Step | Hyp | Ref
| Expression |
1 | | eqidd 2731 |
. . . 4
β’ (π β (π» βs π) = (π» βs π)) |
2 | | algextdeglem.u |
. . . . 5
β’ π = (Baseβπ) |
3 | 2 | a1i 11 |
. . . 4
β’ (π β π = (Baseβπ)) |
4 | | algextdeg.e |
. . . . . . . . . . 11
β’ (π β πΉ β (SubDRingβπΈ)) |
5 | | algextdeg.k |
. . . . . . . . . . . 12
β’ πΎ = (πΈ βΎs πΉ) |
6 | 5 | sdrgdrng 20549 |
. . . . . . . . . . 11
β’ (πΉ β (SubDRingβπΈ) β πΎ β DivRing) |
7 | 4, 6 | syl 17 |
. . . . . . . . . 10
β’ (π β πΎ β DivRing) |
8 | 7 | drngringd 20508 |
. . . . . . . . 9
β’ (π β πΎ β Ring) |
9 | 8 | adantr 479 |
. . . . . . . 8
β’ ((π β§ π β π) β πΎ β Ring) |
10 | | simpr 483 |
. . . . . . . 8
β’ ((π β§ π β π) β π β π) |
11 | | eqid 2730 |
. . . . . . . . . . 11
β’
(0gβ(Poly1βπΈ)) =
(0gβ(Poly1βπΈ)) |
12 | | algextdeg.f |
. . . . . . . . . . 11
β’ (π β πΈ β Field) |
13 | | algextdeg.m |
. . . . . . . . . . 11
β’ π = (πΈ minPoly πΉ) |
14 | | algextdeg.a |
. . . . . . . . . . 11
β’ (π β π΄ β (πΈ IntgRing πΉ)) |
15 | 5 | fveq2i 6893 |
. . . . . . . . . . 11
β’
(Monic1pβπΎ) = (Monic1pβ(πΈ βΎs πΉ)) |
16 | 11, 12, 4, 13, 14, 15 | minplym1p 33061 |
. . . . . . . . . 10
β’ (π β (πβπ΄) β (Monic1pβπΎ)) |
17 | 16 | adantr 479 |
. . . . . . . . 9
β’ ((π β§ π β π) β (πβπ΄) β (Monic1pβπΎ)) |
18 | | eqid 2730 |
. . . . . . . . . 10
β’
(Unic1pβπΎ) = (Unic1pβπΎ) |
19 | | eqid 2730 |
. . . . . . . . . 10
β’
(Monic1pβπΎ) = (Monic1pβπΎ) |
20 | 18, 19 | mon1puc1p 25903 |
. . . . . . . . 9
β’ ((πΎ β Ring β§ (πβπ΄) β (Monic1pβπΎ)) β (πβπ΄) β (Unic1pβπΎ)) |
21 | 9, 17, 20 | syl2anc 582 |
. . . . . . . 8
β’ ((π β§ π β π) β (πβπ΄) β (Unic1pβπΎ)) |
22 | | algextdeglem.r |
. . . . . . . . 9
β’ π
= (rem1pβπΎ) |
23 | | algextdeglem.y |
. . . . . . . . 9
β’ π = (Poly1βπΎ) |
24 | 22, 23, 2, 18 | r1pcl 25910 |
. . . . . . . 8
β’ ((πΎ β Ring β§ π β π β§ (πβπ΄) β (Unic1pβπΎ)) β (ππ
(πβπ΄)) β π) |
25 | 9, 10, 21, 24 | syl3anc 1369 |
. . . . . . 7
β’ ((π β§ π β π) β (ππ
(πβπ΄)) β π) |
26 | | eqid 2730 |
. . . . . . . . . 10
β’ (
deg1 βπΎ) =
( deg1 βπΎ) |
27 | 22, 23, 2, 18, 26 | r1pdeglt 25911 |
. . . . . . . . 9
β’ ((πΎ β Ring β§ π β π β§ (πβπ΄) β (Unic1pβπΎ)) β (( deg1
βπΎ)β(ππ
(πβπ΄))) < (( deg1 βπΎ)β(πβπ΄))) |
28 | 9, 10, 21, 27 | syl3anc 1369 |
. . . . . . . 8
β’ ((π β§ π β π) β (( deg1 βπΎ)β(ππ
(πβπ΄))) < (( deg1 βπΎ)β(πβπ΄))) |
29 | | algextdeg.d |
. . . . . . . . . 10
β’ π· = ( deg1
βπΈ) |
30 | | algextdeglem.o |
. . . . . . . . . . . 12
β’ π = (πΈ evalSub1 πΉ) |
31 | 5 | fveq2i 6893 |
. . . . . . . . . . . . 13
β’
(Poly1βπΎ) = (Poly1β(πΈ βΎs πΉ)) |
32 | 23, 31 | eqtri 2758 |
. . . . . . . . . . . 12
β’ π =
(Poly1β(πΈ
βΎs πΉ)) |
33 | | eqid 2730 |
. . . . . . . . . . . 12
β’
(BaseβπΈ) =
(BaseβπΈ) |
34 | | eqid 2730 |
. . . . . . . . . . . . . 14
β’
(0gβπΈ) = (0gβπΈ) |
35 | 12 | fldcrngd 20513 |
. . . . . . . . . . . . . 14
β’ (π β πΈ β CRing) |
36 | | sdrgsubrg 20550 |
. . . . . . . . . . . . . . 15
β’ (πΉ β (SubDRingβπΈ) β πΉ β (SubRingβπΈ)) |
37 | 4, 36 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β πΉ β (SubRingβπΈ)) |
38 | 30, 5, 33, 34, 35, 37 | irngssv 33041 |
. . . . . . . . . . . . 13
β’ (π β (πΈ IntgRing πΉ) β (BaseβπΈ)) |
39 | 38, 14 | sseldd 3982 |
. . . . . . . . . . . 12
β’ (π β π΄ β (BaseβπΈ)) |
40 | | eqid 2730 |
. . . . . . . . . . . 12
β’ {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} = {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} |
41 | | eqid 2730 |
. . . . . . . . . . . 12
β’
(RSpanβπ) =
(RSpanβπ) |
42 | | eqid 2730 |
. . . . . . . . . . . 12
β’
(idlGen1pβ(πΈ βΎs πΉ)) = (idlGen1pβ(πΈ βΎs πΉ)) |
43 | 30, 32, 33, 12, 4, 39, 34, 40, 41, 42, 13 | minplycl 33056 |
. . . . . . . . . . 11
β’ (π β (πβπ΄) β (Baseβπ)) |
44 | 43, 2 | eleqtrrdi 2842 |
. . . . . . . . . 10
β’ (π β (πβπ΄) β π) |
45 | 5, 29, 23, 2, 44, 37 | ressdeg1 32925 |
. . . . . . . . 9
β’ (π β (π·β(πβπ΄)) = (( deg1 βπΎ)β(πβπ΄))) |
46 | 45 | adantr 479 |
. . . . . . . 8
β’ ((π β§ π β π) β (π·β(πβπ΄)) = (( deg1 βπΎ)β(πβπ΄))) |
47 | 28, 46 | breqtrrd 5175 |
. . . . . . 7
β’ ((π β§ π β π) β (( deg1 βπΎ)β(ππ
(πβπ΄))) < (π·β(πβπ΄))) |
48 | | algextdeglem.t |
. . . . . . . . 9
β’ π = (β‘( deg1 βπΎ) β (-β[,)(π·β(πβπ΄)))) |
49 | 12 | flddrngd 20512 |
. . . . . . . . . . 11
β’ (π β πΈ β DivRing) |
50 | 49 | drngringd 20508 |
. . . . . . . . . 10
β’ (π β πΈ β Ring) |
51 | | eqid 2730 |
. . . . . . . . . . . . 13
β’
(Poly1βπΈ) = (Poly1βπΈ) |
52 | | eqid 2730 |
. . . . . . . . . . . . 13
β’
(PwSer1βπΎ) = (PwSer1βπΎ) |
53 | | eqid 2730 |
. . . . . . . . . . . . 13
β’
(Baseβ(PwSer1βπΎ)) =
(Baseβ(PwSer1βπΎ)) |
54 | | eqid 2730 |
. . . . . . . . . . . . 13
β’
(Baseβ(Poly1βπΈ)) =
(Baseβ(Poly1βπΈ)) |
55 | 51, 5, 23, 2, 37, 52, 53, 54 | ressply1bas2 21970 |
. . . . . . . . . . . 12
β’ (π β π =
((Baseβ(PwSer1βπΎ)) β©
(Baseβ(Poly1βπΈ)))) |
56 | | inss2 4228 |
. . . . . . . . . . . 12
β’
((Baseβ(PwSer1βπΎ)) β©
(Baseβ(Poly1βπΈ))) β
(Baseβ(Poly1βπΈ)) |
57 | 55, 56 | eqsstrdi 4035 |
. . . . . . . . . . 11
β’ (π β π β
(Baseβ(Poly1βπΈ))) |
58 | 57, 44 | sseldd 3982 |
. . . . . . . . . 10
β’ (π β (πβπ΄) β
(Baseβ(Poly1βπΈ))) |
59 | 11, 12, 4, 13, 14 | irngnminplynz 33060 |
. . . . . . . . . 10
β’ (π β (πβπ΄) β
(0gβ(Poly1βπΈ))) |
60 | 29, 51, 11, 54 | deg1nn0cl 25841 |
. . . . . . . . . 10
β’ ((πΈ β Ring β§ (πβπ΄) β
(Baseβ(Poly1βπΈ)) β§ (πβπ΄) β
(0gβ(Poly1βπΈ))) β (π·β(πβπ΄)) β
β0) |
61 | 50, 58, 59, 60 | syl3anc 1369 |
. . . . . . . . 9
β’ (π β (π·β(πβπ΄)) β
β0) |
62 | 23, 26, 48, 61, 8, 2 | ply1degleel 32941 |
. . . . . . . 8
β’ (π β ((ππ
(πβπ΄)) β π β ((ππ
(πβπ΄)) β π β§ (( deg1 βπΎ)β(ππ
(πβπ΄))) < (π·β(πβπ΄))))) |
63 | 62 | adantr 479 |
. . . . . . 7
β’ ((π β§ π β π) β ((ππ
(πβπ΄)) β π β ((ππ
(πβπ΄)) β π β§ (( deg1 βπΎ)β(ππ
(πβπ΄))) < (π·β(πβπ΄))))) |
64 | 25, 47, 63 | mpbir2and 709 |
. . . . . 6
β’ ((π β§ π β π) β (ππ
(πβπ΄)) β π) |
65 | 64 | ralrimiva 3144 |
. . . . 5
β’ (π β βπ β π (ππ
(πβπ΄)) β π) |
66 | | oveq1 7418 |
. . . . . . . . 9
β’ (π = π β (ππ
(πβπ΄)) = (ππ
(πβπ΄))) |
67 | 66 | eqeq2d 2741 |
. . . . . . . 8
β’ (π = π β (π = (ππ
(πβπ΄)) β π = (ππ
(πβπ΄)))) |
68 | | eqcom 2737 |
. . . . . . . 8
β’ (π = (ππ
(πβπ΄)) β (ππ
(πβπ΄)) = π) |
69 | 67, 68 | bitrdi 286 |
. . . . . . 7
β’ (π = π β (π = (ππ
(πβπ΄)) β (ππ
(πβπ΄)) = π)) |
70 | 23, 26, 48, 61, 8, 2 | ply1degltel 32940 |
. . . . . . . 8
β’ (π β (π β π β (π β π β§ (( deg1 βπΎ)βπ) β€ ((π·β(πβπ΄)) β 1)))) |
71 | 70 | simprbda 497 |
. . . . . . 7
β’ ((π β§ π β π) β π β π) |
72 | 70 | simplbda 498 |
. . . . . . . . . 10
β’ ((π β§ π β π) β (( deg1 βπΎ)βπ) β€ ((π·β(πβπ΄)) β 1)) |
73 | 45 | oveq1d 7426 |
. . . . . . . . . . 11
β’ (π β ((π·β(πβπ΄)) β 1) = ((( deg1
βπΎ)β(πβπ΄)) β 1)) |
74 | 73 | adantr 479 |
. . . . . . . . . 10
β’ ((π β§ π β π) β ((π·β(πβπ΄)) β 1) = ((( deg1
βπΎ)β(πβπ΄)) β 1)) |
75 | 72, 74 | breqtrd 5173 |
. . . . . . . . 9
β’ ((π β§ π β π) β (( deg1 βπΎ)βπ) β€ ((( deg1 βπΎ)β(πβπ΄)) β 1)) |
76 | 26, 23, 2 | deg1cl 25836 |
. . . . . . . . . . 11
β’ (π β π β (( deg1 βπΎ)βπ) β (β0 βͺ
{-β})) |
77 | 71, 76 | syl 17 |
. . . . . . . . . 10
β’ ((π β§ π β π) β (( deg1 βπΎ)βπ) β (β0 βͺ
{-β})) |
78 | 61 | nn0zd 12588 |
. . . . . . . . . . . 12
β’ (π β (π·β(πβπ΄)) β β€) |
79 | 45, 78 | eqeltrrd 2832 |
. . . . . . . . . . 11
β’ (π β (( deg1
βπΎ)β(πβπ΄)) β β€) |
80 | 79 | adantr 479 |
. . . . . . . . . 10
β’ ((π β§ π β π) β (( deg1 βπΎ)β(πβπ΄)) β β€) |
81 | | degltlem1 25825 |
. . . . . . . . . 10
β’ ((((
deg1 βπΎ)βπ) β (β0 βͺ
{-β}) β§ (( deg1 βπΎ)β(πβπ΄)) β β€) β (((
deg1 βπΎ)βπ) < (( deg1 βπΎ)β(πβπ΄)) β (( deg1 βπΎ)βπ) β€ ((( deg1 βπΎ)β(πβπ΄)) β 1))) |
82 | 77, 80, 81 | syl2anc 582 |
. . . . . . . . 9
β’ ((π β§ π β π) β ((( deg1 βπΎ)βπ) < (( deg1 βπΎ)β(πβπ΄)) β (( deg1 βπΎ)βπ) β€ ((( deg1 βπΎ)β(πβπ΄)) β 1))) |
83 | 75, 82 | mpbird 256 |
. . . . . . . 8
β’ ((π β§ π β π) β (( deg1 βπΎ)βπ) < (( deg1 βπΎ)β(πβπ΄))) |
84 | | fldsdrgfld 20557 |
. . . . . . . . . . . . 13
β’ ((πΈ β Field β§ πΉ β (SubDRingβπΈ)) β (πΈ βΎs πΉ) β Field) |
85 | 12, 4, 84 | syl2anc 582 |
. . . . . . . . . . . 12
β’ (π β (πΈ βΎs πΉ) β Field) |
86 | 5, 85 | eqeltrid 2835 |
. . . . . . . . . . 11
β’ (π β πΎ β Field) |
87 | | fldidom 21123 |
. . . . . . . . . . 11
β’ (πΎ β Field β πΎ β IDomn) |
88 | 86, 87 | syl 17 |
. . . . . . . . . 10
β’ (π β πΎ β IDomn) |
89 | 88 | adantr 479 |
. . . . . . . . 9
β’ ((π β§ π β π) β πΎ β IDomn) |
90 | 8, 16, 20 | syl2anc 582 |
. . . . . . . . . 10
β’ (π β (πβπ΄) β (Unic1pβπΎ)) |
91 | 90 | adantr 479 |
. . . . . . . . 9
β’ ((π β§ π β π) β (πβπ΄) β (Unic1pβπΎ)) |
92 | 23, 2, 18, 22, 89, 26, 71, 91 | r1pid2 32954 |
. . . . . . . 8
β’ ((π β§ π β π) β ((ππ
(πβπ΄)) = π β (( deg1 βπΎ)βπ) < (( deg1 βπΎ)β(πβπ΄)))) |
93 | 83, 92 | mpbird 256 |
. . . . . . 7
β’ ((π β§ π β π) β (ππ
(πβπ΄)) = π) |
94 | 69, 71, 93 | rspcedvdw 3614 |
. . . . . 6
β’ ((π β§ π β π) β βπ β π π = (ππ
(πβπ΄))) |
95 | 94 | ralrimiva 3144 |
. . . . 5
β’ (π β βπ β π βπ β π π = (ππ
(πβπ΄))) |
96 | | algextdeglem.h |
. . . . . 6
β’ π» = (π β π β¦ (ππ
(πβπ΄))) |
97 | 96 | fompt 7118 |
. . . . 5
β’ (π»:πβontoβπ β (βπ β π (ππ
(πβπ΄)) β π β§ βπ β π βπ β π π = (ππ
(πβπ΄)))) |
98 | 65, 95, 97 | sylanbrc 581 |
. . . 4
β’ (π β π»:πβontoβπ) |
99 | 23 | ply1ring 21990 |
. . . . 5
β’ (πΎ β Ring β π β Ring) |
100 | 8, 99 | syl 17 |
. . . 4
β’ (π β π β Ring) |
101 | 1, 3, 98, 100 | imasbas 17462 |
. . 3
β’ (π β π = (Baseβ(π» βs π))) |
102 | 71 | ex 411 |
. . . . 5
β’ (π β (π β π β π β π)) |
103 | 102 | ssrdv 3987 |
. . . 4
β’ (π β π β π) |
104 | | eqid 2730 |
. . . . 5
β’ (π βΎs π) = (π βΎs π) |
105 | 104, 2 | ressbas2 17186 |
. . . 4
β’ (π β π β π = (Baseβ(π βΎs π))) |
106 | 103, 105 | syl 17 |
. . 3
β’ (π β π = (Baseβ(π βΎs π))) |
107 | | ssidd 4004 |
. . 3
β’ (π β π β π) |
108 | | eqid 2730 |
. . . . . . 7
β’ (π» βs
π) = (π» βs π) |
109 | | eqid 2730 |
. . . . . . 7
β’
(Baseβ(π»
βs π)) = (Baseβ(π» βs π)) |
110 | 103 | ad2antrr 722 |
. . . . . . . 8
β’ (((π β§ π₯ β π) β§ π¦ β π) β π β π) |
111 | | simplr 765 |
. . . . . . . 8
β’ (((π β§ π₯ β π) β§ π¦ β π) β π₯ β π) |
112 | 110, 111 | sseldd 3982 |
. . . . . . 7
β’ (((π β§ π₯ β π) β§ π¦ β π) β π₯ β π) |
113 | | simpr 483 |
. . . . . . . 8
β’ (((π β§ π₯ β π) β§ π¦ β π) β π¦ β π) |
114 | 110, 113 | sseldd 3982 |
. . . . . . 7
β’ (((π β§ π₯ β π) β§ π¦ β π) β π¦ β π) |
115 | | foeq3 6802 |
. . . . . . . . . 10
β’ (π = (Baseβ(π» βs
π)) β (π»:πβontoβπ β π»:πβontoβ(Baseβ(π» βs π)))) |
116 | 101, 115 | syl 17 |
. . . . . . . . 9
β’ (π β (π»:πβontoβπ β π»:πβontoβ(Baseβ(π» βs π)))) |
117 | 98, 116 | mpbid 231 |
. . . . . . . 8
β’ (π β π»:πβontoβ(Baseβ(π» βs π))) |
118 | 117 | ad2antrr 722 |
. . . . . . 7
β’ (((π β§ π₯ β π) β§ π¦ β π) β π»:πβontoβ(Baseβ(π» βs π))) |
119 | 23, 2, 22, 18, 96, 8, 90 | r1plmhm 32955 |
. . . . . . . . . 10
β’ (π β π» β (π LMHom (π» βs π))) |
120 | 119 | lmhmghmd 32465 |
. . . . . . . . 9
β’ (π β π» β (π GrpHom (π» βs π))) |
121 | | ghmmhm 19140 |
. . . . . . . . 9
β’ (π» β (π GrpHom (π» βs π)) β π» β (π MndHom (π» βs π))) |
122 | 120, 121 | syl 17 |
. . . . . . . 8
β’ (π β π» β (π MndHom (π» βs π))) |
123 | 122 | ad2antrr 722 |
. . . . . . 7
β’ (((π β§ π₯ β π) β§ π¦ β π) β π» β (π MndHom (π» βs π))) |
124 | | eqid 2730 |
. . . . . . 7
β’
(+gβπ) = (+gβπ) |
125 | | eqid 2730 |
. . . . . . 7
β’
(+gβ(π» βs π)) = (+gβ(π» βs
π)) |
126 | 108, 2, 109, 112, 114, 118, 123, 124, 125 | mhmimasplusg 32466 |
. . . . . 6
β’ (((π β§ π₯ β π) β§ π¦ β π) β ((π»βπ₯)(+gβ(π» βs π))(π»βπ¦)) = (π»β(π₯(+gβπ)π¦))) |
127 | | algextdeg.l |
. . . . . . . . 9
β’ πΏ = (πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) |
128 | 12 | ad2antrr 722 |
. . . . . . . . 9
β’ (((π β§ π₯ β π) β§ π¦ β π) β πΈ β Field) |
129 | 4 | ad2antrr 722 |
. . . . . . . . 9
β’ (((π β§ π₯ β π) β§ π¦ β π) β πΉ β (SubDRingβπΈ)) |
130 | 14 | ad2antrr 722 |
. . . . . . . . 9
β’ (((π β§ π₯ β π) β§ π¦ β π) β π΄ β (πΈ IntgRing πΉ)) |
131 | | algextdeglem.g |
. . . . . . . . 9
β’ πΊ = (π β π β¦ ((πβπ)βπ΄)) |
132 | | algextdeglem.n |
. . . . . . . . 9
β’ π = (π₯ β π β¦ [π₯](π ~QG π)) |
133 | | algextdeglem.z |
. . . . . . . . 9
β’ π = (β‘πΊ β {(0gβπΏ)}) |
134 | | algextdeglem.q |
. . . . . . . . 9
β’ π = (π /s (π ~QG π)) |
135 | | algextdeglem.j |
. . . . . . . . 9
β’ π½ = (π β (Baseβπ) β¦ βͺ
(πΊ β π)) |
136 | 5, 127, 29, 13, 128, 129, 130, 30, 23, 2, 131, 132, 133, 134, 135, 22, 96, 48, 112 | algextdeglem7 33068 |
. . . . . . . 8
β’ (((π β§ π₯ β π) β§ π¦ β π) β (π₯ β π β (π»βπ₯) = π₯)) |
137 | 111, 136 | mpbid 231 |
. . . . . . 7
β’ (((π β§ π₯ β π) β§ π¦ β π) β (π»βπ₯) = π₯) |
138 | 5, 127, 29, 13, 128, 129, 130, 30, 23, 2, 131, 132, 133, 134, 135, 22, 96, 48, 114 | algextdeglem7 33068 |
. . . . . . . 8
β’ (((π β§ π₯ β π) β§ π¦ β π) β (π¦ β π β (π»βπ¦) = π¦)) |
139 | 113, 138 | mpbid 231 |
. . . . . . 7
β’ (((π β§ π₯ β π) β§ π¦ β π) β (π»βπ¦) = π¦) |
140 | 137, 139 | oveq12d 7429 |
. . . . . 6
β’ (((π β§ π₯ β π) β§ π¦ β π) β ((π»βπ₯)(+gβ(π» βs π))(π»βπ¦)) = (π₯(+gβ(π» βs π))π¦)) |
141 | 100 | ringgrpd 20136 |
. . . . . . . . . 10
β’ (π β π β Grp) |
142 | 23, 7 | ply1lvec 32912 |
. . . . . . . . . . . 12
β’ (π β π β LVec) |
143 | 23, 26, 48, 61, 8 | ply1degltlss 32942 |
. . . . . . . . . . . 12
β’ (π β π β (LSubSpβπ)) |
144 | | eqid 2730 |
. . . . . . . . . . . . 13
β’
(LSubSpβπ) =
(LSubSpβπ) |
145 | 104, 144 | lsslvec 20864 |
. . . . . . . . . . . 12
β’ ((π β LVec β§ π β (LSubSpβπ)) β (π βΎs π) β LVec) |
146 | 142, 143,
145 | syl2anc 582 |
. . . . . . . . . . 11
β’ (π β (π βΎs π) β LVec) |
147 | 146 | lvecgrpd 20863 |
. . . . . . . . . 10
β’ (π β (π βΎs π) β Grp) |
148 | 2 | issubg 19042 |
. . . . . . . . . 10
β’ (π β (SubGrpβπ) β (π β Grp β§ π β π β§ (π βΎs π) β Grp)) |
149 | 141, 103,
147, 148 | syl3anbrc 1341 |
. . . . . . . . 9
β’ (π β π β (SubGrpβπ)) |
150 | 149 | ad2antrr 722 |
. . . . . . . 8
β’ (((π β§ π₯ β π) β§ π¦ β π) β π β (SubGrpβπ)) |
151 | 124 | subgcl 19052 |
. . . . . . . 8
β’ ((π β (SubGrpβπ) β§ π₯ β π β§ π¦ β π) β (π₯(+gβπ)π¦) β π) |
152 | 150, 111,
113, 151 | syl3anc 1369 |
. . . . . . 7
β’ (((π β§ π₯ β π) β§ π¦ β π) β (π₯(+gβπ)π¦) β π) |
153 | 141 | ad2antrr 722 |
. . . . . . . . 9
β’ (((π β§ π₯ β π) β§ π¦ β π) β π β Grp) |
154 | 2, 124, 153, 112, 114 | grpcld 18869 |
. . . . . . . 8
β’ (((π β§ π₯ β π) β§ π¦ β π) β (π₯(+gβπ)π¦) β π) |
155 | 5, 127, 29, 13, 128, 129, 130, 30, 23, 2, 131, 132, 133, 134, 135, 22, 96, 48, 154 | algextdeglem7 33068 |
. . . . . . 7
β’ (((π β§ π₯ β π) β§ π¦ β π) β ((π₯(+gβπ)π¦) β π β (π»β(π₯(+gβπ)π¦)) = (π₯(+gβπ)π¦))) |
156 | 152, 155 | mpbid 231 |
. . . . . 6
β’ (((π β§ π₯ β π) β§ π¦ β π) β (π»β(π₯(+gβπ)π¦)) = (π₯(+gβπ)π¦)) |
157 | 126, 140,
156 | 3eqtr3d 2778 |
. . . . 5
β’ (((π β§ π₯ β π) β§ π¦ β π) β (π₯(+gβ(π» βs π))π¦) = (π₯(+gβπ)π¦)) |
158 | | fvex 6903 |
. . . . . . . . 9
β’ (
deg1 βπΎ)
β V |
159 | | cnvexg 7917 |
. . . . . . . . 9
β’ ((
deg1 βπΎ)
β V β β‘( deg1
βπΎ) β
V) |
160 | | imaexg 7908 |
. . . . . . . . 9
β’ (β‘( deg1 βπΎ) β V β (β‘( deg1 βπΎ) β (-β[,)(π·β(πβπ΄)))) β V) |
161 | 158, 159,
160 | mp2b 10 |
. . . . . . . 8
β’ (β‘( deg1 βπΎ) β (-β[,)(π·β(πβπ΄)))) β V |
162 | 48, 161 | eqeltri 2827 |
. . . . . . 7
β’ π β V |
163 | 104, 124 | ressplusg 17239 |
. . . . . . 7
β’ (π β V β
(+gβπ) =
(+gβ(π
βΎs π))) |
164 | 162, 163 | ax-mp 5 |
. . . . . 6
β’
(+gβπ) = (+gβ(π βΎs π)) |
165 | 164 | oveqi 7424 |
. . . . 5
β’ (π₯(+gβπ)π¦) = (π₯(+gβ(π βΎs π))π¦) |
166 | 157, 165 | eqtrdi 2786 |
. . . 4
β’ (((π β§ π₯ β π) β§ π¦ β π) β (π₯(+gβ(π» βs π))π¦) = (π₯(+gβ(π βΎs π))π¦)) |
167 | 166 | anasss 465 |
. . 3
β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯(+gβ(π» βs π))π¦) = (π₯(+gβ(π βΎs π))π¦)) |
168 | | simprr 769 |
. . . . . . 7
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β π¦ β π) |
169 | 12 | adantr 479 |
. . . . . . . 8
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β πΈ β Field) |
170 | 4 | adantr 479 |
. . . . . . . 8
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β πΉ β (SubDRingβπΈ)) |
171 | 14 | adantr 479 |
. . . . . . . 8
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β π΄ β (πΈ IntgRing πΉ)) |
172 | 103 | adantr 479 |
. . . . . . . . 9
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β π β π) |
173 | 172, 168 | sseldd 3982 |
. . . . . . . 8
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β π¦ β π) |
174 | 5, 127, 29, 13, 169, 170, 171, 30, 23, 2, 131, 132, 133, 134, 135, 22, 96, 48, 173 | algextdeglem7 33068 |
. . . . . . 7
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β (π¦ β π β (π»βπ¦) = π¦)) |
175 | 168, 174 | mpbid 231 |
. . . . . 6
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β (π»βπ¦) = π¦) |
176 | 175 | oveq2d 7427 |
. . . . 5
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β (π₯( Β·π
β(π»
βs π))(π»βπ¦)) = (π₯( Β·π
β(π»
βs π))π¦)) |
177 | | simprl 767 |
. . . . . . 7
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β π₯ β πΉ) |
178 | 33 | sdrgss 20552 |
. . . . . . . . . 10
β’ (πΉ β (SubDRingβπΈ) β πΉ β (BaseβπΈ)) |
179 | 5, 33 | ressbas2 17186 |
. . . . . . . . . 10
β’ (πΉ β (BaseβπΈ) β πΉ = (BaseβπΎ)) |
180 | 4, 178, 179 | 3syl 18 |
. . . . . . . . 9
β’ (π β πΉ = (BaseβπΎ)) |
181 | 23 | ply1sca 21995 |
. . . . . . . . . . 11
β’ (πΎ β Ring β πΎ = (Scalarβπ)) |
182 | 8, 181 | syl 17 |
. . . . . . . . . 10
β’ (π β πΎ = (Scalarβπ)) |
183 | 182 | fveq2d 6894 |
. . . . . . . . 9
β’ (π β (BaseβπΎ) =
(Baseβ(Scalarβπ))) |
184 | 180, 183 | eqtrd 2770 |
. . . . . . . 8
β’ (π β πΉ = (Baseβ(Scalarβπ))) |
185 | 184 | adantr 479 |
. . . . . . 7
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β πΉ = (Baseβ(Scalarβπ))) |
186 | 177, 185 | eleqtrd 2833 |
. . . . . 6
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β π₯ β (Baseβ(Scalarβπ))) |
187 | 117 | adantr 479 |
. . . . . 6
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β π»:πβontoβ(Baseβ(π» βs π))) |
188 | 119 | adantr 479 |
. . . . . 6
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β π» β (π LMHom (π» βs π))) |
189 | | eqid 2730 |
. . . . . 6
β’ (
Β·π βπ) = ( Β·π
βπ) |
190 | | eqid 2730 |
. . . . . 6
β’ (
Β·π β(π» βs π)) = (
Β·π β(π» βs π)) |
191 | | eqid 2730 |
. . . . . 6
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
192 | 108, 2, 109, 186, 173, 187, 188, 189, 190, 191 | lmhmimasvsca 32467 |
. . . . 5
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β (π₯( Β·π
β(π»
βs π))(π»βπ¦)) = (π»β(π₯( Β·π
βπ)π¦))) |
193 | 176, 192 | eqtr3d 2772 |
. . . 4
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β (π₯( Β·π
β(π»
βs π))π¦) = (π»β(π₯( Β·π
βπ)π¦))) |
194 | 64, 96 | fmptd 7114 |
. . . . . 6
β’ (π β π»:πβΆπ) |
195 | 194 | adantr 479 |
. . . . 5
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β π»:πβΆπ) |
196 | | eqid 2730 |
. . . . . 6
β’
(Scalarβπ) =
(Scalarβπ) |
197 | 142 | lveclmodd 20862 |
. . . . . . 7
β’ (π β π β LMod) |
198 | 197 | adantr 479 |
. . . . . 6
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β π β LMod) |
199 | 2, 196, 189, 191, 198, 186, 173 | lmodvscld 20633 |
. . . . 5
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β (π₯( Β·π
βπ)π¦) β π) |
200 | 195, 199 | ffvelcdmd 7086 |
. . . 4
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β (π»β(π₯( Β·π
βπ)π¦)) β π) |
201 | 193, 200 | eqeltrd 2831 |
. . 3
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β (π₯( Β·π
β(π»
βs π))π¦) β π) |
202 | 143 | adantr 479 |
. . . . . 6
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β π β (LSubSpβπ)) |
203 | 196, 189,
191, 144 | lssvscl 20710 |
. . . . . 6
β’ (((π β LMod β§ π β (LSubSpβπ)) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π¦ β π)) β (π₯( Β·π
βπ)π¦) β π) |
204 | 198, 202,
186, 168, 203 | syl22anc 835 |
. . . . 5
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β (π₯( Β·π
βπ)π¦) β π) |
205 | 5, 127, 29, 13, 169, 170, 171, 30, 23, 2, 131, 132, 133, 134, 135, 22, 96, 48, 199 | algextdeglem7 33068 |
. . . . 5
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β ((π₯( Β·π
βπ)π¦) β π β (π»β(π₯( Β·π
βπ)π¦)) = (π₯( Β·π
βπ)π¦))) |
206 | 204, 205 | mpbid 231 |
. . . 4
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β (π»β(π₯( Β·π
βπ)π¦)) = (π₯( Β·π
βπ)π¦)) |
207 | 104, 189 | ressvsca 17293 |
. . . . . 6
β’ (π β V β (
Β·π βπ) = ( Β·π
β(π
βΎs π))) |
208 | 162, 207 | mp1i 13 |
. . . . 5
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β (
Β·π βπ) = ( Β·π
β(π
βΎs π))) |
209 | 208 | oveqd 7428 |
. . . 4
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β (π₯( Β·π
βπ)π¦) = (π₯( Β·π
β(π
βΎs π))π¦)) |
210 | 193, 206,
209 | 3eqtrd 2774 |
. . 3
β’ ((π β§ (π₯ β πΉ β§ π¦ β π)) β (π₯( Β·π
β(π»
βs π))π¦) = (π₯( Β·π
β(π
βΎs π))π¦)) |
211 | | eqid 2730 |
. . 3
β’
(Scalarβ(π»
βs π)) = (Scalarβ(π» βs π)) |
212 | 104, 196 | resssca 17292 |
. . . 4
β’ (π β V β
(Scalarβπ) =
(Scalarβ(π
βΎs π))) |
213 | 162, 212 | ax-mp 5 |
. . 3
β’
(Scalarβπ) =
(Scalarβ(π
βΎs π)) |
214 | 1, 3, 98, 100, 196 | imassca 17469 |
. . . . . 6
β’ (π β (Scalarβπ) = (Scalarβ(π» βs
π))) |
215 | 182, 214 | eqtrd 2770 |
. . . . 5
β’ (π β πΎ = (Scalarβ(π» βs π))) |
216 | 215 | fveq2d 6894 |
. . . 4
β’ (π β (BaseβπΎ) =
(Baseβ(Scalarβ(π» βs π)))) |
217 | 180, 216 | eqtrd 2770 |
. . 3
β’ (π β πΉ = (Baseβ(Scalarβ(π» βs
π)))) |
218 | 214 | fveq2d 6894 |
. . . . . 6
β’ (π β
(+gβ(Scalarβπ)) =
(+gβ(Scalarβ(π» βs π)))) |
219 | 218 | oveqd 7428 |
. . . . 5
β’ (π β (π₯(+gβ(Scalarβπ))π¦) = (π₯(+gβ(Scalarβ(π» βs
π)))π¦)) |
220 | 219 | eqcomd 2736 |
. . . 4
β’ (π β (π₯(+gβ(Scalarβ(π» βs
π)))π¦) = (π₯(+gβ(Scalarβπ))π¦)) |
221 | 220 | adantr 479 |
. . 3
β’ ((π β§ (π₯ β πΉ β§ π¦ β πΉ)) β (π₯(+gβ(Scalarβ(π» βs
π)))π¦) = (π₯(+gβ(Scalarβπ))π¦)) |
222 | | lmhmlvec2 32992 |
. . . 4
β’ ((π β LVec β§ π» β (π LMHom (π» βs π))) β (π» βs π) β LVec) |
223 | 142, 119,
222 | syl2anc 582 |
. . 3
β’ (π β (π» βs π) β LVec) |
224 | 101, 106,
107, 167, 201, 210, 211, 213, 217, 184, 221, 223, 146 | dimpropd 32981 |
. 2
β’ (π β (dimβ(π» βs
π)) = (dimβ(π βΎs π))) |
225 | 23, 26, 48, 61, 7, 104 | ply1degltdim 32996 |
. 2
β’ (π β (dimβ(π βΎs π)) = (π·β(πβπ΄))) |
226 | 224, 225 | eqtrd 2770 |
1
β’ (π β (dimβ(π» βs
π)) = (π·β(πβπ΄))) |