Step | Hyp | Ref
| Expression |
1 | | eqidd 2741 |
. . . 4
⊢ (𝜑 → (𝐻 “s 𝑃) = (𝐻 “s 𝑃)) |
2 | | algextdeglem.u |
. . . . 5
⊢ 𝑈 = (Base‘𝑃) |
3 | 2 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝑈 = (Base‘𝑃)) |
4 | | algextdeg.e |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
5 | | algextdeg.k |
. . . . . . . . . . . 12
⊢ 𝐾 = (𝐸 ↾s 𝐹) |
6 | 5 | sdrgdrng 20813 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐾 ∈ DivRing) |
7 | 4, 6 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ DivRing) |
8 | 7 | drngringd 20759 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ Ring) |
9 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → 𝐾 ∈ Ring) |
10 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → 𝑝 ∈ 𝑈) |
11 | | eqid 2740 |
. . . . . . . . . . 11
⊢
(0g‘(Poly1‘𝐸)) =
(0g‘(Poly1‘𝐸)) |
12 | | algextdeg.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ Field) |
13 | | algextdeg.m |
. . . . . . . . . . 11
⊢ 𝑀 = (𝐸 minPoly 𝐹) |
14 | | algextdeg.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
15 | 5 | fveq2i 6923 |
. . . . . . . . . . 11
⊢
(Monic1p‘𝐾) = (Monic1p‘(𝐸 ↾s 𝐹)) |
16 | 11, 12, 4, 13, 14, 15 | minplym1p 33706 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀‘𝐴) ∈ (Monic1p‘𝐾)) |
17 | 16 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → (𝑀‘𝐴) ∈ (Monic1p‘𝐾)) |
18 | | eqid 2740 |
. . . . . . . . . 10
⊢
(Unic1p‘𝐾) = (Unic1p‘𝐾) |
19 | | eqid 2740 |
. . . . . . . . . 10
⊢
(Monic1p‘𝐾) = (Monic1p‘𝐾) |
20 | 18, 19 | mon1puc1p 26210 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Ring ∧ (𝑀‘𝐴) ∈ (Monic1p‘𝐾)) → (𝑀‘𝐴) ∈ (Unic1p‘𝐾)) |
21 | 9, 17, 20 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → (𝑀‘𝐴) ∈ (Unic1p‘𝐾)) |
22 | | algextdeglem.r |
. . . . . . . . 9
⊢ 𝑅 = (rem1p‘𝐾) |
23 | | algextdeglem.y |
. . . . . . . . 9
⊢ 𝑃 = (Poly1‘𝐾) |
24 | 22, 23, 2, 18 | r1pcl 26218 |
. . . . . . . 8
⊢ ((𝐾 ∈ Ring ∧ 𝑝 ∈ 𝑈 ∧ (𝑀‘𝐴) ∈ (Unic1p‘𝐾)) → (𝑝𝑅(𝑀‘𝐴)) ∈ 𝑈) |
25 | 9, 10, 21, 24 | syl3anc 1371 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → (𝑝𝑅(𝑀‘𝐴)) ∈ 𝑈) |
26 | | eqid 2740 |
. . . . . . . . . 10
⊢
(deg1‘𝐾) = (deg1‘𝐾) |
27 | 22, 23, 2, 18, 26 | r1pdeglt 26219 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Ring ∧ 𝑝 ∈ 𝑈 ∧ (𝑀‘𝐴) ∈ (Unic1p‘𝐾)) →
((deg1‘𝐾)‘(𝑝𝑅(𝑀‘𝐴))) < ((deg1‘𝐾)‘(𝑀‘𝐴))) |
28 | 9, 10, 21, 27 | syl3anc 1371 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → ((deg1‘𝐾)‘(𝑝𝑅(𝑀‘𝐴))) < ((deg1‘𝐾)‘(𝑀‘𝐴))) |
29 | | algextdeg.d |
. . . . . . . . . 10
⊢ 𝐷 = (deg1‘𝐸) |
30 | | algextdeglem.o |
. . . . . . . . . . . 12
⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
31 | 5 | fveq2i 6923 |
. . . . . . . . . . . . 13
⊢
(Poly1‘𝐾) = (Poly1‘(𝐸 ↾s 𝐹)) |
32 | 23, 31 | eqtri 2768 |
. . . . . . . . . . . 12
⊢ 𝑃 =
(Poly1‘(𝐸
↾s 𝐹)) |
33 | | eqid 2740 |
. . . . . . . . . . . 12
⊢
(Base‘𝐸) =
(Base‘𝐸) |
34 | | eqid 2740 |
. . . . . . . . . . . . . 14
⊢
(0g‘𝐸) = (0g‘𝐸) |
35 | 12 | fldcrngd 20764 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐸 ∈ CRing) |
36 | | sdrgsubrg 20814 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) |
37 | 4, 36 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
38 | 30, 5, 33, 34, 35, 37 | irngssv 33688 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸)) |
39 | 38, 14 | sseldd 4009 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ (Base‘𝐸)) |
40 | | eqid 2740 |
. . . . . . . . . . . 12
⊢ {𝑝 ∈ dom 𝑂 ∣ ((𝑂‘𝑝)‘𝐴) = (0g‘𝐸)} = {𝑝 ∈ dom 𝑂 ∣ ((𝑂‘𝑝)‘𝐴) = (0g‘𝐸)} |
41 | | eqid 2740 |
. . . . . . . . . . . 12
⊢
(RSpan‘𝑃) =
(RSpan‘𝑃) |
42 | | eqid 2740 |
. . . . . . . . . . . 12
⊢
(idlGen1p‘(𝐸 ↾s 𝐹)) = (idlGen1p‘(𝐸 ↾s 𝐹)) |
43 | 30, 32, 33, 12, 4, 39, 34, 40, 41, 42, 13 | minplycl 33699 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀‘𝐴) ∈ (Base‘𝑃)) |
44 | 43, 2 | eleqtrrdi 2855 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑈) |
45 | 5, 29, 23, 2, 44, 37 | ressdeg1 33556 |
. . . . . . . . 9
⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) = ((deg1‘𝐾)‘(𝑀‘𝐴))) |
46 | 45 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → (𝐷‘(𝑀‘𝐴)) = ((deg1‘𝐾)‘(𝑀‘𝐴))) |
47 | 28, 46 | breqtrrd 5194 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → ((deg1‘𝐾)‘(𝑝𝑅(𝑀‘𝐴))) < (𝐷‘(𝑀‘𝐴))) |
48 | | algextdeglem.t |
. . . . . . . . 9
⊢ 𝑇 = (◡(deg1‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) |
49 | 12 | flddrngd 20763 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ DivRing) |
50 | 49 | drngringd 20759 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∈ Ring) |
51 | | eqid 2740 |
. . . . . . . . . . . . 13
⊢
(Poly1‘𝐸) = (Poly1‘𝐸) |
52 | | eqid 2740 |
. . . . . . . . . . . . 13
⊢
(PwSer1‘𝐾) = (PwSer1‘𝐾) |
53 | | eqid 2740 |
. . . . . . . . . . . . 13
⊢
(Base‘(PwSer1‘𝐾)) =
(Base‘(PwSer1‘𝐾)) |
54 | | eqid 2740 |
. . . . . . . . . . . . 13
⊢
(Base‘(Poly1‘𝐸)) =
(Base‘(Poly1‘𝐸)) |
55 | 51, 5, 23, 2, 37, 52, 53, 54 | ressply1bas2 22250 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 =
((Base‘(PwSer1‘𝐾)) ∩
(Base‘(Poly1‘𝐸)))) |
56 | | inss2 4259 |
. . . . . . . . . . . 12
⊢
((Base‘(PwSer1‘𝐾)) ∩
(Base‘(Poly1‘𝐸))) ⊆
(Base‘(Poly1‘𝐸)) |
57 | 55, 56 | eqsstrdi 4063 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ⊆
(Base‘(Poly1‘𝐸))) |
58 | 57, 44 | sseldd 4009 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀‘𝐴) ∈
(Base‘(Poly1‘𝐸))) |
59 | 11, 12, 4, 13, 14 | irngnminplynz 33705 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀‘𝐴) ≠
(0g‘(Poly1‘𝐸))) |
60 | 29, 51, 11, 54 | deg1nn0cl 26147 |
. . . . . . . . . 10
⊢ ((𝐸 ∈ Ring ∧ (𝑀‘𝐴) ∈
(Base‘(Poly1‘𝐸)) ∧ (𝑀‘𝐴) ≠
(0g‘(Poly1‘𝐸))) → (𝐷‘(𝑀‘𝐴)) ∈
ℕ0) |
61 | 50, 58, 59, 60 | syl3anc 1371 |
. . . . . . . . 9
⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ∈
ℕ0) |
62 | 23, 26, 48, 61, 8, 2 | ply1degleel 33581 |
. . . . . . . 8
⊢ (𝜑 → ((𝑝𝑅(𝑀‘𝐴)) ∈ 𝑇 ↔ ((𝑝𝑅(𝑀‘𝐴)) ∈ 𝑈 ∧ ((deg1‘𝐾)‘(𝑝𝑅(𝑀‘𝐴))) < (𝐷‘(𝑀‘𝐴))))) |
63 | 62 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → ((𝑝𝑅(𝑀‘𝐴)) ∈ 𝑇 ↔ ((𝑝𝑅(𝑀‘𝐴)) ∈ 𝑈 ∧ ((deg1‘𝐾)‘(𝑝𝑅(𝑀‘𝐴))) < (𝐷‘(𝑀‘𝐴))))) |
64 | 25, 47, 63 | mpbir2and 712 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → (𝑝𝑅(𝑀‘𝐴)) ∈ 𝑇) |
65 | 64 | ralrimiva 3152 |
. . . . 5
⊢ (𝜑 → ∀𝑝 ∈ 𝑈 (𝑝𝑅(𝑀‘𝐴)) ∈ 𝑇) |
66 | | oveq1 7455 |
. . . . . . . . 9
⊢ (𝑝 = 𝑞 → (𝑝𝑅(𝑀‘𝐴)) = (𝑞𝑅(𝑀‘𝐴))) |
67 | 66 | eqeq2d 2751 |
. . . . . . . 8
⊢ (𝑝 = 𝑞 → (𝑞 = (𝑝𝑅(𝑀‘𝐴)) ↔ 𝑞 = (𝑞𝑅(𝑀‘𝐴)))) |
68 | | eqcom 2747 |
. . . . . . . 8
⊢ (𝑞 = (𝑞𝑅(𝑀‘𝐴)) ↔ (𝑞𝑅(𝑀‘𝐴)) = 𝑞) |
69 | 67, 68 | bitrdi 287 |
. . . . . . 7
⊢ (𝑝 = 𝑞 → (𝑞 = (𝑝𝑅(𝑀‘𝐴)) ↔ (𝑞𝑅(𝑀‘𝐴)) = 𝑞)) |
70 | 23, 26, 48, 61, 8, 2 | ply1degltel 33580 |
. . . . . . . 8
⊢ (𝜑 → (𝑞 ∈ 𝑇 ↔ (𝑞 ∈ 𝑈 ∧ ((deg1‘𝐾)‘𝑞) ≤ ((𝐷‘(𝑀‘𝐴)) − 1)))) |
71 | 70 | simprbda 498 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑇) → 𝑞 ∈ 𝑈) |
72 | 70 | simplbda 499 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑇) → ((deg1‘𝐾)‘𝑞) ≤ ((𝐷‘(𝑀‘𝐴)) − 1)) |
73 | 45 | oveq1d 7463 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐷‘(𝑀‘𝐴)) − 1) =
(((deg1‘𝐾)‘(𝑀‘𝐴)) − 1)) |
74 | 73 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑇) → ((𝐷‘(𝑀‘𝐴)) − 1) =
(((deg1‘𝐾)‘(𝑀‘𝐴)) − 1)) |
75 | 72, 74 | breqtrd 5192 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑇) → ((deg1‘𝐾)‘𝑞) ≤ (((deg1‘𝐾)‘(𝑀‘𝐴)) − 1)) |
76 | 26, 23, 2 | deg1cl 26142 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ 𝑈 → ((deg1‘𝐾)‘𝑞) ∈ (ℕ0 ∪
{-∞})) |
77 | 71, 76 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑇) → ((deg1‘𝐾)‘𝑞) ∈ (ℕ0 ∪
{-∞})) |
78 | 61 | nn0zd 12665 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ∈ ℤ) |
79 | 45, 78 | eqeltrrd 2845 |
. . . . . . . . . . 11
⊢ (𝜑 →
((deg1‘𝐾)‘(𝑀‘𝐴)) ∈ ℤ) |
80 | 79 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑇) → ((deg1‘𝐾)‘(𝑀‘𝐴)) ∈ ℤ) |
81 | | degltlem1 26131 |
. . . . . . . . . 10
⊢
((((deg1‘𝐾)‘𝑞) ∈ (ℕ0 ∪
{-∞}) ∧ ((deg1‘𝐾)‘(𝑀‘𝐴)) ∈ ℤ) →
(((deg1‘𝐾)‘𝑞) < ((deg1‘𝐾)‘(𝑀‘𝐴)) ↔ ((deg1‘𝐾)‘𝑞) ≤ (((deg1‘𝐾)‘(𝑀‘𝐴)) − 1))) |
82 | 77, 80, 81 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑇) → (((deg1‘𝐾)‘𝑞) < ((deg1‘𝐾)‘(𝑀‘𝐴)) ↔ ((deg1‘𝐾)‘𝑞) ≤ (((deg1‘𝐾)‘(𝑀‘𝐴)) − 1))) |
83 | 75, 82 | mpbird 257 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑇) → ((deg1‘𝐾)‘𝑞) < ((deg1‘𝐾)‘(𝑀‘𝐴))) |
84 | | fldsdrgfld 20821 |
. . . . . . . . . . . . . 14
⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸 ↾s 𝐹) ∈ Field) |
85 | 12, 4, 84 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ Field) |
86 | 5, 85 | eqeltrid 2848 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ Field) |
87 | | fldidom 20793 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ Field → 𝐾 ∈ IDomn) |
88 | 86, 87 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ IDomn) |
89 | 88 | idomdomd 20748 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ Domn) |
90 | 89 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑇) → 𝐾 ∈ Domn) |
91 | 8, 16, 20 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀‘𝐴) ∈ (Unic1p‘𝐾)) |
92 | 91 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑇) → (𝑀‘𝐴) ∈ (Unic1p‘𝐾)) |
93 | 23, 2, 18, 22, 26, 90, 71, 92 | r1pid2 26221 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑇) → ((𝑞𝑅(𝑀‘𝐴)) = 𝑞 ↔ ((deg1‘𝐾)‘𝑞) < ((deg1‘𝐾)‘(𝑀‘𝐴)))) |
94 | 83, 93 | mpbird 257 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑇) → (𝑞𝑅(𝑀‘𝐴)) = 𝑞) |
95 | 69, 71, 94 | rspcedvdw 3638 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑇) → ∃𝑝 ∈ 𝑈 𝑞 = (𝑝𝑅(𝑀‘𝐴))) |
96 | 95 | ralrimiva 3152 |
. . . . 5
⊢ (𝜑 → ∀𝑞 ∈ 𝑇 ∃𝑝 ∈ 𝑈 𝑞 = (𝑝𝑅(𝑀‘𝐴))) |
97 | | algextdeglem.h |
. . . . . 6
⊢ 𝐻 = (𝑝 ∈ 𝑈 ↦ (𝑝𝑅(𝑀‘𝐴))) |
98 | 97 | fompt 7152 |
. . . . 5
⊢ (𝐻:𝑈–onto→𝑇 ↔ (∀𝑝 ∈ 𝑈 (𝑝𝑅(𝑀‘𝐴)) ∈ 𝑇 ∧ ∀𝑞 ∈ 𝑇 ∃𝑝 ∈ 𝑈 𝑞 = (𝑝𝑅(𝑀‘𝐴)))) |
99 | 65, 96, 98 | sylanbrc 582 |
. . . 4
⊢ (𝜑 → 𝐻:𝑈–onto→𝑇) |
100 | 23 | ply1ring 22270 |
. . . . 5
⊢ (𝐾 ∈ Ring → 𝑃 ∈ Ring) |
101 | 8, 100 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑃 ∈ Ring) |
102 | 1, 3, 99, 101 | imasbas 17572 |
. . 3
⊢ (𝜑 → 𝑇 = (Base‘(𝐻 “s 𝑃))) |
103 | 71 | ex 412 |
. . . . 5
⊢ (𝜑 → (𝑞 ∈ 𝑇 → 𝑞 ∈ 𝑈)) |
104 | 103 | ssrdv 4014 |
. . . 4
⊢ (𝜑 → 𝑇 ⊆ 𝑈) |
105 | | eqid 2740 |
. . . . 5
⊢ (𝑃 ↾s 𝑇) = (𝑃 ↾s 𝑇) |
106 | 105, 2 | ressbas2 17296 |
. . . 4
⊢ (𝑇 ⊆ 𝑈 → 𝑇 = (Base‘(𝑃 ↾s 𝑇))) |
107 | 104, 106 | syl 17 |
. . 3
⊢ (𝜑 → 𝑇 = (Base‘(𝑃 ↾s 𝑇))) |
108 | | ssidd 4032 |
. . 3
⊢ (𝜑 → 𝑇 ⊆ 𝑇) |
109 | | eqid 2740 |
. . . . . . 7
⊢ (𝐻 “s
𝑃) = (𝐻 “s 𝑃) |
110 | | eqid 2740 |
. . . . . . 7
⊢
(Base‘(𝐻
“s 𝑃)) = (Base‘(𝐻 “s 𝑃)) |
111 | 104 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → 𝑇 ⊆ 𝑈) |
112 | | simplr 768 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) |
113 | 111, 112 | sseldd 4009 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑈) |
114 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → 𝑦 ∈ 𝑇) |
115 | 111, 114 | sseldd 4009 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → 𝑦 ∈ 𝑈) |
116 | | foeq3 6832 |
. . . . . . . . . 10
⊢ (𝑇 = (Base‘(𝐻 “s
𝑃)) → (𝐻:𝑈–onto→𝑇 ↔ 𝐻:𝑈–onto→(Base‘(𝐻 “s 𝑃)))) |
117 | 102, 116 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐻:𝑈–onto→𝑇 ↔ 𝐻:𝑈–onto→(Base‘(𝐻 “s 𝑃)))) |
118 | 99, 117 | mpbid 232 |
. . . . . . . 8
⊢ (𝜑 → 𝐻:𝑈–onto→(Base‘(𝐻 “s 𝑃))) |
119 | 118 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → 𝐻:𝑈–onto→(Base‘(𝐻 “s 𝑃))) |
120 | 23, 2, 22, 18, 97, 8, 91 | r1plmhm 33595 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐻 ∈ (𝑃 LMHom (𝐻 “s 𝑃))) |
121 | 120 | lmhmghmd 33023 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻 ∈ (𝑃 GrpHom (𝐻 “s 𝑃))) |
122 | | ghmmhm 19266 |
. . . . . . . . 9
⊢ (𝐻 ∈ (𝑃 GrpHom (𝐻 “s 𝑃)) → 𝐻 ∈ (𝑃 MndHom (𝐻 “s 𝑃))) |
123 | 121, 122 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐻 ∈ (𝑃 MndHom (𝐻 “s 𝑃))) |
124 | 123 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → 𝐻 ∈ (𝑃 MndHom (𝐻 “s 𝑃))) |
125 | | eqid 2740 |
. . . . . . 7
⊢
(+g‘𝑃) = (+g‘𝑃) |
126 | | eqid 2740 |
. . . . . . 7
⊢
(+g‘(𝐻 “s 𝑃)) = (+g‘(𝐻 “s
𝑃)) |
127 | 109, 2, 110, 113, 115, 119, 124, 125, 126 | mhmimasplusg 33024 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → ((𝐻‘𝑥)(+g‘(𝐻 “s 𝑃))(𝐻‘𝑦)) = (𝐻‘(𝑥(+g‘𝑃)𝑦))) |
128 | | algextdeg.l |
. . . . . . . . 9
⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
129 | 12 | ad2antrr 725 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → 𝐸 ∈ Field) |
130 | 4 | ad2antrr 725 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → 𝐹 ∈ (SubDRing‘𝐸)) |
131 | 14 | ad2antrr 725 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
132 | | algextdeglem.g |
. . . . . . . . 9
⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) |
133 | | algextdeglem.n |
. . . . . . . . 9
⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) |
134 | | algextdeglem.z |
. . . . . . . . 9
⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) |
135 | | algextdeglem.q |
. . . . . . . . 9
⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) |
136 | | algextdeglem.j |
. . . . . . . . 9
⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪
(𝐺 “ 𝑝)) |
137 | 5, 128, 29, 13, 129, 130, 131, 30, 23, 2, 132, 133, 134, 135, 136, 22, 97, 48, 113 | algextdeglem7 33714 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → (𝑥 ∈ 𝑇 ↔ (𝐻‘𝑥) = 𝑥)) |
138 | 112, 137 | mpbid 232 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → (𝐻‘𝑥) = 𝑥) |
139 | 5, 128, 29, 13, 129, 130, 131, 30, 23, 2, 132, 133, 134, 135, 136, 22, 97, 48, 115 | algextdeglem7 33714 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → (𝑦 ∈ 𝑇 ↔ (𝐻‘𝑦) = 𝑦)) |
140 | 114, 139 | mpbid 232 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → (𝐻‘𝑦) = 𝑦) |
141 | 138, 140 | oveq12d 7466 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → ((𝐻‘𝑥)(+g‘(𝐻 “s 𝑃))(𝐻‘𝑦)) = (𝑥(+g‘(𝐻 “s 𝑃))𝑦)) |
142 | 101 | ringgrpd 20269 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ Grp) |
143 | 23, 7 | ply1lvec 33550 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ LVec) |
144 | 23, 26, 48, 61, 8 | ply1degltlss 33582 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ∈ (LSubSp‘𝑃)) |
145 | | eqid 2740 |
. . . . . . . . . . . . 13
⊢
(LSubSp‘𝑃) =
(LSubSp‘𝑃) |
146 | 105, 145 | lsslvec 21131 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ LVec ∧ 𝑇 ∈ (LSubSp‘𝑃)) → (𝑃 ↾s 𝑇) ∈ LVec) |
147 | 143, 144,
146 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑃 ↾s 𝑇) ∈ LVec) |
148 | 147 | lvecgrpd 21130 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑃 ↾s 𝑇) ∈ Grp) |
149 | 2 | issubg 19166 |
. . . . . . . . . 10
⊢ (𝑇 ∈ (SubGrp‘𝑃) ↔ (𝑃 ∈ Grp ∧ 𝑇 ⊆ 𝑈 ∧ (𝑃 ↾s 𝑇) ∈ Grp)) |
150 | 142, 104,
148, 149 | syl3anbrc 1343 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝑃)) |
151 | 150 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → 𝑇 ∈ (SubGrp‘𝑃)) |
152 | 125 | subgcl 19176 |
. . . . . . . 8
⊢ ((𝑇 ∈ (SubGrp‘𝑃) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → (𝑥(+g‘𝑃)𝑦) ∈ 𝑇) |
153 | 151, 112,
114, 152 | syl3anc 1371 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → (𝑥(+g‘𝑃)𝑦) ∈ 𝑇) |
154 | 142 | ad2antrr 725 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → 𝑃 ∈ Grp) |
155 | 2, 125, 154, 113, 115 | grpcld 18987 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → (𝑥(+g‘𝑃)𝑦) ∈ 𝑈) |
156 | 5, 128, 29, 13, 129, 130, 131, 30, 23, 2, 132, 133, 134, 135, 136, 22, 97, 48, 155 | algextdeglem7 33714 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → ((𝑥(+g‘𝑃)𝑦) ∈ 𝑇 ↔ (𝐻‘(𝑥(+g‘𝑃)𝑦)) = (𝑥(+g‘𝑃)𝑦))) |
157 | 153, 156 | mpbid 232 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → (𝐻‘(𝑥(+g‘𝑃)𝑦)) = (𝑥(+g‘𝑃)𝑦)) |
158 | 127, 141,
157 | 3eqtr3d 2788 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → (𝑥(+g‘(𝐻 “s 𝑃))𝑦) = (𝑥(+g‘𝑃)𝑦)) |
159 | | fvex 6933 |
. . . . . . . . 9
⊢
(deg1‘𝐾) ∈ V |
160 | | cnvexg 7964 |
. . . . . . . . 9
⊢
((deg1‘𝐾) ∈ V → ◡(deg1‘𝐾) ∈ V) |
161 | | imaexg 7953 |
. . . . . . . . 9
⊢ (◡(deg1‘𝐾) ∈ V → (◡(deg1‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) ∈ V) |
162 | 159, 160,
161 | mp2b 10 |
. . . . . . . 8
⊢ (◡(deg1‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) ∈ V |
163 | 48, 162 | eqeltri 2840 |
. . . . . . 7
⊢ 𝑇 ∈ V |
164 | 105, 125 | ressplusg 17349 |
. . . . . . 7
⊢ (𝑇 ∈ V →
(+g‘𝑃) =
(+g‘(𝑃
↾s 𝑇))) |
165 | 163, 164 | ax-mp 5 |
. . . . . 6
⊢
(+g‘𝑃) = (+g‘(𝑃 ↾s 𝑇)) |
166 | 165 | oveqi 7461 |
. . . . 5
⊢ (𝑥(+g‘𝑃)𝑦) = (𝑥(+g‘(𝑃 ↾s 𝑇))𝑦) |
167 | 158, 166 | eqtrdi 2796 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → (𝑥(+g‘(𝐻 “s 𝑃))𝑦) = (𝑥(+g‘(𝑃 ↾s 𝑇))𝑦)) |
168 | 167 | anasss 466 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇)) → (𝑥(+g‘(𝐻 “s 𝑃))𝑦) = (𝑥(+g‘(𝑃 ↾s 𝑇))𝑦)) |
169 | | simprr 772 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝑦 ∈ 𝑇) |
170 | 12 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝐸 ∈ Field) |
171 | 4 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝐹 ∈ (SubDRing‘𝐸)) |
172 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
173 | 104 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝑇 ⊆ 𝑈) |
174 | 173, 169 | sseldd 4009 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝑦 ∈ 𝑈) |
175 | 5, 128, 29, 13, 170, 171, 172, 30, 23, 2, 132, 133, 134, 135, 136, 22, 97, 48, 174 | algextdeglem7 33714 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → (𝑦 ∈ 𝑇 ↔ (𝐻‘𝑦) = 𝑦)) |
176 | 169, 175 | mpbid 232 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → (𝐻‘𝑦) = 𝑦) |
177 | 176 | oveq2d 7464 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → (𝑥( ·𝑠
‘(𝐻
“s 𝑃))(𝐻‘𝑦)) = (𝑥( ·𝑠
‘(𝐻
“s 𝑃))𝑦)) |
178 | | simprl 770 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝑥 ∈ 𝐹) |
179 | 33 | sdrgss 20816 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ⊆ (Base‘𝐸)) |
180 | 5, 33 | ressbas2 17296 |
. . . . . . . . . 10
⊢ (𝐹 ⊆ (Base‘𝐸) → 𝐹 = (Base‘𝐾)) |
181 | 4, 179, 180 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 = (Base‘𝐾)) |
182 | 23 | ply1sca 22275 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ Ring → 𝐾 = (Scalar‘𝑃)) |
183 | 8, 182 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 = (Scalar‘𝑃)) |
184 | 183 | fveq2d 6924 |
. . . . . . . . 9
⊢ (𝜑 → (Base‘𝐾) =
(Base‘(Scalar‘𝑃))) |
185 | 181, 184 | eqtrd 2780 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 = (Base‘(Scalar‘𝑃))) |
186 | 185 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝐹 = (Base‘(Scalar‘𝑃))) |
187 | 178, 186 | eleqtrd 2846 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝑥 ∈ (Base‘(Scalar‘𝑃))) |
188 | 118 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝐻:𝑈–onto→(Base‘(𝐻 “s 𝑃))) |
189 | 120 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝐻 ∈ (𝑃 LMHom (𝐻 “s 𝑃))) |
190 | | eqid 2740 |
. . . . . 6
⊢ (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃) |
191 | | eqid 2740 |
. . . . . 6
⊢ (
·𝑠 ‘(𝐻 “s 𝑃)) = (
·𝑠 ‘(𝐻 “s 𝑃)) |
192 | | eqid 2740 |
. . . . . 6
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
193 | 109, 2, 110, 187, 174, 188, 189, 190, 191, 192 | lmhmimasvsca 33025 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → (𝑥( ·𝑠
‘(𝐻
“s 𝑃))(𝐻‘𝑦)) = (𝐻‘(𝑥( ·𝑠
‘𝑃)𝑦))) |
194 | 177, 193 | eqtr3d 2782 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → (𝑥( ·𝑠
‘(𝐻
“s 𝑃))𝑦) = (𝐻‘(𝑥( ·𝑠
‘𝑃)𝑦))) |
195 | 64, 97 | fmptd 7148 |
. . . . . 6
⊢ (𝜑 → 𝐻:𝑈⟶𝑇) |
196 | 195 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝐻:𝑈⟶𝑇) |
197 | | eqid 2740 |
. . . . . 6
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
198 | 143 | lveclmodd 21129 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ LMod) |
199 | 198 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝑃 ∈ LMod) |
200 | 2, 197, 190, 192, 199, 187, 174 | lmodvscld 20899 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → (𝑥( ·𝑠
‘𝑃)𝑦) ∈ 𝑈) |
201 | 196, 200 | ffvelcdmd 7119 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → (𝐻‘(𝑥( ·𝑠
‘𝑃)𝑦)) ∈ 𝑇) |
202 | 194, 201 | eqeltrd 2844 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → (𝑥( ·𝑠
‘(𝐻
“s 𝑃))𝑦) ∈ 𝑇) |
203 | 144 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝑇 ∈ (LSubSp‘𝑃)) |
204 | 197, 190,
192, 145 | lssvscl 20976 |
. . . . . 6
⊢ (((𝑃 ∈ LMod ∧ 𝑇 ∈ (LSubSp‘𝑃)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑦 ∈ 𝑇)) → (𝑥( ·𝑠
‘𝑃)𝑦) ∈ 𝑇) |
205 | 199, 203,
187, 169, 204 | syl22anc 838 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → (𝑥( ·𝑠
‘𝑃)𝑦) ∈ 𝑇) |
206 | 5, 128, 29, 13, 170, 171, 172, 30, 23, 2, 132, 133, 134, 135, 136, 22, 97, 48, 200 | algextdeglem7 33714 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → ((𝑥( ·𝑠
‘𝑃)𝑦) ∈ 𝑇 ↔ (𝐻‘(𝑥( ·𝑠
‘𝑃)𝑦)) = (𝑥( ·𝑠
‘𝑃)𝑦))) |
207 | 205, 206 | mpbid 232 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → (𝐻‘(𝑥( ·𝑠
‘𝑃)𝑦)) = (𝑥( ·𝑠
‘𝑃)𝑦)) |
208 | 105, 190 | ressvsca 17403 |
. . . . . 6
⊢ (𝑇 ∈ V → (
·𝑠 ‘𝑃) = ( ·𝑠
‘(𝑃
↾s 𝑇))) |
209 | 163, 208 | mp1i 13 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → (
·𝑠 ‘𝑃) = ( ·𝑠
‘(𝑃
↾s 𝑇))) |
210 | 209 | oveqd 7465 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → (𝑥( ·𝑠
‘𝑃)𝑦) = (𝑥( ·𝑠
‘(𝑃
↾s 𝑇))𝑦)) |
211 | 194, 207,
210 | 3eqtrd 2784 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → (𝑥( ·𝑠
‘(𝐻
“s 𝑃))𝑦) = (𝑥( ·𝑠
‘(𝑃
↾s 𝑇))𝑦)) |
212 | | eqid 2740 |
. . 3
⊢
(Scalar‘(𝐻
“s 𝑃)) = (Scalar‘(𝐻 “s 𝑃)) |
213 | 105, 197 | resssca 17402 |
. . . 4
⊢ (𝑇 ∈ V →
(Scalar‘𝑃) =
(Scalar‘(𝑃
↾s 𝑇))) |
214 | 163, 213 | ax-mp 5 |
. . 3
⊢
(Scalar‘𝑃) =
(Scalar‘(𝑃
↾s 𝑇)) |
215 | 1, 3, 99, 101, 197 | imassca 17579 |
. . . . . 6
⊢ (𝜑 → (Scalar‘𝑃) = (Scalar‘(𝐻 “s
𝑃))) |
216 | 183, 215 | eqtrd 2780 |
. . . . 5
⊢ (𝜑 → 𝐾 = (Scalar‘(𝐻 “s 𝑃))) |
217 | 216 | fveq2d 6924 |
. . . 4
⊢ (𝜑 → (Base‘𝐾) =
(Base‘(Scalar‘(𝐻 “s 𝑃)))) |
218 | 181, 217 | eqtrd 2780 |
. . 3
⊢ (𝜑 → 𝐹 = (Base‘(Scalar‘(𝐻 “s
𝑃)))) |
219 | 215 | fveq2d 6924 |
. . . . . 6
⊢ (𝜑 →
(+g‘(Scalar‘𝑃)) =
(+g‘(Scalar‘(𝐻 “s 𝑃)))) |
220 | 219 | oveqd 7465 |
. . . . 5
⊢ (𝜑 → (𝑥(+g‘(Scalar‘𝑃))𝑦) = (𝑥(+g‘(Scalar‘(𝐻 “s
𝑃)))𝑦)) |
221 | 220 | eqcomd 2746 |
. . . 4
⊢ (𝜑 → (𝑥(+g‘(Scalar‘(𝐻 “s
𝑃)))𝑦) = (𝑥(+g‘(Scalar‘𝑃))𝑦)) |
222 | 221 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝑥(+g‘(Scalar‘(𝐻 “s
𝑃)))𝑦) = (𝑥(+g‘(Scalar‘𝑃))𝑦)) |
223 | | lmhmlvec2 33632 |
. . . 4
⊢ ((𝑃 ∈ LVec ∧ 𝐻 ∈ (𝑃 LMHom (𝐻 “s 𝑃))) → (𝐻 “s 𝑃) ∈ LVec) |
224 | 143, 120,
223 | syl2anc 583 |
. . 3
⊢ (𝜑 → (𝐻 “s 𝑃) ∈ LVec) |
225 | 102, 107,
108, 168, 202, 211, 212, 214, 218, 185, 222, 224, 147 | dimpropd 33621 |
. 2
⊢ (𝜑 → (dim‘(𝐻 “s
𝑃)) = (dim‘(𝑃 ↾s 𝑇))) |
226 | 23, 26, 48, 61, 7, 105 | ply1degltdim 33636 |
. 2
⊢ (𝜑 → (dim‘(𝑃 ↾s 𝑇)) = (𝐷‘(𝑀‘𝐴))) |
227 | 225, 226 | eqtrd 2780 |
1
⊢ (𝜑 → (dim‘(𝐻 “s
𝑃)) = (𝐷‘(𝑀‘𝐴))) |