Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  algextdeglem8 Structured version   Visualization version   GIF version

Theorem algextdeglem8 33704
Description: Lemma for algextdeg 33705. The dimension of the univariate polynomial remainder ring (𝐻s 𝑃) is the degree of the minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
algextdeg.k 𝐾 = (𝐸s 𝐹)
algextdeg.l 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
algextdeg.d 𝐷 = (deg1𝐸)
algextdeg.m 𝑀 = (𝐸 minPoly 𝐹)
algextdeg.f (𝜑𝐸 ∈ Field)
algextdeg.e (𝜑𝐹 ∈ (SubDRing‘𝐸))
algextdeg.a (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
algextdeglem.o 𝑂 = (𝐸 evalSub1 𝐹)
algextdeglem.y 𝑃 = (Poly1𝐾)
algextdeglem.u 𝑈 = (Base‘𝑃)
algextdeglem.g 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
algextdeglem.n 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
algextdeglem.z 𝑍 = (𝐺 “ {(0g𝐿)})
algextdeglem.q 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
algextdeglem.j 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
algextdeglem.r 𝑅 = (rem1p𝐾)
algextdeglem.h 𝐻 = (𝑝𝑈 ↦ (𝑝𝑅(𝑀𝐴)))
algextdeglem.t 𝑇 = ((deg1𝐾) “ (-∞[,)(𝐷‘(𝑀𝐴))))
Assertion
Ref Expression
algextdeglem8 (𝜑 → (dim‘(𝐻s 𝑃)) = (𝐷‘(𝑀𝐴)))
Distinct variable groups:   𝐴,𝑝   𝐸,𝑝   𝐹,𝑝,𝑥   𝐺,𝑝,𝑥   𝐻,𝑝,𝑥   𝐽,𝑝,𝑥   𝐾,𝑝   𝐿,𝑝,𝑥   𝑀,𝑝   𝑥,𝑁   𝑂,𝑝   𝑃,𝑝,𝑥   𝑄,𝑝,𝑥   𝑅,𝑝   𝑇,𝑝,𝑥   𝑈,𝑝,𝑥   𝑍,𝑝,𝑥   𝜑,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐷(𝑥,𝑝)   𝑅(𝑥)   𝐸(𝑥)   𝐾(𝑥)   𝑀(𝑥)   𝑁(𝑝)   𝑂(𝑥)

Proof of Theorem algextdeglem8
Dummy variables 𝑞 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2736 . . . 4 (𝜑 → (𝐻s 𝑃) = (𝐻s 𝑃))
2 algextdeglem.u . . . . 5 𝑈 = (Base‘𝑃)
32a1i 11 . . . 4 (𝜑𝑈 = (Base‘𝑃))
4 algextdeg.e . . . . . . . . . . 11 (𝜑𝐹 ∈ (SubDRing‘𝐸))
5 algextdeg.k . . . . . . . . . . . 12 𝐾 = (𝐸s 𝐹)
65sdrgdrng 20748 . . . . . . . . . . 11 (𝐹 ∈ (SubDRing‘𝐸) → 𝐾 ∈ DivRing)
74, 6syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ DivRing)
87drngringd 20695 . . . . . . . . 9 (𝜑𝐾 ∈ Ring)
98adantr 480 . . . . . . . 8 ((𝜑𝑝𝑈) → 𝐾 ∈ Ring)
10 simpr 484 . . . . . . . 8 ((𝜑𝑝𝑈) → 𝑝𝑈)
11 eqid 2735 . . . . . . . . . . 11 (0g‘(Poly1𝐸)) = (0g‘(Poly1𝐸))
12 algextdeg.f . . . . . . . . . . 11 (𝜑𝐸 ∈ Field)
13 algextdeg.m . . . . . . . . . . 11 𝑀 = (𝐸 minPoly 𝐹)
14 algextdeg.a . . . . . . . . . . 11 (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
155fveq2i 6878 . . . . . . . . . . 11 (Monic1p𝐾) = (Monic1p‘(𝐸s 𝐹))
1611, 12, 4, 13, 14, 15minplym1p 33693 . . . . . . . . . 10 (𝜑 → (𝑀𝐴) ∈ (Monic1p𝐾))
1716adantr 480 . . . . . . . . 9 ((𝜑𝑝𝑈) → (𝑀𝐴) ∈ (Monic1p𝐾))
18 eqid 2735 . . . . . . . . . 10 (Unic1p𝐾) = (Unic1p𝐾)
19 eqid 2735 . . . . . . . . . 10 (Monic1p𝐾) = (Monic1p𝐾)
2018, 19mon1puc1p 26106 . . . . . . . . 9 ((𝐾 ∈ Ring ∧ (𝑀𝐴) ∈ (Monic1p𝐾)) → (𝑀𝐴) ∈ (Unic1p𝐾))
219, 17, 20syl2anc 584 . . . . . . . 8 ((𝜑𝑝𝑈) → (𝑀𝐴) ∈ (Unic1p𝐾))
22 algextdeglem.r . . . . . . . . 9 𝑅 = (rem1p𝐾)
23 algextdeglem.y . . . . . . . . 9 𝑃 = (Poly1𝐾)
2422, 23, 2, 18r1pcl 26114 . . . . . . . 8 ((𝐾 ∈ Ring ∧ 𝑝𝑈 ∧ (𝑀𝐴) ∈ (Unic1p𝐾)) → (𝑝𝑅(𝑀𝐴)) ∈ 𝑈)
259, 10, 21, 24syl3anc 1373 . . . . . . 7 ((𝜑𝑝𝑈) → (𝑝𝑅(𝑀𝐴)) ∈ 𝑈)
26 eqid 2735 . . . . . . . . . 10 (deg1𝐾) = (deg1𝐾)
2722, 23, 2, 18, 26r1pdeglt 26115 . . . . . . . . 9 ((𝐾 ∈ Ring ∧ 𝑝𝑈 ∧ (𝑀𝐴) ∈ (Unic1p𝐾)) → ((deg1𝐾)‘(𝑝𝑅(𝑀𝐴))) < ((deg1𝐾)‘(𝑀𝐴)))
289, 10, 21, 27syl3anc 1373 . . . . . . . 8 ((𝜑𝑝𝑈) → ((deg1𝐾)‘(𝑝𝑅(𝑀𝐴))) < ((deg1𝐾)‘(𝑀𝐴)))
29 algextdeg.d . . . . . . . . . 10 𝐷 = (deg1𝐸)
30 algextdeglem.o . . . . . . . . . . . 12 𝑂 = (𝐸 evalSub1 𝐹)
315fveq2i 6878 . . . . . . . . . . . . 13 (Poly1𝐾) = (Poly1‘(𝐸s 𝐹))
3223, 31eqtri 2758 . . . . . . . . . . . 12 𝑃 = (Poly1‘(𝐸s 𝐹))
33 eqid 2735 . . . . . . . . . . . 12 (Base‘𝐸) = (Base‘𝐸)
34 eqid 2735 . . . . . . . . . . . . . 14 (0g𝐸) = (0g𝐸)
3512fldcrngd 20700 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ CRing)
36 sdrgsubrg 20749 . . . . . . . . . . . . . . 15 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
374, 36syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ (SubRing‘𝐸))
3830, 5, 33, 34, 35, 37irngssv 33675 . . . . . . . . . . . . 13 (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸))
3938, 14sseldd 3959 . . . . . . . . . . . 12 (𝜑𝐴 ∈ (Base‘𝐸))
40 eqid 2735 . . . . . . . . . . . 12 {𝑝 ∈ dom 𝑂 ∣ ((𝑂𝑝)‘𝐴) = (0g𝐸)} = {𝑝 ∈ dom 𝑂 ∣ ((𝑂𝑝)‘𝐴) = (0g𝐸)}
41 eqid 2735 . . . . . . . . . . . 12 (RSpan‘𝑃) = (RSpan‘𝑃)
42 eqid 2735 . . . . . . . . . . . 12 (idlGen1p‘(𝐸s 𝐹)) = (idlGen1p‘(𝐸s 𝐹))
4330, 32, 33, 12, 4, 39, 34, 40, 41, 42, 13minplycl 33686 . . . . . . . . . . 11 (𝜑 → (𝑀𝐴) ∈ (Base‘𝑃))
4443, 2eleqtrrdi 2845 . . . . . . . . . 10 (𝜑 → (𝑀𝐴) ∈ 𝑈)
455, 29, 23, 2, 44, 37ressdeg1 33525 . . . . . . . . 9 (𝜑 → (𝐷‘(𝑀𝐴)) = ((deg1𝐾)‘(𝑀𝐴)))
4645adantr 480 . . . . . . . 8 ((𝜑𝑝𝑈) → (𝐷‘(𝑀𝐴)) = ((deg1𝐾)‘(𝑀𝐴)))
4728, 46breqtrrd 5147 . . . . . . 7 ((𝜑𝑝𝑈) → ((deg1𝐾)‘(𝑝𝑅(𝑀𝐴))) < (𝐷‘(𝑀𝐴)))
48 algextdeglem.t . . . . . . . . 9 𝑇 = ((deg1𝐾) “ (-∞[,)(𝐷‘(𝑀𝐴))))
4912flddrngd 20699 . . . . . . . . . . 11 (𝜑𝐸 ∈ DivRing)
5049drngringd 20695 . . . . . . . . . 10 (𝜑𝐸 ∈ Ring)
51 eqid 2735 . . . . . . . . . . . . 13 (Poly1𝐸) = (Poly1𝐸)
52 eqid 2735 . . . . . . . . . . . . 13 (PwSer1𝐾) = (PwSer1𝐾)
53 eqid 2735 . . . . . . . . . . . . 13 (Base‘(PwSer1𝐾)) = (Base‘(PwSer1𝐾))
54 eqid 2735 . . . . . . . . . . . . 13 (Base‘(Poly1𝐸)) = (Base‘(Poly1𝐸))
5551, 5, 23, 2, 37, 52, 53, 54ressply1bas2 22161 . . . . . . . . . . . 12 (𝜑𝑈 = ((Base‘(PwSer1𝐾)) ∩ (Base‘(Poly1𝐸))))
56 inss2 4213 . . . . . . . . . . . 12 ((Base‘(PwSer1𝐾)) ∩ (Base‘(Poly1𝐸))) ⊆ (Base‘(Poly1𝐸))
5755, 56eqsstrdi 4003 . . . . . . . . . . 11 (𝜑𝑈 ⊆ (Base‘(Poly1𝐸)))
5857, 44sseldd 3959 . . . . . . . . . 10 (𝜑 → (𝑀𝐴) ∈ (Base‘(Poly1𝐸)))
5911, 12, 4, 13, 14irngnminplynz 33692 . . . . . . . . . 10 (𝜑 → (𝑀𝐴) ≠ (0g‘(Poly1𝐸)))
6029, 51, 11, 54deg1nn0cl 26043 . . . . . . . . . 10 ((𝐸 ∈ Ring ∧ (𝑀𝐴) ∈ (Base‘(Poly1𝐸)) ∧ (𝑀𝐴) ≠ (0g‘(Poly1𝐸))) → (𝐷‘(𝑀𝐴)) ∈ ℕ0)
6150, 58, 59, 60syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝐷‘(𝑀𝐴)) ∈ ℕ0)
6223, 26, 48, 61, 8, 2ply1degleel 33551 . . . . . . . 8 (𝜑 → ((𝑝𝑅(𝑀𝐴)) ∈ 𝑇 ↔ ((𝑝𝑅(𝑀𝐴)) ∈ 𝑈 ∧ ((deg1𝐾)‘(𝑝𝑅(𝑀𝐴))) < (𝐷‘(𝑀𝐴)))))
6362adantr 480 . . . . . . 7 ((𝜑𝑝𝑈) → ((𝑝𝑅(𝑀𝐴)) ∈ 𝑇 ↔ ((𝑝𝑅(𝑀𝐴)) ∈ 𝑈 ∧ ((deg1𝐾)‘(𝑝𝑅(𝑀𝐴))) < (𝐷‘(𝑀𝐴)))))
6425, 47, 63mpbir2and 713 . . . . . 6 ((𝜑𝑝𝑈) → (𝑝𝑅(𝑀𝐴)) ∈ 𝑇)
6564ralrimiva 3132 . . . . 5 (𝜑 → ∀𝑝𝑈 (𝑝𝑅(𝑀𝐴)) ∈ 𝑇)
66 oveq1 7410 . . . . . . . . 9 (𝑝 = 𝑞 → (𝑝𝑅(𝑀𝐴)) = (𝑞𝑅(𝑀𝐴)))
6766eqeq2d 2746 . . . . . . . 8 (𝑝 = 𝑞 → (𝑞 = (𝑝𝑅(𝑀𝐴)) ↔ 𝑞 = (𝑞𝑅(𝑀𝐴))))
68 eqcom 2742 . . . . . . . 8 (𝑞 = (𝑞𝑅(𝑀𝐴)) ↔ (𝑞𝑅(𝑀𝐴)) = 𝑞)
6967, 68bitrdi 287 . . . . . . 7 (𝑝 = 𝑞 → (𝑞 = (𝑝𝑅(𝑀𝐴)) ↔ (𝑞𝑅(𝑀𝐴)) = 𝑞))
7023, 26, 48, 61, 8, 2ply1degltel 33550 . . . . . . . 8 (𝜑 → (𝑞𝑇 ↔ (𝑞𝑈 ∧ ((deg1𝐾)‘𝑞) ≤ ((𝐷‘(𝑀𝐴)) − 1))))
7170simprbda 498 . . . . . . 7 ((𝜑𝑞𝑇) → 𝑞𝑈)
7270simplbda 499 . . . . . . . . . 10 ((𝜑𝑞𝑇) → ((deg1𝐾)‘𝑞) ≤ ((𝐷‘(𝑀𝐴)) − 1))
7345oveq1d 7418 . . . . . . . . . . 11 (𝜑 → ((𝐷‘(𝑀𝐴)) − 1) = (((deg1𝐾)‘(𝑀𝐴)) − 1))
7473adantr 480 . . . . . . . . . 10 ((𝜑𝑞𝑇) → ((𝐷‘(𝑀𝐴)) − 1) = (((deg1𝐾)‘(𝑀𝐴)) − 1))
7572, 74breqtrd 5145 . . . . . . . . 9 ((𝜑𝑞𝑇) → ((deg1𝐾)‘𝑞) ≤ (((deg1𝐾)‘(𝑀𝐴)) − 1))
7626, 23, 2deg1cl 26038 . . . . . . . . . . 11 (𝑞𝑈 → ((deg1𝐾)‘𝑞) ∈ (ℕ0 ∪ {-∞}))
7771, 76syl 17 . . . . . . . . . 10 ((𝜑𝑞𝑇) → ((deg1𝐾)‘𝑞) ∈ (ℕ0 ∪ {-∞}))
7861nn0zd 12612 . . . . . . . . . . . 12 (𝜑 → (𝐷‘(𝑀𝐴)) ∈ ℤ)
7945, 78eqeltrrd 2835 . . . . . . . . . . 11 (𝜑 → ((deg1𝐾)‘(𝑀𝐴)) ∈ ℤ)
8079adantr 480 . . . . . . . . . 10 ((𝜑𝑞𝑇) → ((deg1𝐾)‘(𝑀𝐴)) ∈ ℤ)
81 degltlem1 26027 . . . . . . . . . 10 ((((deg1𝐾)‘𝑞) ∈ (ℕ0 ∪ {-∞}) ∧ ((deg1𝐾)‘(𝑀𝐴)) ∈ ℤ) → (((deg1𝐾)‘𝑞) < ((deg1𝐾)‘(𝑀𝐴)) ↔ ((deg1𝐾)‘𝑞) ≤ (((deg1𝐾)‘(𝑀𝐴)) − 1)))
8277, 80, 81syl2anc 584 . . . . . . . . 9 ((𝜑𝑞𝑇) → (((deg1𝐾)‘𝑞) < ((deg1𝐾)‘(𝑀𝐴)) ↔ ((deg1𝐾)‘𝑞) ≤ (((deg1𝐾)‘(𝑀𝐴)) − 1)))
8375, 82mpbird 257 . . . . . . . 8 ((𝜑𝑞𝑇) → ((deg1𝐾)‘𝑞) < ((deg1𝐾)‘(𝑀𝐴)))
84 fldsdrgfld 20756 . . . . . . . . . . . . . 14 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
8512, 4, 84syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝐸s 𝐹) ∈ Field)
865, 85eqeltrid 2838 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Field)
87 fldidom 20729 . . . . . . . . . . . 12 (𝐾 ∈ Field → 𝐾 ∈ IDomn)
8886, 87syl 17 . . . . . . . . . . 11 (𝜑𝐾 ∈ IDomn)
8988idomdomd 20684 . . . . . . . . . 10 (𝜑𝐾 ∈ Domn)
9089adantr 480 . . . . . . . . 9 ((𝜑𝑞𝑇) → 𝐾 ∈ Domn)
918, 16, 20syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑀𝐴) ∈ (Unic1p𝐾))
9291adantr 480 . . . . . . . . 9 ((𝜑𝑞𝑇) → (𝑀𝐴) ∈ (Unic1p𝐾))
9323, 2, 18, 22, 26, 90, 71, 92r1pid2 26117 . . . . . . . 8 ((𝜑𝑞𝑇) → ((𝑞𝑅(𝑀𝐴)) = 𝑞 ↔ ((deg1𝐾)‘𝑞) < ((deg1𝐾)‘(𝑀𝐴))))
9483, 93mpbird 257 . . . . . . 7 ((𝜑𝑞𝑇) → (𝑞𝑅(𝑀𝐴)) = 𝑞)
9569, 71, 94rspcedvdw 3604 . . . . . 6 ((𝜑𝑞𝑇) → ∃𝑝𝑈 𝑞 = (𝑝𝑅(𝑀𝐴)))
9695ralrimiva 3132 . . . . 5 (𝜑 → ∀𝑞𝑇𝑝𝑈 𝑞 = (𝑝𝑅(𝑀𝐴)))
97 algextdeglem.h . . . . . 6 𝐻 = (𝑝𝑈 ↦ (𝑝𝑅(𝑀𝐴)))
9897fompt 7107 . . . . 5 (𝐻:𝑈onto𝑇 ↔ (∀𝑝𝑈 (𝑝𝑅(𝑀𝐴)) ∈ 𝑇 ∧ ∀𝑞𝑇𝑝𝑈 𝑞 = (𝑝𝑅(𝑀𝐴))))
9965, 96, 98sylanbrc 583 . . . 4 (𝜑𝐻:𝑈onto𝑇)
10023ply1ring 22181 . . . . 5 (𝐾 ∈ Ring → 𝑃 ∈ Ring)
1018, 100syl 17 . . . 4 (𝜑𝑃 ∈ Ring)
1021, 3, 99, 101imasbas 17524 . . 3 (𝜑𝑇 = (Base‘(𝐻s 𝑃)))
10371ex 412 . . . . 5 (𝜑 → (𝑞𝑇𝑞𝑈))
104103ssrdv 3964 . . . 4 (𝜑𝑇𝑈)
105 eqid 2735 . . . . 5 (𝑃s 𝑇) = (𝑃s 𝑇)
106105, 2ressbas2 17257 . . . 4 (𝑇𝑈𝑇 = (Base‘(𝑃s 𝑇)))
107104, 106syl 17 . . 3 (𝜑𝑇 = (Base‘(𝑃s 𝑇)))
108 ssidd 3982 . . 3 (𝜑𝑇𝑇)
109 eqid 2735 . . . . . . 7 (𝐻s 𝑃) = (𝐻s 𝑃)
110 eqid 2735 . . . . . . 7 (Base‘(𝐻s 𝑃)) = (Base‘(𝐻s 𝑃))
111104ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑇𝑈)
112 simplr 768 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑥𝑇)
113111, 112sseldd 3959 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑥𝑈)
114 simpr 484 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑦𝑇)
115111, 114sseldd 3959 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑦𝑈)
116 foeq3 6787 . . . . . . . . . 10 (𝑇 = (Base‘(𝐻s 𝑃)) → (𝐻:𝑈onto𝑇𝐻:𝑈onto→(Base‘(𝐻s 𝑃))))
117102, 116syl 17 . . . . . . . . 9 (𝜑 → (𝐻:𝑈onto𝑇𝐻:𝑈onto→(Base‘(𝐻s 𝑃))))
11899, 117mpbid 232 . . . . . . . 8 (𝜑𝐻:𝑈onto→(Base‘(𝐻s 𝑃)))
119118ad2antrr 726 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝐻:𝑈onto→(Base‘(𝐻s 𝑃)))
12023, 2, 22, 18, 97, 8, 91r1plmhm 33565 . . . . . . . . . 10 (𝜑𝐻 ∈ (𝑃 LMHom (𝐻s 𝑃)))
121120lmhmghmd 32978 . . . . . . . . 9 (𝜑𝐻 ∈ (𝑃 GrpHom (𝐻s 𝑃)))
122 ghmmhm 19207 . . . . . . . . 9 (𝐻 ∈ (𝑃 GrpHom (𝐻s 𝑃)) → 𝐻 ∈ (𝑃 MndHom (𝐻s 𝑃)))
123121, 122syl 17 . . . . . . . 8 (𝜑𝐻 ∈ (𝑃 MndHom (𝐻s 𝑃)))
124123ad2antrr 726 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝐻 ∈ (𝑃 MndHom (𝐻s 𝑃)))
125 eqid 2735 . . . . . . 7 (+g𝑃) = (+g𝑃)
126 eqid 2735 . . . . . . 7 (+g‘(𝐻s 𝑃)) = (+g‘(𝐻s 𝑃))
127109, 2, 110, 113, 115, 119, 124, 125, 126mhmimasplusg 32979 . . . . . 6 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → ((𝐻𝑥)(+g‘(𝐻s 𝑃))(𝐻𝑦)) = (𝐻‘(𝑥(+g𝑃)𝑦)))
128 algextdeg.l . . . . . . . . 9 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
12912ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝐸 ∈ Field)
1304ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝐹 ∈ (SubDRing‘𝐸))
13114ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝐴 ∈ (𝐸 IntgRing 𝐹))
132 algextdeglem.g . . . . . . . . 9 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
133 algextdeglem.n . . . . . . . . 9 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
134 algextdeglem.z . . . . . . . . 9 𝑍 = (𝐺 “ {(0g𝐿)})
135 algextdeglem.q . . . . . . . . 9 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
136 algextdeglem.j . . . . . . . . 9 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
1375, 128, 29, 13, 129, 130, 131, 30, 23, 2, 132, 133, 134, 135, 136, 22, 97, 48, 113algextdeglem7 33703 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝑥𝑇 ↔ (𝐻𝑥) = 𝑥))
138112, 137mpbid 232 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝐻𝑥) = 𝑥)
1395, 128, 29, 13, 129, 130, 131, 30, 23, 2, 132, 133, 134, 135, 136, 22, 97, 48, 115algextdeglem7 33703 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝑦𝑇 ↔ (𝐻𝑦) = 𝑦))
140114, 139mpbid 232 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝐻𝑦) = 𝑦)
141138, 140oveq12d 7421 . . . . . 6 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → ((𝐻𝑥)(+g‘(𝐻s 𝑃))(𝐻𝑦)) = (𝑥(+g‘(𝐻s 𝑃))𝑦))
142101ringgrpd 20200 . . . . . . . . . 10 (𝜑𝑃 ∈ Grp)
14323, 7ply1lvec 33518 . . . . . . . . . . . 12 (𝜑𝑃 ∈ LVec)
14423, 26, 48, 61, 8ply1degltlss 33552 . . . . . . . . . . . 12 (𝜑𝑇 ∈ (LSubSp‘𝑃))
145 eqid 2735 . . . . . . . . . . . . 13 (LSubSp‘𝑃) = (LSubSp‘𝑃)
146105, 145lsslvec 21065 . . . . . . . . . . . 12 ((𝑃 ∈ LVec ∧ 𝑇 ∈ (LSubSp‘𝑃)) → (𝑃s 𝑇) ∈ LVec)
147143, 144, 146syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑃s 𝑇) ∈ LVec)
148147lvecgrpd 21064 . . . . . . . . . 10 (𝜑 → (𝑃s 𝑇) ∈ Grp)
1492issubg 19107 . . . . . . . . . 10 (𝑇 ∈ (SubGrp‘𝑃) ↔ (𝑃 ∈ Grp ∧ 𝑇𝑈 ∧ (𝑃s 𝑇) ∈ Grp))
150142, 104, 148, 149syl3anbrc 1344 . . . . . . . . 9 (𝜑𝑇 ∈ (SubGrp‘𝑃))
151150ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑇 ∈ (SubGrp‘𝑃))
152125subgcl 19117 . . . . . . . 8 ((𝑇 ∈ (SubGrp‘𝑃) ∧ 𝑥𝑇𝑦𝑇) → (𝑥(+g𝑃)𝑦) ∈ 𝑇)
153151, 112, 114, 152syl3anc 1373 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝑥(+g𝑃)𝑦) ∈ 𝑇)
154142ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑃 ∈ Grp)
1552, 125, 154, 113, 115grpcld 18928 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝑥(+g𝑃)𝑦) ∈ 𝑈)
1565, 128, 29, 13, 129, 130, 131, 30, 23, 2, 132, 133, 134, 135, 136, 22, 97, 48, 155algextdeglem7 33703 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → ((𝑥(+g𝑃)𝑦) ∈ 𝑇 ↔ (𝐻‘(𝑥(+g𝑃)𝑦)) = (𝑥(+g𝑃)𝑦)))
157153, 156mpbid 232 . . . . . 6 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝐻‘(𝑥(+g𝑃)𝑦)) = (𝑥(+g𝑃)𝑦))
158127, 141, 1573eqtr3d 2778 . . . . 5 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝑥(+g‘(𝐻s 𝑃))𝑦) = (𝑥(+g𝑃)𝑦))
159 fvex 6888 . . . . . . . . 9 (deg1𝐾) ∈ V
160 cnvexg 7918 . . . . . . . . 9 ((deg1𝐾) ∈ V → (deg1𝐾) ∈ V)
161 imaexg 7907 . . . . . . . . 9 ((deg1𝐾) ∈ V → ((deg1𝐾) “ (-∞[,)(𝐷‘(𝑀𝐴)))) ∈ V)
162159, 160, 161mp2b 10 . . . . . . . 8 ((deg1𝐾) “ (-∞[,)(𝐷‘(𝑀𝐴)))) ∈ V
16348, 162eqeltri 2830 . . . . . . 7 𝑇 ∈ V
164105, 125ressplusg 17303 . . . . . . 7 (𝑇 ∈ V → (+g𝑃) = (+g‘(𝑃s 𝑇)))
165163, 164ax-mp 5 . . . . . 6 (+g𝑃) = (+g‘(𝑃s 𝑇))
166165oveqi 7416 . . . . 5 (𝑥(+g𝑃)𝑦) = (𝑥(+g‘(𝑃s 𝑇))𝑦)
167158, 166eqtrdi 2786 . . . 4 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝑥(+g‘(𝐻s 𝑃))𝑦) = (𝑥(+g‘(𝑃s 𝑇))𝑦))
168167anasss 466 . . 3 ((𝜑 ∧ (𝑥𝑇𝑦𝑇)) → (𝑥(+g‘(𝐻s 𝑃))𝑦) = (𝑥(+g‘(𝑃s 𝑇))𝑦))
169 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑦𝑇)
17012adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐸 ∈ Field)
1714adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐹 ∈ (SubDRing‘𝐸))
17214adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐴 ∈ (𝐸 IntgRing 𝐹))
173104adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑇𝑈)
174173, 169sseldd 3959 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑦𝑈)
1755, 128, 29, 13, 170, 171, 172, 30, 23, 2, 132, 133, 134, 135, 136, 22, 97, 48, 174algextdeglem7 33703 . . . . . . 7 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑦𝑇 ↔ (𝐻𝑦) = 𝑦))
176169, 175mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝐻𝑦) = 𝑦)
177176oveq2d 7419 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠 ‘(𝐻s 𝑃))(𝐻𝑦)) = (𝑥( ·𝑠 ‘(𝐻s 𝑃))𝑦))
178 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑥𝐹)
17933sdrgss 20751 . . . . . . . . . 10 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ⊆ (Base‘𝐸))
1805, 33ressbas2 17257 . . . . . . . . . 10 (𝐹 ⊆ (Base‘𝐸) → 𝐹 = (Base‘𝐾))
1814, 179, 1803syl 18 . . . . . . . . 9 (𝜑𝐹 = (Base‘𝐾))
18223ply1sca 22186 . . . . . . . . . . 11 (𝐾 ∈ Ring → 𝐾 = (Scalar‘𝑃))
1838, 182syl 17 . . . . . . . . . 10 (𝜑𝐾 = (Scalar‘𝑃))
184183fveq2d 6879 . . . . . . . . 9 (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘𝑃)))
185181, 184eqtrd 2770 . . . . . . . 8 (𝜑𝐹 = (Base‘(Scalar‘𝑃)))
186185adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐹 = (Base‘(Scalar‘𝑃)))
187178, 186eleqtrd 2836 . . . . . 6 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑥 ∈ (Base‘(Scalar‘𝑃)))
188118adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐻:𝑈onto→(Base‘(𝐻s 𝑃)))
189120adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐻 ∈ (𝑃 LMHom (𝐻s 𝑃)))
190 eqid 2735 . . . . . 6 ( ·𝑠𝑃) = ( ·𝑠𝑃)
191 eqid 2735 . . . . . 6 ( ·𝑠 ‘(𝐻s 𝑃)) = ( ·𝑠 ‘(𝐻s 𝑃))
192 eqid 2735 . . . . . 6 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
193109, 2, 110, 187, 174, 188, 189, 190, 191, 192lmhmimasvsca 32980 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠 ‘(𝐻s 𝑃))(𝐻𝑦)) = (𝐻‘(𝑥( ·𝑠𝑃)𝑦)))
194177, 193eqtr3d 2772 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠 ‘(𝐻s 𝑃))𝑦) = (𝐻‘(𝑥( ·𝑠𝑃)𝑦)))
19564, 97fmptd 7103 . . . . . 6 (𝜑𝐻:𝑈𝑇)
196195adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐻:𝑈𝑇)
197 eqid 2735 . . . . . 6 (Scalar‘𝑃) = (Scalar‘𝑃)
198143lveclmodd 21063 . . . . . . 7 (𝜑𝑃 ∈ LMod)
199198adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑃 ∈ LMod)
2002, 197, 190, 192, 199, 187, 174lmodvscld 20834 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠𝑃)𝑦) ∈ 𝑈)
201196, 200ffvelcdmd 7074 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝐻‘(𝑥( ·𝑠𝑃)𝑦)) ∈ 𝑇)
202194, 201eqeltrd 2834 . . 3 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠 ‘(𝐻s 𝑃))𝑦) ∈ 𝑇)
203144adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑇 ∈ (LSubSp‘𝑃))
204197, 190, 192, 145lssvscl 20910 . . . . . 6 (((𝑃 ∈ LMod ∧ 𝑇 ∈ (LSubSp‘𝑃)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑦𝑇)) → (𝑥( ·𝑠𝑃)𝑦) ∈ 𝑇)
205199, 203, 187, 169, 204syl22anc 838 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠𝑃)𝑦) ∈ 𝑇)
2065, 128, 29, 13, 170, 171, 172, 30, 23, 2, 132, 133, 134, 135, 136, 22, 97, 48, 200algextdeglem7 33703 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → ((𝑥( ·𝑠𝑃)𝑦) ∈ 𝑇 ↔ (𝐻‘(𝑥( ·𝑠𝑃)𝑦)) = (𝑥( ·𝑠𝑃)𝑦)))
207205, 206mpbid 232 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝐻‘(𝑥( ·𝑠𝑃)𝑦)) = (𝑥( ·𝑠𝑃)𝑦))
208105, 190ressvsca 17356 . . . . . 6 (𝑇 ∈ V → ( ·𝑠𝑃) = ( ·𝑠 ‘(𝑃s 𝑇)))
209163, 208mp1i 13 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → ( ·𝑠𝑃) = ( ·𝑠 ‘(𝑃s 𝑇)))
210209oveqd 7420 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠𝑃)𝑦) = (𝑥( ·𝑠 ‘(𝑃s 𝑇))𝑦))
211194, 207, 2103eqtrd 2774 . . 3 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠 ‘(𝐻s 𝑃))𝑦) = (𝑥( ·𝑠 ‘(𝑃s 𝑇))𝑦))
212 eqid 2735 . . 3 (Scalar‘(𝐻s 𝑃)) = (Scalar‘(𝐻s 𝑃))
213105, 197resssca 17355 . . . 4 (𝑇 ∈ V → (Scalar‘𝑃) = (Scalar‘(𝑃s 𝑇)))
214163, 213ax-mp 5 . . 3 (Scalar‘𝑃) = (Scalar‘(𝑃s 𝑇))
2151, 3, 99, 101, 197imassca 17531 . . . . . 6 (𝜑 → (Scalar‘𝑃) = (Scalar‘(𝐻s 𝑃)))
216183, 215eqtrd 2770 . . . . 5 (𝜑𝐾 = (Scalar‘(𝐻s 𝑃)))
217216fveq2d 6879 . . . 4 (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘(𝐻s 𝑃))))
218181, 217eqtrd 2770 . . 3 (𝜑𝐹 = (Base‘(Scalar‘(𝐻s 𝑃))))
219215fveq2d 6879 . . . . . 6 (𝜑 → (+g‘(Scalar‘𝑃)) = (+g‘(Scalar‘(𝐻s 𝑃))))
220219oveqd 7420 . . . . 5 (𝜑 → (𝑥(+g‘(Scalar‘𝑃))𝑦) = (𝑥(+g‘(Scalar‘(𝐻s 𝑃)))𝑦))
221220eqcomd 2741 . . . 4 (𝜑 → (𝑥(+g‘(Scalar‘(𝐻s 𝑃)))𝑦) = (𝑥(+g‘(Scalar‘𝑃))𝑦))
222221adantr 480 . . 3 ((𝜑 ∧ (𝑥𝐹𝑦𝐹)) → (𝑥(+g‘(Scalar‘(𝐻s 𝑃)))𝑦) = (𝑥(+g‘(Scalar‘𝑃))𝑦))
223 lmhmlvec2 33605 . . . 4 ((𝑃 ∈ LVec ∧ 𝐻 ∈ (𝑃 LMHom (𝐻s 𝑃))) → (𝐻s 𝑃) ∈ LVec)
224143, 120, 223syl2anc 584 . . 3 (𝜑 → (𝐻s 𝑃) ∈ LVec)
225102, 107, 108, 168, 202, 211, 212, 214, 218, 185, 222, 224, 147dimpropd 33594 . 2 (𝜑 → (dim‘(𝐻s 𝑃)) = (dim‘(𝑃s 𝑇)))
22623, 26, 48, 61, 7, 105ply1degltdim 33609 . 2 (𝜑 → (dim‘(𝑃s 𝑇)) = (𝐷‘(𝑀𝐴)))
227225, 226eqtrd 2770 1 (𝜑 → (dim‘(𝐻s 𝑃)) = (𝐷‘(𝑀𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  cun 3924  cin 3925  wss 3926  {csn 4601   cuni 4883   class class class wbr 5119  cmpt 5201  ccnv 5653  dom cdm 5654  cima 5657  wf 6526  ontowfo 6528  cfv 6530  (class class class)co 7403  [cec 8715  1c1 11128  -∞cmnf 11265   < clt 11267  cle 11268  cmin 11464  0cn0 12499  cz 12586  [,)cico 13362  Basecbs 17226  s cress 17249  +gcplusg 17269  Scalarcsca 17272   ·𝑠 cvsca 17273  0gc0g 17451  s cimas 17516   /s cqus 17517   MndHom cmhm 18757  Grpcgrp 18914  SubGrpcsubg 19101   ~QG cqg 19103   GrpHom cghm 19193  Ringcrg 20191  SubRingcsubrg 20527  Domncdomn 20650  IDomncidom 20651  DivRingcdr 20687  Fieldcfield 20688  SubDRingcsdrg 20744  LModclmod 20815  LSubSpclss 20886   LMHom clmhm 20975  LVecclvec 21058  RSpancrsp 21166  PwSer1cps1 22108  Poly1cpl1 22110   evalSub1 ces1 22249  deg1cdg1 26009  Monic1pcmn1 26081  Unic1pcuc1p 26082  rem1pcr1p 26084  idlGen1pcig1p 26085   fldGen cfldgen 33250  dimcldim 33584   IntgRing cirng 33670   minPoly cminply 33679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-reg 9604  ax-inf2 9653  ax-ac2 10475  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-ofr 7670  df-rpss 7715  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-sup 9452  df-inf 9453  df-oi 9522  df-r1 9776  df-rank 9777  df-dju 9913  df-card 9951  df-acn 9954  df-ac 10128  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-xnn0 12573  df-z 12587  df-dec 12707  df-uz 12851  df-ico 13366  df-fz 13523  df-fzo 13670  df-seq 14018  df-hash 14347  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ocomp 17290  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-0g 17453  df-gsum 17454  df-prds 17459  df-pws 17461  df-imas 17520  df-mre 17596  df-mrc 17597  df-mri 17598  df-acs 17599  df-proset 18304  df-drs 18305  df-poset 18323  df-ipo 18536  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-mulg 19049  df-subg 19104  df-ghm 19194  df-cntz 19298  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-srg 20145  df-ring 20193  df-cring 20194  df-oppr 20295  df-dvdsr 20315  df-unit 20316  df-invr 20346  df-rhm 20430  df-nzr 20471  df-subrng 20504  df-subrg 20528  df-rlreg 20652  df-domn 20653  df-idom 20654  df-drng 20689  df-field 20690  df-sdrg 20745  df-lmod 20817  df-lss 20887  df-lsp 20927  df-lmhm 20978  df-lbs 21031  df-lvec 21059  df-sra 21129  df-rgmod 21130  df-lidl 21167  df-rsp 21168  df-cnfld 21314  df-dsmm 21690  df-frlm 21705  df-uvc 21741  df-lindf 21764  df-linds 21765  df-assa 21811  df-asp 21812  df-ascl 21813  df-psr 21867  df-mvr 21868  df-mpl 21869  df-opsr 21871  df-evls 22030  df-evl 22031  df-psr1 22113  df-vr1 22114  df-ply1 22115  df-coe1 22116  df-evls1 22251  df-evl1 22252  df-mdeg 26010  df-deg1 26011  df-mon1 26086  df-uc1p 26087  df-q1p 26088  df-r1p 26089  df-ig1p 26090  df-dim 33585  df-irng 33671  df-minply 33680
This theorem is referenced by:  algextdeg  33705
  Copyright terms: Public domain W3C validator