Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  algextdeglem8 Structured version   Visualization version   GIF version

Theorem algextdeglem8 33691
Description: Lemma for algextdeg 33692. The dimension of the univariate polynomial remainder ring (𝐻s 𝑃) is the degree of the minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
algextdeg.k 𝐾 = (𝐸s 𝐹)
algextdeg.l 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
algextdeg.d 𝐷 = (deg1𝐸)
algextdeg.m 𝑀 = (𝐸 minPoly 𝐹)
algextdeg.f (𝜑𝐸 ∈ Field)
algextdeg.e (𝜑𝐹 ∈ (SubDRing‘𝐸))
algextdeg.a (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
algextdeglem.o 𝑂 = (𝐸 evalSub1 𝐹)
algextdeglem.y 𝑃 = (Poly1𝐾)
algextdeglem.u 𝑈 = (Base‘𝑃)
algextdeglem.g 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
algextdeglem.n 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
algextdeglem.z 𝑍 = (𝐺 “ {(0g𝐿)})
algextdeglem.q 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
algextdeglem.j 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
algextdeglem.r 𝑅 = (rem1p𝐾)
algextdeglem.h 𝐻 = (𝑝𝑈 ↦ (𝑝𝑅(𝑀𝐴)))
algextdeglem.t 𝑇 = ((deg1𝐾) “ (-∞[,)(𝐷‘(𝑀𝐴))))
Assertion
Ref Expression
algextdeglem8 (𝜑 → (dim‘(𝐻s 𝑃)) = (𝐷‘(𝑀𝐴)))
Distinct variable groups:   𝐴,𝑝   𝐸,𝑝   𝐹,𝑝,𝑥   𝐺,𝑝,𝑥   𝐻,𝑝,𝑥   𝐽,𝑝,𝑥   𝐾,𝑝   𝐿,𝑝,𝑥   𝑀,𝑝   𝑥,𝑁   𝑂,𝑝   𝑃,𝑝,𝑥   𝑄,𝑝,𝑥   𝑅,𝑝   𝑇,𝑝,𝑥   𝑈,𝑝,𝑥   𝑍,𝑝,𝑥   𝜑,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐷(𝑥,𝑝)   𝑅(𝑥)   𝐸(𝑥)   𝐾(𝑥)   𝑀(𝑥)   𝑁(𝑝)   𝑂(𝑥)

Proof of Theorem algextdeglem8
Dummy variables 𝑞 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . . . 4 (𝜑 → (𝐻s 𝑃) = (𝐻s 𝑃))
2 algextdeglem.u . . . . 5 𝑈 = (Base‘𝑃)
32a1i 11 . . . 4 (𝜑𝑈 = (Base‘𝑃))
4 algextdeg.e . . . . . . . . . . 11 (𝜑𝐹 ∈ (SubDRing‘𝐸))
5 algextdeg.k . . . . . . . . . . . 12 𝐾 = (𝐸s 𝐹)
65sdrgdrng 20675 . . . . . . . . . . 11 (𝐹 ∈ (SubDRing‘𝐸) → 𝐾 ∈ DivRing)
74, 6syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ DivRing)
87drngringd 20622 . . . . . . . . 9 (𝜑𝐾 ∈ Ring)
98adantr 480 . . . . . . . 8 ((𝜑𝑝𝑈) → 𝐾 ∈ Ring)
10 simpr 484 . . . . . . . 8 ((𝜑𝑝𝑈) → 𝑝𝑈)
11 eqid 2729 . . . . . . . . . . 11 (0g‘(Poly1𝐸)) = (0g‘(Poly1𝐸))
12 algextdeg.f . . . . . . . . . . 11 (𝜑𝐸 ∈ Field)
13 algextdeg.m . . . . . . . . . . 11 𝑀 = (𝐸 minPoly 𝐹)
14 algextdeg.a . . . . . . . . . . 11 (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
155fveq2i 6825 . . . . . . . . . . 11 (Monic1p𝐾) = (Monic1p‘(𝐸s 𝐹))
1611, 12, 4, 13, 14, 15minplym1p 33680 . . . . . . . . . 10 (𝜑 → (𝑀𝐴) ∈ (Monic1p𝐾))
1716adantr 480 . . . . . . . . 9 ((𝜑𝑝𝑈) → (𝑀𝐴) ∈ (Monic1p𝐾))
18 eqid 2729 . . . . . . . . . 10 (Unic1p𝐾) = (Unic1p𝐾)
19 eqid 2729 . . . . . . . . . 10 (Monic1p𝐾) = (Monic1p𝐾)
2018, 19mon1puc1p 26054 . . . . . . . . 9 ((𝐾 ∈ Ring ∧ (𝑀𝐴) ∈ (Monic1p𝐾)) → (𝑀𝐴) ∈ (Unic1p𝐾))
219, 17, 20syl2anc 584 . . . . . . . 8 ((𝜑𝑝𝑈) → (𝑀𝐴) ∈ (Unic1p𝐾))
22 algextdeglem.r . . . . . . . . 9 𝑅 = (rem1p𝐾)
23 algextdeglem.y . . . . . . . . 9 𝑃 = (Poly1𝐾)
2422, 23, 2, 18r1pcl 26062 . . . . . . . 8 ((𝐾 ∈ Ring ∧ 𝑝𝑈 ∧ (𝑀𝐴) ∈ (Unic1p𝐾)) → (𝑝𝑅(𝑀𝐴)) ∈ 𝑈)
259, 10, 21, 24syl3anc 1373 . . . . . . 7 ((𝜑𝑝𝑈) → (𝑝𝑅(𝑀𝐴)) ∈ 𝑈)
26 eqid 2729 . . . . . . . . . 10 (deg1𝐾) = (deg1𝐾)
2722, 23, 2, 18, 26r1pdeglt 26063 . . . . . . . . 9 ((𝐾 ∈ Ring ∧ 𝑝𝑈 ∧ (𝑀𝐴) ∈ (Unic1p𝐾)) → ((deg1𝐾)‘(𝑝𝑅(𝑀𝐴))) < ((deg1𝐾)‘(𝑀𝐴)))
289, 10, 21, 27syl3anc 1373 . . . . . . . 8 ((𝜑𝑝𝑈) → ((deg1𝐾)‘(𝑝𝑅(𝑀𝐴))) < ((deg1𝐾)‘(𝑀𝐴)))
29 algextdeg.d . . . . . . . . . 10 𝐷 = (deg1𝐸)
30 algextdeglem.o . . . . . . . . . . . 12 𝑂 = (𝐸 evalSub1 𝐹)
315fveq2i 6825 . . . . . . . . . . . . 13 (Poly1𝐾) = (Poly1‘(𝐸s 𝐹))
3223, 31eqtri 2752 . . . . . . . . . . . 12 𝑃 = (Poly1‘(𝐸s 𝐹))
33 eqid 2729 . . . . . . . . . . . 12 (Base‘𝐸) = (Base‘𝐸)
34 eqid 2729 . . . . . . . . . . . . . 14 (0g𝐸) = (0g𝐸)
3512fldcrngd 20627 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ CRing)
36 sdrgsubrg 20676 . . . . . . . . . . . . . . 15 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
374, 36syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ (SubRing‘𝐸))
3830, 5, 33, 34, 35, 37irngssv 33655 . . . . . . . . . . . . 13 (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸))
3938, 14sseldd 3936 . . . . . . . . . . . 12 (𝜑𝐴 ∈ (Base‘𝐸))
40 eqid 2729 . . . . . . . . . . . 12 {𝑝 ∈ dom 𝑂 ∣ ((𝑂𝑝)‘𝐴) = (0g𝐸)} = {𝑝 ∈ dom 𝑂 ∣ ((𝑂𝑝)‘𝐴) = (0g𝐸)}
41 eqid 2729 . . . . . . . . . . . 12 (RSpan‘𝑃) = (RSpan‘𝑃)
42 eqid 2729 . . . . . . . . . . . 12 (idlGen1p‘(𝐸s 𝐹)) = (idlGen1p‘(𝐸s 𝐹))
4330, 32, 33, 12, 4, 39, 34, 40, 41, 42, 13minplycl 33673 . . . . . . . . . . 11 (𝜑 → (𝑀𝐴) ∈ (Base‘𝑃))
4443, 2eleqtrrdi 2839 . . . . . . . . . 10 (𝜑 → (𝑀𝐴) ∈ 𝑈)
455, 29, 23, 2, 44, 37ressdeg1 33501 . . . . . . . . 9 (𝜑 → (𝐷‘(𝑀𝐴)) = ((deg1𝐾)‘(𝑀𝐴)))
4645adantr 480 . . . . . . . 8 ((𝜑𝑝𝑈) → (𝐷‘(𝑀𝐴)) = ((deg1𝐾)‘(𝑀𝐴)))
4728, 46breqtrrd 5120 . . . . . . 7 ((𝜑𝑝𝑈) → ((deg1𝐾)‘(𝑝𝑅(𝑀𝐴))) < (𝐷‘(𝑀𝐴)))
48 algextdeglem.t . . . . . . . . 9 𝑇 = ((deg1𝐾) “ (-∞[,)(𝐷‘(𝑀𝐴))))
4912flddrngd 20626 . . . . . . . . . . 11 (𝜑𝐸 ∈ DivRing)
5049drngringd 20622 . . . . . . . . . 10 (𝜑𝐸 ∈ Ring)
51 eqid 2729 . . . . . . . . . . . . 13 (Poly1𝐸) = (Poly1𝐸)
52 eqid 2729 . . . . . . . . . . . . 13 (PwSer1𝐾) = (PwSer1𝐾)
53 eqid 2729 . . . . . . . . . . . . 13 (Base‘(PwSer1𝐾)) = (Base‘(PwSer1𝐾))
54 eqid 2729 . . . . . . . . . . . . 13 (Base‘(Poly1𝐸)) = (Base‘(Poly1𝐸))
5551, 5, 23, 2, 37, 52, 53, 54ressply1bas2 22110 . . . . . . . . . . . 12 (𝜑𝑈 = ((Base‘(PwSer1𝐾)) ∩ (Base‘(Poly1𝐸))))
56 inss2 4189 . . . . . . . . . . . 12 ((Base‘(PwSer1𝐾)) ∩ (Base‘(Poly1𝐸))) ⊆ (Base‘(Poly1𝐸))
5755, 56eqsstrdi 3980 . . . . . . . . . . 11 (𝜑𝑈 ⊆ (Base‘(Poly1𝐸)))
5857, 44sseldd 3936 . . . . . . . . . 10 (𝜑 → (𝑀𝐴) ∈ (Base‘(Poly1𝐸)))
5911, 12, 4, 13, 14irngnminplynz 33679 . . . . . . . . . 10 (𝜑 → (𝑀𝐴) ≠ (0g‘(Poly1𝐸)))
6029, 51, 11, 54deg1nn0cl 25991 . . . . . . . . . 10 ((𝐸 ∈ Ring ∧ (𝑀𝐴) ∈ (Base‘(Poly1𝐸)) ∧ (𝑀𝐴) ≠ (0g‘(Poly1𝐸))) → (𝐷‘(𝑀𝐴)) ∈ ℕ0)
6150, 58, 59, 60syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝐷‘(𝑀𝐴)) ∈ ℕ0)
6223, 26, 48, 61, 8, 2ply1degleel 33528 . . . . . . . 8 (𝜑 → ((𝑝𝑅(𝑀𝐴)) ∈ 𝑇 ↔ ((𝑝𝑅(𝑀𝐴)) ∈ 𝑈 ∧ ((deg1𝐾)‘(𝑝𝑅(𝑀𝐴))) < (𝐷‘(𝑀𝐴)))))
6362adantr 480 . . . . . . 7 ((𝜑𝑝𝑈) → ((𝑝𝑅(𝑀𝐴)) ∈ 𝑇 ↔ ((𝑝𝑅(𝑀𝐴)) ∈ 𝑈 ∧ ((deg1𝐾)‘(𝑝𝑅(𝑀𝐴))) < (𝐷‘(𝑀𝐴)))))
6425, 47, 63mpbir2and 713 . . . . . 6 ((𝜑𝑝𝑈) → (𝑝𝑅(𝑀𝐴)) ∈ 𝑇)
6564ralrimiva 3121 . . . . 5 (𝜑 → ∀𝑝𝑈 (𝑝𝑅(𝑀𝐴)) ∈ 𝑇)
66 oveq1 7356 . . . . . . . . 9 (𝑝 = 𝑞 → (𝑝𝑅(𝑀𝐴)) = (𝑞𝑅(𝑀𝐴)))
6766eqeq2d 2740 . . . . . . . 8 (𝑝 = 𝑞 → (𝑞 = (𝑝𝑅(𝑀𝐴)) ↔ 𝑞 = (𝑞𝑅(𝑀𝐴))))
68 eqcom 2736 . . . . . . . 8 (𝑞 = (𝑞𝑅(𝑀𝐴)) ↔ (𝑞𝑅(𝑀𝐴)) = 𝑞)
6967, 68bitrdi 287 . . . . . . 7 (𝑝 = 𝑞 → (𝑞 = (𝑝𝑅(𝑀𝐴)) ↔ (𝑞𝑅(𝑀𝐴)) = 𝑞))
7023, 26, 48, 61, 8, 2ply1degltel 33527 . . . . . . . 8 (𝜑 → (𝑞𝑇 ↔ (𝑞𝑈 ∧ ((deg1𝐾)‘𝑞) ≤ ((𝐷‘(𝑀𝐴)) − 1))))
7170simprbda 498 . . . . . . 7 ((𝜑𝑞𝑇) → 𝑞𝑈)
7270simplbda 499 . . . . . . . . . 10 ((𝜑𝑞𝑇) → ((deg1𝐾)‘𝑞) ≤ ((𝐷‘(𝑀𝐴)) − 1))
7345oveq1d 7364 . . . . . . . . . . 11 (𝜑 → ((𝐷‘(𝑀𝐴)) − 1) = (((deg1𝐾)‘(𝑀𝐴)) − 1))
7473adantr 480 . . . . . . . . . 10 ((𝜑𝑞𝑇) → ((𝐷‘(𝑀𝐴)) − 1) = (((deg1𝐾)‘(𝑀𝐴)) − 1))
7572, 74breqtrd 5118 . . . . . . . . 9 ((𝜑𝑞𝑇) → ((deg1𝐾)‘𝑞) ≤ (((deg1𝐾)‘(𝑀𝐴)) − 1))
7626, 23, 2deg1cl 25986 . . . . . . . . . . 11 (𝑞𝑈 → ((deg1𝐾)‘𝑞) ∈ (ℕ0 ∪ {-∞}))
7771, 76syl 17 . . . . . . . . . 10 ((𝜑𝑞𝑇) → ((deg1𝐾)‘𝑞) ∈ (ℕ0 ∪ {-∞}))
7861nn0zd 12497 . . . . . . . . . . . 12 (𝜑 → (𝐷‘(𝑀𝐴)) ∈ ℤ)
7945, 78eqeltrrd 2829 . . . . . . . . . . 11 (𝜑 → ((deg1𝐾)‘(𝑀𝐴)) ∈ ℤ)
8079adantr 480 . . . . . . . . . 10 ((𝜑𝑞𝑇) → ((deg1𝐾)‘(𝑀𝐴)) ∈ ℤ)
81 degltlem1 25975 . . . . . . . . . 10 ((((deg1𝐾)‘𝑞) ∈ (ℕ0 ∪ {-∞}) ∧ ((deg1𝐾)‘(𝑀𝐴)) ∈ ℤ) → (((deg1𝐾)‘𝑞) < ((deg1𝐾)‘(𝑀𝐴)) ↔ ((deg1𝐾)‘𝑞) ≤ (((deg1𝐾)‘(𝑀𝐴)) − 1)))
8277, 80, 81syl2anc 584 . . . . . . . . 9 ((𝜑𝑞𝑇) → (((deg1𝐾)‘𝑞) < ((deg1𝐾)‘(𝑀𝐴)) ↔ ((deg1𝐾)‘𝑞) ≤ (((deg1𝐾)‘(𝑀𝐴)) − 1)))
8375, 82mpbird 257 . . . . . . . 8 ((𝜑𝑞𝑇) → ((deg1𝐾)‘𝑞) < ((deg1𝐾)‘(𝑀𝐴)))
84 fldsdrgfld 20683 . . . . . . . . . . . . . 14 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
8512, 4, 84syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝐸s 𝐹) ∈ Field)
865, 85eqeltrid 2832 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Field)
87 fldidom 20656 . . . . . . . . . . . 12 (𝐾 ∈ Field → 𝐾 ∈ IDomn)
8886, 87syl 17 . . . . . . . . . . 11 (𝜑𝐾 ∈ IDomn)
8988idomdomd 20611 . . . . . . . . . 10 (𝜑𝐾 ∈ Domn)
9089adantr 480 . . . . . . . . 9 ((𝜑𝑞𝑇) → 𝐾 ∈ Domn)
918, 16, 20syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑀𝐴) ∈ (Unic1p𝐾))
9291adantr 480 . . . . . . . . 9 ((𝜑𝑞𝑇) → (𝑀𝐴) ∈ (Unic1p𝐾))
9323, 2, 18, 22, 26, 90, 71, 92r1pid2 26065 . . . . . . . 8 ((𝜑𝑞𝑇) → ((𝑞𝑅(𝑀𝐴)) = 𝑞 ↔ ((deg1𝐾)‘𝑞) < ((deg1𝐾)‘(𝑀𝐴))))
9483, 93mpbird 257 . . . . . . 7 ((𝜑𝑞𝑇) → (𝑞𝑅(𝑀𝐴)) = 𝑞)
9569, 71, 94rspcedvdw 3580 . . . . . 6 ((𝜑𝑞𝑇) → ∃𝑝𝑈 𝑞 = (𝑝𝑅(𝑀𝐴)))
9695ralrimiva 3121 . . . . 5 (𝜑 → ∀𝑞𝑇𝑝𝑈 𝑞 = (𝑝𝑅(𝑀𝐴)))
97 algextdeglem.h . . . . . 6 𝐻 = (𝑝𝑈 ↦ (𝑝𝑅(𝑀𝐴)))
9897fompt 7052 . . . . 5 (𝐻:𝑈onto𝑇 ↔ (∀𝑝𝑈 (𝑝𝑅(𝑀𝐴)) ∈ 𝑇 ∧ ∀𝑞𝑇𝑝𝑈 𝑞 = (𝑝𝑅(𝑀𝐴))))
9965, 96, 98sylanbrc 583 . . . 4 (𝜑𝐻:𝑈onto𝑇)
10023ply1ring 22130 . . . . 5 (𝐾 ∈ Ring → 𝑃 ∈ Ring)
1018, 100syl 17 . . . 4 (𝜑𝑃 ∈ Ring)
1021, 3, 99, 101imasbas 17416 . . 3 (𝜑𝑇 = (Base‘(𝐻s 𝑃)))
10371ex 412 . . . . 5 (𝜑 → (𝑞𝑇𝑞𝑈))
104103ssrdv 3941 . . . 4 (𝜑𝑇𝑈)
105 eqid 2729 . . . . 5 (𝑃s 𝑇) = (𝑃s 𝑇)
106105, 2ressbas2 17149 . . . 4 (𝑇𝑈𝑇 = (Base‘(𝑃s 𝑇)))
107104, 106syl 17 . . 3 (𝜑𝑇 = (Base‘(𝑃s 𝑇)))
108 ssidd 3959 . . 3 (𝜑𝑇𝑇)
109 eqid 2729 . . . . . . 7 (𝐻s 𝑃) = (𝐻s 𝑃)
110 eqid 2729 . . . . . . 7 (Base‘(𝐻s 𝑃)) = (Base‘(𝐻s 𝑃))
111104ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑇𝑈)
112 simplr 768 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑥𝑇)
113111, 112sseldd 3936 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑥𝑈)
114 simpr 484 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑦𝑇)
115111, 114sseldd 3936 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑦𝑈)
116 foeq3 6734 . . . . . . . . . 10 (𝑇 = (Base‘(𝐻s 𝑃)) → (𝐻:𝑈onto𝑇𝐻:𝑈onto→(Base‘(𝐻s 𝑃))))
117102, 116syl 17 . . . . . . . . 9 (𝜑 → (𝐻:𝑈onto𝑇𝐻:𝑈onto→(Base‘(𝐻s 𝑃))))
11899, 117mpbid 232 . . . . . . . 8 (𝜑𝐻:𝑈onto→(Base‘(𝐻s 𝑃)))
119118ad2antrr 726 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝐻:𝑈onto→(Base‘(𝐻s 𝑃)))
12023, 2, 22, 18, 97, 8, 91r1plmhm 33542 . . . . . . . . . 10 (𝜑𝐻 ∈ (𝑃 LMHom (𝐻s 𝑃)))
121120lmhmghmd 32991 . . . . . . . . 9 (𝜑𝐻 ∈ (𝑃 GrpHom (𝐻s 𝑃)))
122 ghmmhm 19105 . . . . . . . . 9 (𝐻 ∈ (𝑃 GrpHom (𝐻s 𝑃)) → 𝐻 ∈ (𝑃 MndHom (𝐻s 𝑃)))
123121, 122syl 17 . . . . . . . 8 (𝜑𝐻 ∈ (𝑃 MndHom (𝐻s 𝑃)))
124123ad2antrr 726 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝐻 ∈ (𝑃 MndHom (𝐻s 𝑃)))
125 eqid 2729 . . . . . . 7 (+g𝑃) = (+g𝑃)
126 eqid 2729 . . . . . . 7 (+g‘(𝐻s 𝑃)) = (+g‘(𝐻s 𝑃))
127109, 2, 110, 113, 115, 119, 124, 125, 126mhmimasplusg 32992 . . . . . 6 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → ((𝐻𝑥)(+g‘(𝐻s 𝑃))(𝐻𝑦)) = (𝐻‘(𝑥(+g𝑃)𝑦)))
128 algextdeg.l . . . . . . . . 9 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
12912ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝐸 ∈ Field)
1304ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝐹 ∈ (SubDRing‘𝐸))
13114ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝐴 ∈ (𝐸 IntgRing 𝐹))
132 algextdeglem.g . . . . . . . . 9 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
133 algextdeglem.n . . . . . . . . 9 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
134 algextdeglem.z . . . . . . . . 9 𝑍 = (𝐺 “ {(0g𝐿)})
135 algextdeglem.q . . . . . . . . 9 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
136 algextdeglem.j . . . . . . . . 9 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
1375, 128, 29, 13, 129, 130, 131, 30, 23, 2, 132, 133, 134, 135, 136, 22, 97, 48, 113algextdeglem7 33690 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝑥𝑇 ↔ (𝐻𝑥) = 𝑥))
138112, 137mpbid 232 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝐻𝑥) = 𝑥)
1395, 128, 29, 13, 129, 130, 131, 30, 23, 2, 132, 133, 134, 135, 136, 22, 97, 48, 115algextdeglem7 33690 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝑦𝑇 ↔ (𝐻𝑦) = 𝑦))
140114, 139mpbid 232 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝐻𝑦) = 𝑦)
141138, 140oveq12d 7367 . . . . . 6 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → ((𝐻𝑥)(+g‘(𝐻s 𝑃))(𝐻𝑦)) = (𝑥(+g‘(𝐻s 𝑃))𝑦))
142101ringgrpd 20127 . . . . . . . . . 10 (𝜑𝑃 ∈ Grp)
14323, 7ply1lvec 33494 . . . . . . . . . . . 12 (𝜑𝑃 ∈ LVec)
14423, 26, 48, 61, 8ply1degltlss 33529 . . . . . . . . . . . 12 (𝜑𝑇 ∈ (LSubSp‘𝑃))
145 eqid 2729 . . . . . . . . . . . . 13 (LSubSp‘𝑃) = (LSubSp‘𝑃)
146105, 145lsslvec 21013 . . . . . . . . . . . 12 ((𝑃 ∈ LVec ∧ 𝑇 ∈ (LSubSp‘𝑃)) → (𝑃s 𝑇) ∈ LVec)
147143, 144, 146syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑃s 𝑇) ∈ LVec)
148147lvecgrpd 21012 . . . . . . . . . 10 (𝜑 → (𝑃s 𝑇) ∈ Grp)
1492issubg 19005 . . . . . . . . . 10 (𝑇 ∈ (SubGrp‘𝑃) ↔ (𝑃 ∈ Grp ∧ 𝑇𝑈 ∧ (𝑃s 𝑇) ∈ Grp))
150142, 104, 148, 149syl3anbrc 1344 . . . . . . . . 9 (𝜑𝑇 ∈ (SubGrp‘𝑃))
151150ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑇 ∈ (SubGrp‘𝑃))
152125subgcl 19015 . . . . . . . 8 ((𝑇 ∈ (SubGrp‘𝑃) ∧ 𝑥𝑇𝑦𝑇) → (𝑥(+g𝑃)𝑦) ∈ 𝑇)
153151, 112, 114, 152syl3anc 1373 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝑥(+g𝑃)𝑦) ∈ 𝑇)
154142ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑃 ∈ Grp)
1552, 125, 154, 113, 115grpcld 18826 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝑥(+g𝑃)𝑦) ∈ 𝑈)
1565, 128, 29, 13, 129, 130, 131, 30, 23, 2, 132, 133, 134, 135, 136, 22, 97, 48, 155algextdeglem7 33690 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → ((𝑥(+g𝑃)𝑦) ∈ 𝑇 ↔ (𝐻‘(𝑥(+g𝑃)𝑦)) = (𝑥(+g𝑃)𝑦)))
157153, 156mpbid 232 . . . . . 6 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝐻‘(𝑥(+g𝑃)𝑦)) = (𝑥(+g𝑃)𝑦))
158127, 141, 1573eqtr3d 2772 . . . . 5 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝑥(+g‘(𝐻s 𝑃))𝑦) = (𝑥(+g𝑃)𝑦))
159 fvex 6835 . . . . . . . . 9 (deg1𝐾) ∈ V
160 cnvexg 7857 . . . . . . . . 9 ((deg1𝐾) ∈ V → (deg1𝐾) ∈ V)
161 imaexg 7846 . . . . . . . . 9 ((deg1𝐾) ∈ V → ((deg1𝐾) “ (-∞[,)(𝐷‘(𝑀𝐴)))) ∈ V)
162159, 160, 161mp2b 10 . . . . . . . 8 ((deg1𝐾) “ (-∞[,)(𝐷‘(𝑀𝐴)))) ∈ V
16348, 162eqeltri 2824 . . . . . . 7 𝑇 ∈ V
164105, 125ressplusg 17195 . . . . . . 7 (𝑇 ∈ V → (+g𝑃) = (+g‘(𝑃s 𝑇)))
165163, 164ax-mp 5 . . . . . 6 (+g𝑃) = (+g‘(𝑃s 𝑇))
166165oveqi 7362 . . . . 5 (𝑥(+g𝑃)𝑦) = (𝑥(+g‘(𝑃s 𝑇))𝑦)
167158, 166eqtrdi 2780 . . . 4 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝑥(+g‘(𝐻s 𝑃))𝑦) = (𝑥(+g‘(𝑃s 𝑇))𝑦))
168167anasss 466 . . 3 ((𝜑 ∧ (𝑥𝑇𝑦𝑇)) → (𝑥(+g‘(𝐻s 𝑃))𝑦) = (𝑥(+g‘(𝑃s 𝑇))𝑦))
169 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑦𝑇)
17012adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐸 ∈ Field)
1714adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐹 ∈ (SubDRing‘𝐸))
17214adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐴 ∈ (𝐸 IntgRing 𝐹))
173104adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑇𝑈)
174173, 169sseldd 3936 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑦𝑈)
1755, 128, 29, 13, 170, 171, 172, 30, 23, 2, 132, 133, 134, 135, 136, 22, 97, 48, 174algextdeglem7 33690 . . . . . . 7 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑦𝑇 ↔ (𝐻𝑦) = 𝑦))
176169, 175mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝐻𝑦) = 𝑦)
177176oveq2d 7365 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠 ‘(𝐻s 𝑃))(𝐻𝑦)) = (𝑥( ·𝑠 ‘(𝐻s 𝑃))𝑦))
178 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑥𝐹)
17933sdrgss 20678 . . . . . . . . . 10 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ⊆ (Base‘𝐸))
1805, 33ressbas2 17149 . . . . . . . . . 10 (𝐹 ⊆ (Base‘𝐸) → 𝐹 = (Base‘𝐾))
1814, 179, 1803syl 18 . . . . . . . . 9 (𝜑𝐹 = (Base‘𝐾))
18223ply1sca 22135 . . . . . . . . . . 11 (𝐾 ∈ Ring → 𝐾 = (Scalar‘𝑃))
1838, 182syl 17 . . . . . . . . . 10 (𝜑𝐾 = (Scalar‘𝑃))
184183fveq2d 6826 . . . . . . . . 9 (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘𝑃)))
185181, 184eqtrd 2764 . . . . . . . 8 (𝜑𝐹 = (Base‘(Scalar‘𝑃)))
186185adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐹 = (Base‘(Scalar‘𝑃)))
187178, 186eleqtrd 2830 . . . . . 6 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑥 ∈ (Base‘(Scalar‘𝑃)))
188118adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐻:𝑈onto→(Base‘(𝐻s 𝑃)))
189120adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐻 ∈ (𝑃 LMHom (𝐻s 𝑃)))
190 eqid 2729 . . . . . 6 ( ·𝑠𝑃) = ( ·𝑠𝑃)
191 eqid 2729 . . . . . 6 ( ·𝑠 ‘(𝐻s 𝑃)) = ( ·𝑠 ‘(𝐻s 𝑃))
192 eqid 2729 . . . . . 6 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
193109, 2, 110, 187, 174, 188, 189, 190, 191, 192lmhmimasvsca 32993 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠 ‘(𝐻s 𝑃))(𝐻𝑦)) = (𝐻‘(𝑥( ·𝑠𝑃)𝑦)))
194177, 193eqtr3d 2766 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠 ‘(𝐻s 𝑃))𝑦) = (𝐻‘(𝑥( ·𝑠𝑃)𝑦)))
19564, 97fmptd 7048 . . . . . 6 (𝜑𝐻:𝑈𝑇)
196195adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐻:𝑈𝑇)
197 eqid 2729 . . . . . 6 (Scalar‘𝑃) = (Scalar‘𝑃)
198143lveclmodd 21011 . . . . . . 7 (𝜑𝑃 ∈ LMod)
199198adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑃 ∈ LMod)
2002, 197, 190, 192, 199, 187, 174lmodvscld 20782 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠𝑃)𝑦) ∈ 𝑈)
201196, 200ffvelcdmd 7019 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝐻‘(𝑥( ·𝑠𝑃)𝑦)) ∈ 𝑇)
202194, 201eqeltrd 2828 . . 3 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠 ‘(𝐻s 𝑃))𝑦) ∈ 𝑇)
203144adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑇 ∈ (LSubSp‘𝑃))
204197, 190, 192, 145lssvscl 20858 . . . . . 6 (((𝑃 ∈ LMod ∧ 𝑇 ∈ (LSubSp‘𝑃)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑦𝑇)) → (𝑥( ·𝑠𝑃)𝑦) ∈ 𝑇)
205199, 203, 187, 169, 204syl22anc 838 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠𝑃)𝑦) ∈ 𝑇)
2065, 128, 29, 13, 170, 171, 172, 30, 23, 2, 132, 133, 134, 135, 136, 22, 97, 48, 200algextdeglem7 33690 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → ((𝑥( ·𝑠𝑃)𝑦) ∈ 𝑇 ↔ (𝐻‘(𝑥( ·𝑠𝑃)𝑦)) = (𝑥( ·𝑠𝑃)𝑦)))
207205, 206mpbid 232 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝐻‘(𝑥( ·𝑠𝑃)𝑦)) = (𝑥( ·𝑠𝑃)𝑦))
208105, 190ressvsca 17248 . . . . . 6 (𝑇 ∈ V → ( ·𝑠𝑃) = ( ·𝑠 ‘(𝑃s 𝑇)))
209163, 208mp1i 13 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → ( ·𝑠𝑃) = ( ·𝑠 ‘(𝑃s 𝑇)))
210209oveqd 7366 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠𝑃)𝑦) = (𝑥( ·𝑠 ‘(𝑃s 𝑇))𝑦))
211194, 207, 2103eqtrd 2768 . . 3 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠 ‘(𝐻s 𝑃))𝑦) = (𝑥( ·𝑠 ‘(𝑃s 𝑇))𝑦))
212 eqid 2729 . . 3 (Scalar‘(𝐻s 𝑃)) = (Scalar‘(𝐻s 𝑃))
213105, 197resssca 17247 . . . 4 (𝑇 ∈ V → (Scalar‘𝑃) = (Scalar‘(𝑃s 𝑇)))
214163, 213ax-mp 5 . . 3 (Scalar‘𝑃) = (Scalar‘(𝑃s 𝑇))
2151, 3, 99, 101, 197imassca 17423 . . . . . 6 (𝜑 → (Scalar‘𝑃) = (Scalar‘(𝐻s 𝑃)))
216183, 215eqtrd 2764 . . . . 5 (𝜑𝐾 = (Scalar‘(𝐻s 𝑃)))
217216fveq2d 6826 . . . 4 (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘(𝐻s 𝑃))))
218181, 217eqtrd 2764 . . 3 (𝜑𝐹 = (Base‘(Scalar‘(𝐻s 𝑃))))
219215fveq2d 6826 . . . . . 6 (𝜑 → (+g‘(Scalar‘𝑃)) = (+g‘(Scalar‘(𝐻s 𝑃))))
220219oveqd 7366 . . . . 5 (𝜑 → (𝑥(+g‘(Scalar‘𝑃))𝑦) = (𝑥(+g‘(Scalar‘(𝐻s 𝑃)))𝑦))
221220eqcomd 2735 . . . 4 (𝜑 → (𝑥(+g‘(Scalar‘(𝐻s 𝑃)))𝑦) = (𝑥(+g‘(Scalar‘𝑃))𝑦))
222221adantr 480 . . 3 ((𝜑 ∧ (𝑥𝐹𝑦𝐹)) → (𝑥(+g‘(Scalar‘(𝐻s 𝑃)))𝑦) = (𝑥(+g‘(Scalar‘𝑃))𝑦))
223 lmhmlvec2 33586 . . . 4 ((𝑃 ∈ LVec ∧ 𝐻 ∈ (𝑃 LMHom (𝐻s 𝑃))) → (𝐻s 𝑃) ∈ LVec)
224143, 120, 223syl2anc 584 . . 3 (𝜑 → (𝐻s 𝑃) ∈ LVec)
225102, 107, 108, 168, 202, 211, 212, 214, 218, 185, 222, 224, 147dimpropd 33575 . 2 (𝜑 → (dim‘(𝐻s 𝑃)) = (dim‘(𝑃s 𝑇)))
22623, 26, 48, 61, 7, 105ply1degltdim 33590 . 2 (𝜑 → (dim‘(𝑃s 𝑇)) = (𝐷‘(𝑀𝐴)))
227225, 226eqtrd 2764 1 (𝜑 → (dim‘(𝐻s 𝑃)) = (𝐷‘(𝑀𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  cun 3901  cin 3902  wss 3903  {csn 4577   cuni 4858   class class class wbr 5092  cmpt 5173  ccnv 5618  dom cdm 5619  cima 5622  wf 6478  ontowfo 6480  cfv 6482  (class class class)co 7349  [cec 8623  1c1 11010  -∞cmnf 11147   < clt 11149  cle 11150  cmin 11347  0cn0 12384  cz 12471  [,)cico 13250  Basecbs 17120  s cress 17141  +gcplusg 17161  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  s cimas 17408   /s cqus 17409   MndHom cmhm 18655  Grpcgrp 18812  SubGrpcsubg 18999   ~QG cqg 19001   GrpHom cghm 19091  Ringcrg 20118  SubRingcsubrg 20454  Domncdomn 20577  IDomncidom 20578  DivRingcdr 20614  Fieldcfield 20615  SubDRingcsdrg 20671  LModclmod 20763  LSubSpclss 20834   LMHom clmhm 20923  LVecclvec 21006  RSpancrsp 21114  PwSer1cps1 22057  Poly1cpl1 22059   evalSub1 ces1 22198  deg1cdg1 25957  Monic1pcmn1 26029  Unic1pcuc1p 26030  rem1pcr1p 26032  idlGen1pcig1p 26033   fldGen cfldgen 33249  dimcldim 33565   IntgRing cirng 33650   minPoly cminply 33666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537  ax-ac2 10357  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-rpss 7659  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-inf 9333  df-oi 9402  df-r1 9660  df-rank 9661  df-dju 9797  df-card 9835  df-acn 9838  df-ac 10010  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-ico 13254  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ocomp 17182  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-imas 17412  df-mre 17488  df-mrc 17489  df-mri 17490  df-acs 17491  df-proset 18200  df-drs 18201  df-poset 18219  df-ipo 18434  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-rhm 20357  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-rlreg 20579  df-domn 20580  df-idom 20581  df-drng 20616  df-field 20617  df-sdrg 20672  df-lmod 20765  df-lss 20835  df-lsp 20875  df-lmhm 20926  df-lbs 20979  df-lvec 21007  df-sra 21077  df-rgmod 21078  df-lidl 21115  df-rsp 21116  df-cnfld 21262  df-dsmm 21639  df-frlm 21654  df-uvc 21690  df-lindf 21713  df-linds 21714  df-assa 21760  df-asp 21761  df-ascl 21762  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-evls 21979  df-evl 21980  df-psr1 22062  df-vr1 22063  df-ply1 22064  df-coe1 22065  df-evls1 22200  df-evl1 22201  df-mdeg 25958  df-deg1 25959  df-mon1 26034  df-uc1p 26035  df-q1p 26036  df-r1p 26037  df-ig1p 26038  df-dim 33566  df-irng 33651  df-minply 33667
This theorem is referenced by:  algextdeg  33692
  Copyright terms: Public domain W3C validator