqtrd 2779 . . 3 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠 ‘(𝐻s 𝑃))𝑦) = (𝑥( ·𝑠 ‘(𝑃s 𝑇))𝑦))
212 eqid 2735 . . 3 (Scalar‘(𝐻s 𝑃)) = (Scalar‘(𝐻s 𝑃))
213105, 197resssca 17389 . . . 4 (𝑇 ∈ V → (Scalar‘𝑃) = (Scalar‘(𝑃s 𝑇)))
214163, 213ax-mp 5 . . 3 (Scalar‘𝑃) = (Scalar‘(𝑃s 𝑇))
2151, 3, 99, 101, 197imassca 17566 . . . . . 6 (𝜑 → (Scalar‘𝑃) = (Scalar‘(𝐻s 𝑃)))
216183, 215eqtrd 2775 . . . . 5 (𝜑𝐾 = (Scalar‘(𝐻s 𝑃)))
217216fveq2d 6911 . . . 4 (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘(𝐻s 𝑃))))
218181, 217eqtrd 2775 . . 3 (𝜑𝐹 = (Base‘(Scalar‘(𝐻s 𝑃))))
219215fveq2d 6911 . . . . . 6 (𝜑 → (+g‘(Scalar‘𝑃)) = (+g‘(Scalar‘(𝐻s 𝑃))))
220219oveqd 7448 . . . . 5 (𝜑 → (𝑥(+g‘(Scalar‘𝑃))𝑦) = (𝑥(+g‘(Scalar‘(𝐻s 𝑃)))𝑦))
221220eqcomd 2741 . . . 4 (𝜑 → (𝑥(+g‘(Scalar‘(𝐻s 𝑃)))𝑦) = (𝑥(+g‘(Scalar‘𝑃))𝑦))
222221adantr 480 . . 3 ((𝜑 ∧ (𝑥𝐹𝑦𝐹)) → (𝑥(+g‘(Scalar‘(𝐻s 𝑃)))𝑦) = (𝑥(+g‘(Scalar‘𝑃))𝑦))
223 lmhmlvec2 33647 . . . 4 ((𝑃 ∈ LVec ∧ 𝐻 ∈ (𝑃 LMHom (𝐻s 𝑃))) → (𝐻s 𝑃) ∈ LVec)
224143, 120, 223syl2anc 584 . . 3 (𝜑 → (𝐻s 𝑃) ∈ LVec)
225102, 107, 108, 168, 202, 211, 212, 214, 218, 185, 222, 224, 147dimpropd 33636 . 2 (𝜑 → (dim‘(𝐻s 𝑃)) = (dim‘(𝑃s 𝑇)))
22623, 26, 48, 61, 7, 105ply1degltdim 33651 . 2 (𝜑 → (dim‘(𝑃s 𝑇)) = (𝐷‘(𝑀𝐴)))
227225, 226eqtrd 2775 1 (𝜑 → (dim‘(𝐻s 𝑃)) = (𝐷‘(𝑀𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  {crab 3433  Vcvv 3478  cun 3961  cin 3962  wss 3963  {csn 4631   cuni 4912   class class class wbr 5148  cmpt 5231  ccnv 5688  dom cdm 5689  cima 5692  wf 6559  ontowfo 6561  cfv 6563  (class class class)co 7431  [cec 8742  1c1 11154  -∞cmnf 11291   < clt 11293  cle 11294  cmin 11490  0cn0 12524  cz 12611  [,)cico 13386  Basecbs 17245  s cress 17274  +gcplusg 17298  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17486  s cimas 17551   /s cqus 17552   MndHom cmhm 18807  Grpcgrp 18964  SubGrpcsubg 19151   ~QG cqg 19153   GrpHom cghm 19243  Ringcrg 20251  SubRingcsubrg 20586  Domncdomn 20709  IDomncidom 20710  DivRingcdr 20746  Fieldcfield 20747  SubDRingcsdrg 20804  LModclmod 20875  LSubSpclss 20947   LMHom clmhm 21036  LVecclvec 21119  RSpancrsp 21235  PwSer1cps1 22192  Poly1cpl1 22194   evalSub1 ces1 22333  deg1cdg1 26108  Monic1pcmn1 26180  Unic1pcuc1p 26181  rem1pcr1p 26183  idlGen1pcig1p 26184   fldGen cfldgen 33292  dimcldim 33626   IntgRing cirng 33698   minPoly cminply 33707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-reg 9630  ax-inf2 9679  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-rpss 7742  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-inf 9481  df-oi 9548  df-r1 9802  df-rank 9803  df-dju 9939  df-card 9977  df-acn 9980  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-ico 13390  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ocomp 17319  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-imas 17555  df-mre 17631  df-mrc 17632  df-mri 17633  df-acs 17634  df-proset 18352  df-drs 18353  df-poset 18371  df-ipo 18586  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-srg 20205  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-rhm 20489  df-nzr 20530  df-subrng 20563  df-subrg 20587  df-rlreg 20711  df-domn 20712  df-idom 20713  df-drng 20748  df-field 20749  df-sdrg 20805  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lmhm 21039  df-lbs 21092  df-lvec 21120  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-rsp 21237  df-cnfld 21383  df-dsmm 21770  df-frlm 21785  df-uvc 21821  df-lindf 21844  df-linds 21845  df-assa 21891  df-asp 21892  df-ascl 21893  df-psr 21947  df-mvr 21948  df-mpl 21949  df-opsr 21951  df-evls 22116  df-evl 22117  df-psr1 22197  df-vr1 22198  df-ply1 22199  df-coe1 22200  df-evls1 22335  df-evl1 22336  df-mdeg 26109  df-deg1 26110  df-mon1 26185  df-uc1p 26186  df-q1p 26187  df-r1p 26188  df-ig1p 26189  df-dim 33627  df-irng 33699  df-minply 33708
This theorem is referenced by:  algextdeg  33731
  Copyright terms: Public domain W3C validator