Step | Hyp | Ref
| Expression |
1 | | eqidd 2732 |
. . . 4
⊢ (𝜑 → (𝐻 “s 𝑃) = (𝐻 “s 𝑃)) |
2 | | algextdeglem.u |
. . . . 5
⊢ 𝑈 = (Base‘𝑃) |
3 | 2 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝑈 = (Base‘𝑃)) |
4 | | algextdeg.e |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
5 | | algextdeg.k |
. . . . . . . . . . . 12
⊢ 𝐾 = (𝐸 ↾s 𝐹) |
6 | 5 | sdrgdrng 20553 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐾 ∈ DivRing) |
7 | 4, 6 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ DivRing) |
8 | 7 | drngringd 20512 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ Ring) |
9 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → 𝐾 ∈ Ring) |
10 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → 𝑝 ∈ 𝑈) |
11 | | eqid 2731 |
. . . . . . . . . . 11
⊢
(0g‘(Poly1‘𝐸)) =
(0g‘(Poly1‘𝐸)) |
12 | | algextdeg.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ Field) |
13 | | algextdeg.m |
. . . . . . . . . . 11
⊢ 𝑀 = (𝐸 minPoly 𝐹) |
14 | | algextdeg.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
15 | 5 | fveq2i 6894 |
. . . . . . . . . . 11
⊢
(Monic1p‘𝐾) = (Monic1p‘(𝐸 ↾s 𝐹)) |
16 | 11, 12, 4, 13, 14, 15 | minplym1p 33076 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀‘𝐴) ∈ (Monic1p‘𝐾)) |
17 | 16 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → (𝑀‘𝐴) ∈ (Monic1p‘𝐾)) |
18 | | eqid 2731 |
. . . . . . . . . 10
⊢
(Unic1p‘𝐾) = (Unic1p‘𝐾) |
19 | | eqid 2731 |
. . . . . . . . . 10
⊢
(Monic1p‘𝐾) = (Monic1p‘𝐾) |
20 | 18, 19 | mon1puc1p 25917 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Ring ∧ (𝑀‘𝐴) ∈ (Monic1p‘𝐾)) → (𝑀‘𝐴) ∈ (Unic1p‘𝐾)) |
21 | 9, 17, 20 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → (𝑀‘𝐴) ∈ (Unic1p‘𝐾)) |
22 | | algextdeglem.r |
. . . . . . . . 9
⊢ 𝑅 = (rem1p‘𝐾) |
23 | | algextdeglem.y |
. . . . . . . . 9
⊢ 𝑃 = (Poly1‘𝐾) |
24 | 22, 23, 2, 18 | r1pcl 25924 |
. . . . . . . 8
⊢ ((𝐾 ∈ Ring ∧ 𝑝 ∈ 𝑈 ∧ (𝑀‘𝐴) ∈ (Unic1p‘𝐾)) → (𝑝𝑅(𝑀‘𝐴)) ∈ 𝑈) |
25 | 9, 10, 21, 24 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → (𝑝𝑅(𝑀‘𝐴)) ∈ 𝑈) |
26 | | eqid 2731 |
. . . . . . . . . 10
⊢ (
deg1 ‘𝐾) =
( deg1 ‘𝐾) |
27 | 22, 23, 2, 18, 26 | r1pdeglt 25925 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Ring ∧ 𝑝 ∈ 𝑈 ∧ (𝑀‘𝐴) ∈ (Unic1p‘𝐾)) → (( deg1
‘𝐾)‘(𝑝𝑅(𝑀‘𝐴))) < (( deg1 ‘𝐾)‘(𝑀‘𝐴))) |
28 | 9, 10, 21, 27 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → (( deg1 ‘𝐾)‘(𝑝𝑅(𝑀‘𝐴))) < (( deg1 ‘𝐾)‘(𝑀‘𝐴))) |
29 | | algextdeg.d |
. . . . . . . . . 10
⊢ 𝐷 = ( deg1
‘𝐸) |
30 | | algextdeglem.o |
. . . . . . . . . . . 12
⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
31 | 5 | fveq2i 6894 |
. . . . . . . . . . . . 13
⊢
(Poly1‘𝐾) = (Poly1‘(𝐸 ↾s 𝐹)) |
32 | 23, 31 | eqtri 2759 |
. . . . . . . . . . . 12
⊢ 𝑃 =
(Poly1‘(𝐸
↾s 𝐹)) |
33 | | eqid 2731 |
. . . . . . . . . . . 12
⊢
(Base‘𝐸) =
(Base‘𝐸) |
34 | | eqid 2731 |
. . . . . . . . . . . . . 14
⊢
(0g‘𝐸) = (0g‘𝐸) |
35 | 12 | fldcrngd 20517 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐸 ∈ CRing) |
36 | | sdrgsubrg 20554 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) |
37 | 4, 36 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
38 | 30, 5, 33, 34, 35, 37 | irngssv 33056 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸)) |
39 | 38, 14 | sseldd 3983 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ (Base‘𝐸)) |
40 | | eqid 2731 |
. . . . . . . . . . . 12
⊢ {𝑝 ∈ dom 𝑂 ∣ ((𝑂‘𝑝)‘𝐴) = (0g‘𝐸)} = {𝑝 ∈ dom 𝑂 ∣ ((𝑂‘𝑝)‘𝐴) = (0g‘𝐸)} |
41 | | eqid 2731 |
. . . . . . . . . . . 12
⊢
(RSpan‘𝑃) =
(RSpan‘𝑃) |
42 | | eqid 2731 |
. . . . . . . . . . . 12
⊢
(idlGen1p‘(𝐸 ↾s 𝐹)) = (idlGen1p‘(𝐸 ↾s 𝐹)) |
43 | 30, 32, 33, 12, 4, 39, 34, 40, 41, 42, 13 | minplycl 33071 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀‘𝐴) ∈ (Base‘𝑃)) |
44 | 43, 2 | eleqtrrdi 2843 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑈) |
45 | 5, 29, 23, 2, 44, 37 | ressdeg1 32940 |
. . . . . . . . 9
⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) = (( deg1 ‘𝐾)‘(𝑀‘𝐴))) |
46 | 45 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → (𝐷‘(𝑀‘𝐴)) = (( deg1 ‘𝐾)‘(𝑀‘𝐴))) |
47 | 28, 46 | breqtrrd 5176 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → (( deg1 ‘𝐾)‘(𝑝𝑅(𝑀‘𝐴))) < (𝐷‘(𝑀‘𝐴))) |
48 | | algextdeglem.t |
. . . . . . . . 9
⊢ 𝑇 = (◡( deg1 ‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) |
49 | 12 | flddrngd 20516 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ DivRing) |
50 | 49 | drngringd 20512 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∈ Ring) |
51 | | eqid 2731 |
. . . . . . . . . . . . 13
⊢
(Poly1‘𝐸) = (Poly1‘𝐸) |
52 | | eqid 2731 |
. . . . . . . . . . . . 13
⊢
(PwSer1‘𝐾) = (PwSer1‘𝐾) |
53 | | eqid 2731 |
. . . . . . . . . . . . 13
⊢
(Base‘(PwSer1‘𝐾)) =
(Base‘(PwSer1‘𝐾)) |
54 | | eqid 2731 |
. . . . . . . . . . . . 13
⊢
(Base‘(Poly1‘𝐸)) =
(Base‘(Poly1‘𝐸)) |
55 | 51, 5, 23, 2, 37, 52, 53, 54 | ressply1bas2 21983 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 =
((Base‘(PwSer1‘𝐾)) ∩
(Base‘(Poly1‘𝐸)))) |
56 | | inss2 4229 |
. . . . . . . . . . . 12
⊢
((Base‘(PwSer1‘𝐾)) ∩
(Base‘(Poly1‘𝐸))) ⊆
(Base‘(Poly1‘𝐸)) |
57 | 55, 56 | eqsstrdi 4036 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ⊆
(Base‘(Poly1‘𝐸))) |
58 | 57, 44 | sseldd 3983 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀‘𝐴) ∈
(Base‘(Poly1‘𝐸))) |
59 | 11, 12, 4, 13, 14 | irngnminplynz 33075 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀‘𝐴) ≠
(0g‘(Poly1‘𝐸))) |
60 | 29, 51, 11, 54 | deg1nn0cl 25855 |
. . . . . . . . . 10
⊢ ((𝐸 ∈ Ring ∧ (𝑀‘𝐴) ∈
(Base‘(Poly1‘𝐸)) ∧ (𝑀‘𝐴) ≠
(0g‘(Poly1‘𝐸))) → (𝐷‘(𝑀‘𝐴)) ∈
ℕ0) |
61 | 50, 58, 59, 60 | syl3anc 1370 |
. . . . . . . . 9
⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ∈
ℕ0) |
62 | 23, 26, 48, 61, 8, 2 | ply1degleel 32956 |
. . . . . . . 8
⊢ (𝜑 → ((𝑝𝑅(𝑀‘𝐴)) ∈ 𝑇 ↔ ((𝑝𝑅(𝑀‘𝐴)) ∈ 𝑈 ∧ (( deg1 ‘𝐾)‘(𝑝𝑅(𝑀‘𝐴))) < (𝐷‘(𝑀‘𝐴))))) |
63 | 62 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → ((𝑝𝑅(𝑀‘𝐴)) ∈ 𝑇 ↔ ((𝑝𝑅(𝑀‘𝐴)) ∈ 𝑈 ∧ (( deg1 ‘𝐾)‘(𝑝𝑅(𝑀‘𝐴))) < (𝐷‘(𝑀‘𝐴))))) |
64 | 25, 47, 63 | mpbir2and 710 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑈) → (𝑝𝑅(𝑀‘𝐴)) ∈ 𝑇) |
65 | 64 | ralrimiva 3145 |
. . . . 5
⊢ (𝜑 → ∀𝑝 ∈ 𝑈 (𝑝𝑅(𝑀‘𝐴)) ∈ 𝑇) |
66 | | oveq1 7419 |
. . . . . . . . 9
⊢ (𝑝 = 𝑞 → (𝑝𝑅(𝑀‘𝐴)) = (𝑞𝑅(𝑀‘𝐴))) |
67 | 66 | eqeq2d 2742 |
. . . . . . . 8
⊢ (𝑝 = 𝑞 → (𝑞 = (𝑝𝑅(𝑀‘𝐴)) ↔ 𝑞 = (𝑞𝑅(𝑀‘𝐴)))) |
68 | | eqcom 2738 |
. . . . . . . 8
⊢ (𝑞 = (𝑞𝑅(𝑀‘𝐴)) ↔ (𝑞𝑅(𝑀‘𝐴)) = 𝑞) |
69 | 67, 68 | bitrdi 287 |
. . . . . . 7
⊢ (𝑝 = 𝑞 → (𝑞 = (𝑝𝑅(𝑀‘𝐴)) ↔ (𝑞𝑅(𝑀‘𝐴)) = 𝑞)) |
70 | 23, 26, 48, 61, 8, 2 | ply1degltel 32955 |
. . . . . . . 8
⊢ (𝜑 → (𝑞 ∈ 𝑇 ↔ (𝑞 ∈ 𝑈 ∧ (( deg1 ‘𝐾)‘𝑞) ≤ ((𝐷‘(𝑀‘𝐴)) − 1)))) |
71 | 70 | simprbda 498 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑇) → 𝑞 ∈ 𝑈) |
72 | 70 | simplbda 499 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑇) → (( deg1 ‘𝐾)‘𝑞) ≤ ((𝐷‘(𝑀‘𝐴)) − 1)) |
73 | 45 | oveq1d 7427 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐷‘(𝑀‘𝐴)) − 1) = ((( deg1
‘𝐾)‘(𝑀‘𝐴)) − 1)) |
74 | 73 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑇) → ((𝐷‘(𝑀‘𝐴)) − 1) = ((( deg1
‘𝐾)‘(𝑀‘𝐴)) − 1)) |
75 | 72, 74 | breqtrd 5174 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑇) → (( deg1 ‘𝐾)‘𝑞) ≤ ((( deg1 ‘𝐾)‘(𝑀‘𝐴)) − 1)) |
76 | 26, 23, 2 | deg1cl 25850 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ 𝑈 → (( deg1 ‘𝐾)‘𝑞) ∈ (ℕ0 ∪
{-∞})) |
77 | 71, 76 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑇) → (( deg1 ‘𝐾)‘𝑞) ∈ (ℕ0 ∪
{-∞})) |
78 | 61 | nn0zd 12591 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ∈ ℤ) |
79 | 45, 78 | eqeltrrd 2833 |
. . . . . . . . . . 11
⊢ (𝜑 → (( deg1
‘𝐾)‘(𝑀‘𝐴)) ∈ ℤ) |
80 | 79 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑇) → (( deg1 ‘𝐾)‘(𝑀‘𝐴)) ∈ ℤ) |
81 | | degltlem1 25839 |
. . . . . . . . . 10
⊢ ((((
deg1 ‘𝐾)‘𝑞) ∈ (ℕ0 ∪
{-∞}) ∧ (( deg1 ‘𝐾)‘(𝑀‘𝐴)) ∈ ℤ) → (((
deg1 ‘𝐾)‘𝑞) < (( deg1 ‘𝐾)‘(𝑀‘𝐴)) ↔ (( deg1 ‘𝐾)‘𝑞) ≤ ((( deg1 ‘𝐾)‘(𝑀‘𝐴)) − 1))) |
82 | 77, 80, 81 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑇) → ((( deg1 ‘𝐾)‘𝑞) < (( deg1 ‘𝐾)‘(𝑀‘𝐴)) ↔ (( deg1 ‘𝐾)‘𝑞) ≤ ((( deg1 ‘𝐾)‘(𝑀‘𝐴)) − 1))) |
83 | 75, 82 | mpbird 257 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑇) → (( deg1 ‘𝐾)‘𝑞) < (( deg1 ‘𝐾)‘(𝑀‘𝐴))) |
84 | | fldsdrgfld 20561 |
. . . . . . . . . . . . 13
⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸 ↾s 𝐹) ∈ Field) |
85 | 12, 4, 84 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ Field) |
86 | 5, 85 | eqeltrid 2836 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ Field) |
87 | | fldidom 21127 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ Field → 𝐾 ∈ IDomn) |
88 | 86, 87 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ IDomn) |
89 | 88 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑇) → 𝐾 ∈ IDomn) |
90 | 8, 16, 20 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀‘𝐴) ∈ (Unic1p‘𝐾)) |
91 | 90 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑇) → (𝑀‘𝐴) ∈ (Unic1p‘𝐾)) |
92 | 23, 2, 18, 22, 89, 26, 71, 91 | r1pid2 32969 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑇) → ((𝑞𝑅(𝑀‘𝐴)) = 𝑞 ↔ (( deg1 ‘𝐾)‘𝑞) < (( deg1 ‘𝐾)‘(𝑀‘𝐴)))) |
93 | 83, 92 | mpbird 257 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑇) → (𝑞𝑅(𝑀‘𝐴)) = 𝑞) |
94 | 69, 71, 93 | rspcedvdw 3615 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑇) → ∃𝑝 ∈ 𝑈 𝑞 = (𝑝𝑅(𝑀‘𝐴))) |
95 | 94 | ralrimiva 3145 |
. . . . 5
⊢ (𝜑 → ∀𝑞 ∈ 𝑇 ∃𝑝 ∈ 𝑈 𝑞 = (𝑝𝑅(𝑀‘𝐴))) |
96 | | algextdeglem.h |
. . . . . 6
⊢ 𝐻 = (𝑝 ∈ 𝑈 ↦ (𝑝𝑅(𝑀‘𝐴))) |
97 | 96 | fompt 7119 |
. . . . 5
⊢ (𝐻:𝑈–onto→𝑇 ↔ (∀𝑝 ∈ 𝑈 (𝑝𝑅(𝑀‘𝐴)) ∈ 𝑇 ∧ ∀𝑞 ∈ 𝑇 ∃𝑝 ∈ 𝑈 𝑞 = (𝑝𝑅(𝑀‘𝐴)))) |
98 | 65, 95, 97 | sylanbrc 582 |
. . . 4
⊢ (𝜑 → 𝐻:𝑈–onto→𝑇) |
99 | 23 | ply1ring 22003 |
. . . . 5
⊢ (𝐾 ∈ Ring → 𝑃 ∈ Ring) |
100 | 8, 99 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑃 ∈ Ring) |
101 | 1, 3, 98, 100 | imasbas 17465 |
. . 3
⊢ (𝜑 → 𝑇 = (Base‘(𝐻 “s 𝑃))) |
102 | 71 | ex 412 |
. . . . 5
⊢ (𝜑 → (𝑞 ∈ 𝑇 → 𝑞 ∈ 𝑈)) |
103 | 102 | ssrdv 3988 |
. . . 4
⊢ (𝜑 → 𝑇 ⊆ 𝑈) |
104 | | eqid 2731 |
. . . . 5
⊢ (𝑃 ↾s 𝑇) = (𝑃 ↾s 𝑇) |
105 | 104, 2 | ressbas2 17189 |
. . . 4
⊢ (𝑇 ⊆ 𝑈 → 𝑇 = (Base‘(𝑃 ↾s 𝑇))) |
106 | 103, 105 | syl 17 |
. . 3
⊢ (𝜑 → 𝑇 = (Base‘(𝑃 ↾s 𝑇))) |
107 | | ssidd 4005 |
. . 3
⊢ (𝜑 → 𝑇 ⊆ 𝑇) |
108 | | eqid 2731 |
. . . . . . 7
⊢ (𝐻 “s
𝑃) = (𝐻 “s 𝑃) |
109 | | eqid 2731 |
. . . . . . 7
⊢
(Base‘(𝐻
“s 𝑃)) = (Base‘(𝐻 “s 𝑃)) |
110 | 103 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → 𝑇 ⊆ 𝑈) |
111 | | simplr 766 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) |
112 | 110, 111 | sseldd 3983 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑈) |
113 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → 𝑦 ∈ 𝑇) |
114 | 110, 113 | sseldd 3983 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → 𝑦 ∈ 𝑈) |
115 | | foeq3 6803 |
. . . . . . . . . 10
⊢ (𝑇 = (Base‘(𝐻 “s
𝑃)) → (𝐻:𝑈–onto→𝑇 ↔ 𝐻:𝑈–onto→(Base‘(𝐻 “s 𝑃)))) |
116 | 101, 115 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐻:𝑈–onto→𝑇 ↔ 𝐻:𝑈–onto→(Base‘(𝐻 “s 𝑃)))) |
117 | 98, 116 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → 𝐻:𝑈–onto→(Base‘(𝐻 “s 𝑃))) |
118 | 117 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → 𝐻:𝑈–onto→(Base‘(𝐻 “s 𝑃))) |
119 | 23, 2, 22, 18, 96, 8, 90 | r1plmhm 32970 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐻 ∈ (𝑃 LMHom (𝐻 “s 𝑃))) |
120 | 119 | lmhmghmd 32480 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻 ∈ (𝑃 GrpHom (𝐻 “s 𝑃))) |
121 | | ghmmhm 19144 |
. . . . . . . . 9
⊢ (𝐻 ∈ (𝑃 GrpHom (𝐻 “s 𝑃)) → 𝐻 ∈ (𝑃 MndHom (𝐻 “s 𝑃))) |
122 | 120, 121 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐻 ∈ (𝑃 MndHom (𝐻 “s 𝑃))) |
123 | 122 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → 𝐻 ∈ (𝑃 MndHom (𝐻 “s 𝑃))) |
124 | | eqid 2731 |
. . . . . . 7
⊢
(+g‘𝑃) = (+g‘𝑃) |
125 | | eqid 2731 |
. . . . . . 7
⊢
(+g‘(𝐻 “s 𝑃)) = (+g‘(𝐻 “s
𝑃)) |
126 | 108, 2, 109, 112, 114, 118, 123, 124, 125 | mhmimasplusg 32481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → ((𝐻‘𝑥)(+g‘(𝐻 “s 𝑃))(𝐻‘𝑦)) = (𝐻‘(𝑥(+g‘𝑃)𝑦))) |
127 | | algextdeg.l |
. . . . . . . . 9
⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
128 | 12 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → 𝐸 ∈ Field) |
129 | 4 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → 𝐹 ∈ (SubDRing‘𝐸)) |
130 | 14 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
131 | | algextdeglem.g |
. . . . . . . . 9
⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) |
132 | | algextdeglem.n |
. . . . . . . . 9
⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) |
133 | | algextdeglem.z |
. . . . . . . . 9
⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) |
134 | | algextdeglem.q |
. . . . . . . . 9
⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) |
135 | | algextdeglem.j |
. . . . . . . . 9
⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪
(𝐺 “ 𝑝)) |
136 | 5, 127, 29, 13, 128, 129, 130, 30, 23, 2, 131, 132, 133, 134, 135, 22, 96, 48, 112 | algextdeglem7 33083 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → (𝑥 ∈ 𝑇 ↔ (𝐻‘𝑥) = 𝑥)) |
137 | 111, 136 | mpbid 231 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → (𝐻‘𝑥) = 𝑥) |
138 | 5, 127, 29, 13, 128, 129, 130, 30, 23, 2, 131, 132, 133, 134, 135, 22, 96, 48, 114 | algextdeglem7 33083 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → (𝑦 ∈ 𝑇 ↔ (𝐻‘𝑦) = 𝑦)) |
139 | 113, 138 | mpbid 231 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → (𝐻‘𝑦) = 𝑦) |
140 | 137, 139 | oveq12d 7430 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → ((𝐻‘𝑥)(+g‘(𝐻 “s 𝑃))(𝐻‘𝑦)) = (𝑥(+g‘(𝐻 “s 𝑃))𝑦)) |
141 | 100 | ringgrpd 20140 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ Grp) |
142 | 23, 7 | ply1lvec 32927 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ LVec) |
143 | 23, 26, 48, 61, 8 | ply1degltlss 32957 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ∈ (LSubSp‘𝑃)) |
144 | | eqid 2731 |
. . . . . . . . . . . . 13
⊢
(LSubSp‘𝑃) =
(LSubSp‘𝑃) |
145 | 104, 144 | lsslvec 20868 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ LVec ∧ 𝑇 ∈ (LSubSp‘𝑃)) → (𝑃 ↾s 𝑇) ∈ LVec) |
146 | 142, 143,
145 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑃 ↾s 𝑇) ∈ LVec) |
147 | 146 | lvecgrpd 20867 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑃 ↾s 𝑇) ∈ Grp) |
148 | 2 | issubg 19046 |
. . . . . . . . . 10
⊢ (𝑇 ∈ (SubGrp‘𝑃) ↔ (𝑃 ∈ Grp ∧ 𝑇 ⊆ 𝑈 ∧ (𝑃 ↾s 𝑇) ∈ Grp)) |
149 | 141, 103,
147, 148 | syl3anbrc 1342 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝑃)) |
150 | 149 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → 𝑇 ∈ (SubGrp‘𝑃)) |
151 | 124 | subgcl 19056 |
. . . . . . . 8
⊢ ((𝑇 ∈ (SubGrp‘𝑃) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → (𝑥(+g‘𝑃)𝑦) ∈ 𝑇) |
152 | 150, 111,
113, 151 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → (𝑥(+g‘𝑃)𝑦) ∈ 𝑇) |
153 | 141 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → 𝑃 ∈ Grp) |
154 | 2, 124, 153, 112, 114 | grpcld 18872 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → (𝑥(+g‘𝑃)𝑦) ∈ 𝑈) |
155 | 5, 127, 29, 13, 128, 129, 130, 30, 23, 2, 131, 132, 133, 134, 135, 22, 96, 48, 154 | algextdeglem7 33083 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → ((𝑥(+g‘𝑃)𝑦) ∈ 𝑇 ↔ (𝐻‘(𝑥(+g‘𝑃)𝑦)) = (𝑥(+g‘𝑃)𝑦))) |
156 | 152, 155 | mpbid 231 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → (𝐻‘(𝑥(+g‘𝑃)𝑦)) = (𝑥(+g‘𝑃)𝑦)) |
157 | 126, 140,
156 | 3eqtr3d 2779 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → (𝑥(+g‘(𝐻 “s 𝑃))𝑦) = (𝑥(+g‘𝑃)𝑦)) |
158 | | fvex 6904 |
. . . . . . . . 9
⊢ (
deg1 ‘𝐾)
∈ V |
159 | | cnvexg 7919 |
. . . . . . . . 9
⊢ ((
deg1 ‘𝐾)
∈ V → ◡( deg1
‘𝐾) ∈
V) |
160 | | imaexg 7910 |
. . . . . . . . 9
⊢ (◡( deg1 ‘𝐾) ∈ V → (◡( deg1 ‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) ∈ V) |
161 | 158, 159,
160 | mp2b 10 |
. . . . . . . 8
⊢ (◡( deg1 ‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) ∈ V |
162 | 48, 161 | eqeltri 2828 |
. . . . . . 7
⊢ 𝑇 ∈ V |
163 | 104, 124 | ressplusg 17242 |
. . . . . . 7
⊢ (𝑇 ∈ V →
(+g‘𝑃) =
(+g‘(𝑃
↾s 𝑇))) |
164 | 162, 163 | ax-mp 5 |
. . . . . 6
⊢
(+g‘𝑃) = (+g‘(𝑃 ↾s 𝑇)) |
165 | 164 | oveqi 7425 |
. . . . 5
⊢ (𝑥(+g‘𝑃)𝑦) = (𝑥(+g‘(𝑃 ↾s 𝑇))𝑦) |
166 | 157, 165 | eqtrdi 2787 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → (𝑥(+g‘(𝐻 “s 𝑃))𝑦) = (𝑥(+g‘(𝑃 ↾s 𝑇))𝑦)) |
167 | 166 | anasss 466 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇)) → (𝑥(+g‘(𝐻 “s 𝑃))𝑦) = (𝑥(+g‘(𝑃 ↾s 𝑇))𝑦)) |
168 | | simprr 770 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝑦 ∈ 𝑇) |
169 | 12 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝐸 ∈ Field) |
170 | 4 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝐹 ∈ (SubDRing‘𝐸)) |
171 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
172 | 103 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝑇 ⊆ 𝑈) |
173 | 172, 168 | sseldd 3983 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝑦 ∈ 𝑈) |
174 | 5, 127, 29, 13, 169, 170, 171, 30, 23, 2, 131, 132, 133, 134, 135, 22, 96, 48, 173 | algextdeglem7 33083 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → (𝑦 ∈ 𝑇 ↔ (𝐻‘𝑦) = 𝑦)) |
175 | 168, 174 | mpbid 231 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → (𝐻‘𝑦) = 𝑦) |
176 | 175 | oveq2d 7428 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → (𝑥( ·𝑠
‘(𝐻
“s 𝑃))(𝐻‘𝑦)) = (𝑥( ·𝑠
‘(𝐻
“s 𝑃))𝑦)) |
177 | | simprl 768 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝑥 ∈ 𝐹) |
178 | 33 | sdrgss 20556 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ⊆ (Base‘𝐸)) |
179 | 5, 33 | ressbas2 17189 |
. . . . . . . . . 10
⊢ (𝐹 ⊆ (Base‘𝐸) → 𝐹 = (Base‘𝐾)) |
180 | 4, 178, 179 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 = (Base‘𝐾)) |
181 | 23 | ply1sca 22008 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ Ring → 𝐾 = (Scalar‘𝑃)) |
182 | 8, 181 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 = (Scalar‘𝑃)) |
183 | 182 | fveq2d 6895 |
. . . . . . . . 9
⊢ (𝜑 → (Base‘𝐾) =
(Base‘(Scalar‘𝑃))) |
184 | 180, 183 | eqtrd 2771 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 = (Base‘(Scalar‘𝑃))) |
185 | 184 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝐹 = (Base‘(Scalar‘𝑃))) |
186 | 177, 185 | eleqtrd 2834 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝑥 ∈ (Base‘(Scalar‘𝑃))) |
187 | 117 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝐻:𝑈–onto→(Base‘(𝐻 “s 𝑃))) |
188 | 119 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝐻 ∈ (𝑃 LMHom (𝐻 “s 𝑃))) |
189 | | eqid 2731 |
. . . . . 6
⊢ (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃) |
190 | | eqid 2731 |
. . . . . 6
⊢ (
·𝑠 ‘(𝐻 “s 𝑃)) = (
·𝑠 ‘(𝐻 “s 𝑃)) |
191 | | eqid 2731 |
. . . . . 6
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
192 | 108, 2, 109, 186, 173, 187, 188, 189, 190, 191 | lmhmimasvsca 32482 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → (𝑥( ·𝑠
‘(𝐻
“s 𝑃))(𝐻‘𝑦)) = (𝐻‘(𝑥( ·𝑠
‘𝑃)𝑦))) |
193 | 176, 192 | eqtr3d 2773 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → (𝑥( ·𝑠
‘(𝐻
“s 𝑃))𝑦) = (𝐻‘(𝑥( ·𝑠
‘𝑃)𝑦))) |
194 | 64, 96 | fmptd 7115 |
. . . . . 6
⊢ (𝜑 → 𝐻:𝑈⟶𝑇) |
195 | 194 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝐻:𝑈⟶𝑇) |
196 | | eqid 2731 |
. . . . . 6
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
197 | 142 | lveclmodd 20866 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ LMod) |
198 | 197 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝑃 ∈ LMod) |
199 | 2, 196, 189, 191, 198, 186, 173 | lmodvscld 20637 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → (𝑥( ·𝑠
‘𝑃)𝑦) ∈ 𝑈) |
200 | 195, 199 | ffvelcdmd 7087 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → (𝐻‘(𝑥( ·𝑠
‘𝑃)𝑦)) ∈ 𝑇) |
201 | 193, 200 | eqeltrd 2832 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → (𝑥( ·𝑠
‘(𝐻
“s 𝑃))𝑦) ∈ 𝑇) |
202 | 143 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → 𝑇 ∈ (LSubSp‘𝑃)) |
203 | 196, 189,
191, 144 | lssvscl 20714 |
. . . . . 6
⊢ (((𝑃 ∈ LMod ∧ 𝑇 ∈ (LSubSp‘𝑃)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑦 ∈ 𝑇)) → (𝑥( ·𝑠
‘𝑃)𝑦) ∈ 𝑇) |
204 | 198, 202,
186, 168, 203 | syl22anc 836 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → (𝑥( ·𝑠
‘𝑃)𝑦) ∈ 𝑇) |
205 | 5, 127, 29, 13, 169, 170, 171, 30, 23, 2, 131, 132, 133, 134, 135, 22, 96, 48, 199 | algextdeglem7 33083 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → ((𝑥( ·𝑠
‘𝑃)𝑦) ∈ 𝑇 ↔ (𝐻‘(𝑥( ·𝑠
‘𝑃)𝑦)) = (𝑥( ·𝑠
‘𝑃)𝑦))) |
206 | 204, 205 | mpbid 231 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → (𝐻‘(𝑥( ·𝑠
‘𝑃)𝑦)) = (𝑥( ·𝑠
‘𝑃)𝑦)) |
207 | 104, 189 | ressvsca 17296 |
. . . . . 6
⊢ (𝑇 ∈ V → (
·𝑠 ‘𝑃) = ( ·𝑠
‘(𝑃
↾s 𝑇))) |
208 | 162, 207 | mp1i 13 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → (
·𝑠 ‘𝑃) = ( ·𝑠
‘(𝑃
↾s 𝑇))) |
209 | 208 | oveqd 7429 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → (𝑥( ·𝑠
‘𝑃)𝑦) = (𝑥( ·𝑠
‘(𝑃
↾s 𝑇))𝑦)) |
210 | 193, 206,
209 | 3eqtrd 2775 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇)) → (𝑥( ·𝑠
‘(𝐻
“s 𝑃))𝑦) = (𝑥( ·𝑠
‘(𝑃
↾s 𝑇))𝑦)) |
211 | | eqid 2731 |
. . 3
⊢
(Scalar‘(𝐻
“s 𝑃)) = (Scalar‘(𝐻 “s 𝑃)) |
212 | 104, 196 | resssca 17295 |
. . . 4
⊢ (𝑇 ∈ V →
(Scalar‘𝑃) =
(Scalar‘(𝑃
↾s 𝑇))) |
213 | 162, 212 | ax-mp 5 |
. . 3
⊢
(Scalar‘𝑃) =
(Scalar‘(𝑃
↾s 𝑇)) |
214 | 1, 3, 98, 100, 196 | imassca 17472 |
. . . . . 6
⊢ (𝜑 → (Scalar‘𝑃) = (Scalar‘(𝐻 “s
𝑃))) |
215 | 182, 214 | eqtrd 2771 |
. . . . 5
⊢ (𝜑 → 𝐾 = (Scalar‘(𝐻 “s 𝑃))) |
216 | 215 | fveq2d 6895 |
. . . 4
⊢ (𝜑 → (Base‘𝐾) =
(Base‘(Scalar‘(𝐻 “s 𝑃)))) |
217 | 180, 216 | eqtrd 2771 |
. . 3
⊢ (𝜑 → 𝐹 = (Base‘(Scalar‘(𝐻 “s
𝑃)))) |
218 | 214 | fveq2d 6895 |
. . . . . 6
⊢ (𝜑 →
(+g‘(Scalar‘𝑃)) =
(+g‘(Scalar‘(𝐻 “s 𝑃)))) |
219 | 218 | oveqd 7429 |
. . . . 5
⊢ (𝜑 → (𝑥(+g‘(Scalar‘𝑃))𝑦) = (𝑥(+g‘(Scalar‘(𝐻 “s
𝑃)))𝑦)) |
220 | 219 | eqcomd 2737 |
. . . 4
⊢ (𝜑 → (𝑥(+g‘(Scalar‘(𝐻 “s
𝑃)))𝑦) = (𝑥(+g‘(Scalar‘𝑃))𝑦)) |
221 | 220 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝑥(+g‘(Scalar‘(𝐻 “s
𝑃)))𝑦) = (𝑥(+g‘(Scalar‘𝑃))𝑦)) |
222 | | lmhmlvec2 33007 |
. . . 4
⊢ ((𝑃 ∈ LVec ∧ 𝐻 ∈ (𝑃 LMHom (𝐻 “s 𝑃))) → (𝐻 “s 𝑃) ∈ LVec) |
223 | 142, 119,
222 | syl2anc 583 |
. . 3
⊢ (𝜑 → (𝐻 “s 𝑃) ∈ LVec) |
224 | 101, 106,
107, 167, 201, 210, 211, 213, 217, 184, 221, 223, 146 | dimpropd 32996 |
. 2
⊢ (𝜑 → (dim‘(𝐻 “s
𝑃)) = (dim‘(𝑃 ↾s 𝑇))) |
225 | 23, 26, 48, 61, 7, 104 | ply1degltdim 33011 |
. 2
⊢ (𝜑 → (dim‘(𝑃 ↾s 𝑇)) = (𝐷‘(𝑀‘𝐴))) |
226 | 224, 225 | eqtrd 2771 |
1
⊢ (𝜑 → (dim‘(𝐻 “s
𝑃)) = (𝐷‘(𝑀‘𝐴))) |