Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  algextdeglem8 Structured version   Visualization version   GIF version

Theorem algextdeglem8 33737
Description: Lemma for algextdeg 33738. The dimension of the univariate polynomial remainder ring (𝐻s 𝑃) is the degree of the minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
algextdeg.k 𝐾 = (𝐸s 𝐹)
algextdeg.l 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
algextdeg.d 𝐷 = (deg1𝐸)
algextdeg.m 𝑀 = (𝐸 minPoly 𝐹)
algextdeg.f (𝜑𝐸 ∈ Field)
algextdeg.e (𝜑𝐹 ∈ (SubDRing‘𝐸))
algextdeg.a (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
algextdeglem.o 𝑂 = (𝐸 evalSub1 𝐹)
algextdeglem.y 𝑃 = (Poly1𝐾)
algextdeglem.u 𝑈 = (Base‘𝑃)
algextdeglem.g 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
algextdeglem.n 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
algextdeglem.z 𝑍 = (𝐺 “ {(0g𝐿)})
algextdeglem.q 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
algextdeglem.j 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
algextdeglem.r 𝑅 = (rem1p𝐾)
algextdeglem.h 𝐻 = (𝑝𝑈 ↦ (𝑝𝑅(𝑀𝐴)))
algextdeglem.t 𝑇 = ((deg1𝐾) “ (-∞[,)(𝐷‘(𝑀𝐴))))
Assertion
Ref Expression
algextdeglem8 (𝜑 → (dim‘(𝐻s 𝑃)) = (𝐷‘(𝑀𝐴)))
Distinct variable groups:   𝐴,𝑝   𝐸,𝑝   𝐹,𝑝,𝑥   𝐺,𝑝,𝑥   𝐻,𝑝,𝑥   𝐽,𝑝,𝑥   𝐾,𝑝   𝐿,𝑝,𝑥   𝑀,𝑝   𝑥,𝑁   𝑂,𝑝   𝑃,𝑝,𝑥   𝑄,𝑝,𝑥   𝑅,𝑝   𝑇,𝑝,𝑥   𝑈,𝑝,𝑥   𝑍,𝑝,𝑥   𝜑,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐷(𝑥,𝑝)   𝑅(𝑥)   𝐸(𝑥)   𝐾(𝑥)   𝑀(𝑥)   𝑁(𝑝)   𝑂(𝑥)

Proof of Theorem algextdeglem8
Dummy variables 𝑞 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2732 . . . 4 (𝜑 → (𝐻s 𝑃) = (𝐻s 𝑃))
2 algextdeglem.u . . . . 5 𝑈 = (Base‘𝑃)
32a1i 11 . . . 4 (𝜑𝑈 = (Base‘𝑃))
4 algextdeg.e . . . . . . . . . . 11 (𝜑𝐹 ∈ (SubDRing‘𝐸))
5 algextdeg.k . . . . . . . . . . . 12 𝐾 = (𝐸s 𝐹)
65sdrgdrng 20705 . . . . . . . . . . 11 (𝐹 ∈ (SubDRing‘𝐸) → 𝐾 ∈ DivRing)
74, 6syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ DivRing)
87drngringd 20652 . . . . . . . . 9 (𝜑𝐾 ∈ Ring)
98adantr 480 . . . . . . . 8 ((𝜑𝑝𝑈) → 𝐾 ∈ Ring)
10 simpr 484 . . . . . . . 8 ((𝜑𝑝𝑈) → 𝑝𝑈)
11 eqid 2731 . . . . . . . . . . 11 (0g‘(Poly1𝐸)) = (0g‘(Poly1𝐸))
12 algextdeg.f . . . . . . . . . . 11 (𝜑𝐸 ∈ Field)
13 algextdeg.m . . . . . . . . . . 11 𝑀 = (𝐸 minPoly 𝐹)
14 algextdeg.a . . . . . . . . . . 11 (𝜑𝐴 ∈ (𝐸 IntgRing 𝐹))
155fveq2i 6825 . . . . . . . . . . 11 (Monic1p𝐾) = (Monic1p‘(𝐸s 𝐹))
1611, 12, 4, 13, 14, 15minplym1p 33726 . . . . . . . . . 10 (𝜑 → (𝑀𝐴) ∈ (Monic1p𝐾))
1716adantr 480 . . . . . . . . 9 ((𝜑𝑝𝑈) → (𝑀𝐴) ∈ (Monic1p𝐾))
18 eqid 2731 . . . . . . . . . 10 (Unic1p𝐾) = (Unic1p𝐾)
19 eqid 2731 . . . . . . . . . 10 (Monic1p𝐾) = (Monic1p𝐾)
2018, 19mon1puc1p 26083 . . . . . . . . 9 ((𝐾 ∈ Ring ∧ (𝑀𝐴) ∈ (Monic1p𝐾)) → (𝑀𝐴) ∈ (Unic1p𝐾))
219, 17, 20syl2anc 584 . . . . . . . 8 ((𝜑𝑝𝑈) → (𝑀𝐴) ∈ (Unic1p𝐾))
22 algextdeglem.r . . . . . . . . 9 𝑅 = (rem1p𝐾)
23 algextdeglem.y . . . . . . . . 9 𝑃 = (Poly1𝐾)
2422, 23, 2, 18r1pcl 26091 . . . . . . . 8 ((𝐾 ∈ Ring ∧ 𝑝𝑈 ∧ (𝑀𝐴) ∈ (Unic1p𝐾)) → (𝑝𝑅(𝑀𝐴)) ∈ 𝑈)
259, 10, 21, 24syl3anc 1373 . . . . . . 7 ((𝜑𝑝𝑈) → (𝑝𝑅(𝑀𝐴)) ∈ 𝑈)
26 eqid 2731 . . . . . . . . . 10 (deg1𝐾) = (deg1𝐾)
2722, 23, 2, 18, 26r1pdeglt 26092 . . . . . . . . 9 ((𝐾 ∈ Ring ∧ 𝑝𝑈 ∧ (𝑀𝐴) ∈ (Unic1p𝐾)) → ((deg1𝐾)‘(𝑝𝑅(𝑀𝐴))) < ((deg1𝐾)‘(𝑀𝐴)))
289, 10, 21, 27syl3anc 1373 . . . . . . . 8 ((𝜑𝑝𝑈) → ((deg1𝐾)‘(𝑝𝑅(𝑀𝐴))) < ((deg1𝐾)‘(𝑀𝐴)))
29 algextdeg.d . . . . . . . . . 10 𝐷 = (deg1𝐸)
30 algextdeglem.o . . . . . . . . . . . 12 𝑂 = (𝐸 evalSub1 𝐹)
315fveq2i 6825 . . . . . . . . . . . . 13 (Poly1𝐾) = (Poly1‘(𝐸s 𝐹))
3223, 31eqtri 2754 . . . . . . . . . . . 12 𝑃 = (Poly1‘(𝐸s 𝐹))
33 eqid 2731 . . . . . . . . . . . 12 (Base‘𝐸) = (Base‘𝐸)
34 eqid 2731 . . . . . . . . . . . . . 14 (0g𝐸) = (0g𝐸)
3512fldcrngd 20657 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ CRing)
36 sdrgsubrg 20706 . . . . . . . . . . . . . . 15 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
374, 36syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ (SubRing‘𝐸))
3830, 5, 33, 34, 35, 37irngssv 33701 . . . . . . . . . . . . 13 (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸))
3938, 14sseldd 3930 . . . . . . . . . . . 12 (𝜑𝐴 ∈ (Base‘𝐸))
40 eqid 2731 . . . . . . . . . . . 12 {𝑝 ∈ dom 𝑂 ∣ ((𝑂𝑝)‘𝐴) = (0g𝐸)} = {𝑝 ∈ dom 𝑂 ∣ ((𝑂𝑝)‘𝐴) = (0g𝐸)}
41 eqid 2731 . . . . . . . . . . . 12 (RSpan‘𝑃) = (RSpan‘𝑃)
42 eqid 2731 . . . . . . . . . . . 12 (idlGen1p‘(𝐸s 𝐹)) = (idlGen1p‘(𝐸s 𝐹))
4330, 32, 33, 12, 4, 39, 34, 40, 41, 42, 13minplycl 33719 . . . . . . . . . . 11 (𝜑 → (𝑀𝐴) ∈ (Base‘𝑃))
4443, 2eleqtrrdi 2842 . . . . . . . . . 10 (𝜑 → (𝑀𝐴) ∈ 𝑈)
455, 29, 23, 2, 44, 37ressdeg1 33529 . . . . . . . . 9 (𝜑 → (𝐷‘(𝑀𝐴)) = ((deg1𝐾)‘(𝑀𝐴)))
4645adantr 480 . . . . . . . 8 ((𝜑𝑝𝑈) → (𝐷‘(𝑀𝐴)) = ((deg1𝐾)‘(𝑀𝐴)))
4728, 46breqtrrd 5117 . . . . . . 7 ((𝜑𝑝𝑈) → ((deg1𝐾)‘(𝑝𝑅(𝑀𝐴))) < (𝐷‘(𝑀𝐴)))
48 algextdeglem.t . . . . . . . . 9 𝑇 = ((deg1𝐾) “ (-∞[,)(𝐷‘(𝑀𝐴))))
4912flddrngd 20656 . . . . . . . . . . 11 (𝜑𝐸 ∈ DivRing)
5049drngringd 20652 . . . . . . . . . 10 (𝜑𝐸 ∈ Ring)
51 eqid 2731 . . . . . . . . . . . . 13 (Poly1𝐸) = (Poly1𝐸)
52 eqid 2731 . . . . . . . . . . . . 13 (PwSer1𝐾) = (PwSer1𝐾)
53 eqid 2731 . . . . . . . . . . . . 13 (Base‘(PwSer1𝐾)) = (Base‘(PwSer1𝐾))
54 eqid 2731 . . . . . . . . . . . . 13 (Base‘(Poly1𝐸)) = (Base‘(Poly1𝐸))
5551, 5, 23, 2, 37, 52, 53, 54ressply1bas2 22140 . . . . . . . . . . . 12 (𝜑𝑈 = ((Base‘(PwSer1𝐾)) ∩ (Base‘(Poly1𝐸))))
56 inss2 4185 . . . . . . . . . . . 12 ((Base‘(PwSer1𝐾)) ∩ (Base‘(Poly1𝐸))) ⊆ (Base‘(Poly1𝐸))
5755, 56eqsstrdi 3974 . . . . . . . . . . 11 (𝜑𝑈 ⊆ (Base‘(Poly1𝐸)))
5857, 44sseldd 3930 . . . . . . . . . 10 (𝜑 → (𝑀𝐴) ∈ (Base‘(Poly1𝐸)))
5911, 12, 4, 13, 14irngnminplynz 33725 . . . . . . . . . 10 (𝜑 → (𝑀𝐴) ≠ (0g‘(Poly1𝐸)))
6029, 51, 11, 54deg1nn0cl 26020 . . . . . . . . . 10 ((𝐸 ∈ Ring ∧ (𝑀𝐴) ∈ (Base‘(Poly1𝐸)) ∧ (𝑀𝐴) ≠ (0g‘(Poly1𝐸))) → (𝐷‘(𝑀𝐴)) ∈ ℕ0)
6150, 58, 59, 60syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝐷‘(𝑀𝐴)) ∈ ℕ0)
6223, 26, 48, 61, 8, 2ply1degleel 33556 . . . . . . . 8 (𝜑 → ((𝑝𝑅(𝑀𝐴)) ∈ 𝑇 ↔ ((𝑝𝑅(𝑀𝐴)) ∈ 𝑈 ∧ ((deg1𝐾)‘(𝑝𝑅(𝑀𝐴))) < (𝐷‘(𝑀𝐴)))))
6362adantr 480 . . . . . . 7 ((𝜑𝑝𝑈) → ((𝑝𝑅(𝑀𝐴)) ∈ 𝑇 ↔ ((𝑝𝑅(𝑀𝐴)) ∈ 𝑈 ∧ ((deg1𝐾)‘(𝑝𝑅(𝑀𝐴))) < (𝐷‘(𝑀𝐴)))))
6425, 47, 63mpbir2and 713 . . . . . 6 ((𝜑𝑝𝑈) → (𝑝𝑅(𝑀𝐴)) ∈ 𝑇)
6564ralrimiva 3124 . . . . 5 (𝜑 → ∀𝑝𝑈 (𝑝𝑅(𝑀𝐴)) ∈ 𝑇)
66 oveq1 7353 . . . . . . . . 9 (𝑝 = 𝑞 → (𝑝𝑅(𝑀𝐴)) = (𝑞𝑅(𝑀𝐴)))
6766eqeq2d 2742 . . . . . . . 8 (𝑝 = 𝑞 → (𝑞 = (𝑝𝑅(𝑀𝐴)) ↔ 𝑞 = (𝑞𝑅(𝑀𝐴))))
68 eqcom 2738 . . . . . . . 8 (𝑞 = (𝑞𝑅(𝑀𝐴)) ↔ (𝑞𝑅(𝑀𝐴)) = 𝑞)
6967, 68bitrdi 287 . . . . . . 7 (𝑝 = 𝑞 → (𝑞 = (𝑝𝑅(𝑀𝐴)) ↔ (𝑞𝑅(𝑀𝐴)) = 𝑞))
7023, 26, 48, 61, 8, 2ply1degltel 33555 . . . . . . . 8 (𝜑 → (𝑞𝑇 ↔ (𝑞𝑈 ∧ ((deg1𝐾)‘𝑞) ≤ ((𝐷‘(𝑀𝐴)) − 1))))
7170simprbda 498 . . . . . . 7 ((𝜑𝑞𝑇) → 𝑞𝑈)
7270simplbda 499 . . . . . . . . . 10 ((𝜑𝑞𝑇) → ((deg1𝐾)‘𝑞) ≤ ((𝐷‘(𝑀𝐴)) − 1))
7345oveq1d 7361 . . . . . . . . . . 11 (𝜑 → ((𝐷‘(𝑀𝐴)) − 1) = (((deg1𝐾)‘(𝑀𝐴)) − 1))
7473adantr 480 . . . . . . . . . 10 ((𝜑𝑞𝑇) → ((𝐷‘(𝑀𝐴)) − 1) = (((deg1𝐾)‘(𝑀𝐴)) − 1))
7572, 74breqtrd 5115 . . . . . . . . 9 ((𝜑𝑞𝑇) → ((deg1𝐾)‘𝑞) ≤ (((deg1𝐾)‘(𝑀𝐴)) − 1))
7626, 23, 2deg1cl 26015 . . . . . . . . . . 11 (𝑞𝑈 → ((deg1𝐾)‘𝑞) ∈ (ℕ0 ∪ {-∞}))
7771, 76syl 17 . . . . . . . . . 10 ((𝜑𝑞𝑇) → ((deg1𝐾)‘𝑞) ∈ (ℕ0 ∪ {-∞}))
7861nn0zd 12494 . . . . . . . . . . . 12 (𝜑 → (𝐷‘(𝑀𝐴)) ∈ ℤ)
7945, 78eqeltrrd 2832 . . . . . . . . . . 11 (𝜑 → ((deg1𝐾)‘(𝑀𝐴)) ∈ ℤ)
8079adantr 480 . . . . . . . . . 10 ((𝜑𝑞𝑇) → ((deg1𝐾)‘(𝑀𝐴)) ∈ ℤ)
81 degltlem1 26004 . . . . . . . . . 10 ((((deg1𝐾)‘𝑞) ∈ (ℕ0 ∪ {-∞}) ∧ ((deg1𝐾)‘(𝑀𝐴)) ∈ ℤ) → (((deg1𝐾)‘𝑞) < ((deg1𝐾)‘(𝑀𝐴)) ↔ ((deg1𝐾)‘𝑞) ≤ (((deg1𝐾)‘(𝑀𝐴)) − 1)))
8277, 80, 81syl2anc 584 . . . . . . . . 9 ((𝜑𝑞𝑇) → (((deg1𝐾)‘𝑞) < ((deg1𝐾)‘(𝑀𝐴)) ↔ ((deg1𝐾)‘𝑞) ≤ (((deg1𝐾)‘(𝑀𝐴)) − 1)))
8375, 82mpbird 257 . . . . . . . 8 ((𝜑𝑞𝑇) → ((deg1𝐾)‘𝑞) < ((deg1𝐾)‘(𝑀𝐴)))
84 fldsdrgfld 20713 . . . . . . . . . . . . . 14 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
8512, 4, 84syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝐸s 𝐹) ∈ Field)
865, 85eqeltrid 2835 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Field)
87 fldidom 20686 . . . . . . . . . . . 12 (𝐾 ∈ Field → 𝐾 ∈ IDomn)
8886, 87syl 17 . . . . . . . . . . 11 (𝜑𝐾 ∈ IDomn)
8988idomdomd 20641 . . . . . . . . . 10 (𝜑𝐾 ∈ Domn)
9089adantr 480 . . . . . . . . 9 ((𝜑𝑞𝑇) → 𝐾 ∈ Domn)
918, 16, 20syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑀𝐴) ∈ (Unic1p𝐾))
9291adantr 480 . . . . . . . . 9 ((𝜑𝑞𝑇) → (𝑀𝐴) ∈ (Unic1p𝐾))
9323, 2, 18, 22, 26, 90, 71, 92r1pid2 26094 . . . . . . . 8 ((𝜑𝑞𝑇) → ((𝑞𝑅(𝑀𝐴)) = 𝑞 ↔ ((deg1𝐾)‘𝑞) < ((deg1𝐾)‘(𝑀𝐴))))
9483, 93mpbird 257 . . . . . . 7 ((𝜑𝑞𝑇) → (𝑞𝑅(𝑀𝐴)) = 𝑞)
9569, 71, 94rspcedvdw 3575 . . . . . 6 ((𝜑𝑞𝑇) → ∃𝑝𝑈 𝑞 = (𝑝𝑅(𝑀𝐴)))
9695ralrimiva 3124 . . . . 5 (𝜑 → ∀𝑞𝑇𝑝𝑈 𝑞 = (𝑝𝑅(𝑀𝐴)))
97 algextdeglem.h . . . . . 6 𝐻 = (𝑝𝑈 ↦ (𝑝𝑅(𝑀𝐴)))
9897fompt 7051 . . . . 5 (𝐻:𝑈onto𝑇 ↔ (∀𝑝𝑈 (𝑝𝑅(𝑀𝐴)) ∈ 𝑇 ∧ ∀𝑞𝑇𝑝𝑈 𝑞 = (𝑝𝑅(𝑀𝐴))))
9965, 96, 98sylanbrc 583 . . . 4 (𝜑𝐻:𝑈onto𝑇)
10023ply1ring 22160 . . . . 5 (𝐾 ∈ Ring → 𝑃 ∈ Ring)
1018, 100syl 17 . . . 4 (𝜑𝑃 ∈ Ring)
1021, 3, 99, 101imasbas 17416 . . 3 (𝜑𝑇 = (Base‘(𝐻s 𝑃)))
10371ex 412 . . . . 5 (𝜑 → (𝑞𝑇𝑞𝑈))
104103ssrdv 3935 . . . 4 (𝜑𝑇𝑈)
105 eqid 2731 . . . . 5 (𝑃s 𝑇) = (𝑃s 𝑇)
106105, 2ressbas2 17149 . . . 4 (𝑇𝑈𝑇 = (Base‘(𝑃s 𝑇)))
107104, 106syl 17 . . 3 (𝜑𝑇 = (Base‘(𝑃s 𝑇)))
108 ssidd 3953 . . 3 (𝜑𝑇𝑇)
109 eqid 2731 . . . . . . 7 (𝐻s 𝑃) = (𝐻s 𝑃)
110 eqid 2731 . . . . . . 7 (Base‘(𝐻s 𝑃)) = (Base‘(𝐻s 𝑃))
111104ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑇𝑈)
112 simplr 768 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑥𝑇)
113111, 112sseldd 3930 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑥𝑈)
114 simpr 484 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑦𝑇)
115111, 114sseldd 3930 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑦𝑈)
116 foeq3 6733 . . . . . . . . . 10 (𝑇 = (Base‘(𝐻s 𝑃)) → (𝐻:𝑈onto𝑇𝐻:𝑈onto→(Base‘(𝐻s 𝑃))))
117102, 116syl 17 . . . . . . . . 9 (𝜑 → (𝐻:𝑈onto𝑇𝐻:𝑈onto→(Base‘(𝐻s 𝑃))))
11899, 117mpbid 232 . . . . . . . 8 (𝜑𝐻:𝑈onto→(Base‘(𝐻s 𝑃)))
119118ad2antrr 726 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝐻:𝑈onto→(Base‘(𝐻s 𝑃)))
12023, 2, 22, 18, 97, 8, 91r1plmhm 33570 . . . . . . . . . 10 (𝜑𝐻 ∈ (𝑃 LMHom (𝐻s 𝑃)))
121120lmhmghmd 33018 . . . . . . . . 9 (𝜑𝐻 ∈ (𝑃 GrpHom (𝐻s 𝑃)))
122 ghmmhm 19138 . . . . . . . . 9 (𝐻 ∈ (𝑃 GrpHom (𝐻s 𝑃)) → 𝐻 ∈ (𝑃 MndHom (𝐻s 𝑃)))
123121, 122syl 17 . . . . . . . 8 (𝜑𝐻 ∈ (𝑃 MndHom (𝐻s 𝑃)))
124123ad2antrr 726 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝐻 ∈ (𝑃 MndHom (𝐻s 𝑃)))
125 eqid 2731 . . . . . . 7 (+g𝑃) = (+g𝑃)
126 eqid 2731 . . . . . . 7 (+g‘(𝐻s 𝑃)) = (+g‘(𝐻s 𝑃))
127109, 2, 110, 113, 115, 119, 124, 125, 126mhmimasplusg 33019 . . . . . 6 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → ((𝐻𝑥)(+g‘(𝐻s 𝑃))(𝐻𝑦)) = (𝐻‘(𝑥(+g𝑃)𝑦)))
128 algextdeg.l . . . . . . . . 9 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝐴})))
12912ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝐸 ∈ Field)
1304ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝐹 ∈ (SubDRing‘𝐸))
13114ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝐴 ∈ (𝐸 IntgRing 𝐹))
132 algextdeglem.g . . . . . . . . 9 𝐺 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝐴))
133 algextdeglem.n . . . . . . . . 9 𝑁 = (𝑥𝑈 ↦ [𝑥](𝑃 ~QG 𝑍))
134 algextdeglem.z . . . . . . . . 9 𝑍 = (𝐺 “ {(0g𝐿)})
135 algextdeglem.q . . . . . . . . 9 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
136 algextdeglem.j . . . . . . . . 9 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ (𝐺𝑝))
1375, 128, 29, 13, 129, 130, 131, 30, 23, 2, 132, 133, 134, 135, 136, 22, 97, 48, 113algextdeglem7 33736 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝑥𝑇 ↔ (𝐻𝑥) = 𝑥))
138112, 137mpbid 232 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝐻𝑥) = 𝑥)
1395, 128, 29, 13, 129, 130, 131, 30, 23, 2, 132, 133, 134, 135, 136, 22, 97, 48, 115algextdeglem7 33736 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝑦𝑇 ↔ (𝐻𝑦) = 𝑦))
140114, 139mpbid 232 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝐻𝑦) = 𝑦)
141138, 140oveq12d 7364 . . . . . 6 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → ((𝐻𝑥)(+g‘(𝐻s 𝑃))(𝐻𝑦)) = (𝑥(+g‘(𝐻s 𝑃))𝑦))
142101ringgrpd 20160 . . . . . . . . . 10 (𝜑𝑃 ∈ Grp)
14323, 7ply1lvec 33522 . . . . . . . . . . . 12 (𝜑𝑃 ∈ LVec)
14423, 26, 48, 61, 8ply1degltlss 33557 . . . . . . . . . . . 12 (𝜑𝑇 ∈ (LSubSp‘𝑃))
145 eqid 2731 . . . . . . . . . . . . 13 (LSubSp‘𝑃) = (LSubSp‘𝑃)
146105, 145lsslvec 21043 . . . . . . . . . . . 12 ((𝑃 ∈ LVec ∧ 𝑇 ∈ (LSubSp‘𝑃)) → (𝑃s 𝑇) ∈ LVec)
147143, 144, 146syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑃s 𝑇) ∈ LVec)
148147lvecgrpd 21042 . . . . . . . . . 10 (𝜑 → (𝑃s 𝑇) ∈ Grp)
1492issubg 19039 . . . . . . . . . 10 (𝑇 ∈ (SubGrp‘𝑃) ↔ (𝑃 ∈ Grp ∧ 𝑇𝑈 ∧ (𝑃s 𝑇) ∈ Grp))
150142, 104, 148, 149syl3anbrc 1344 . . . . . . . . 9 (𝜑𝑇 ∈ (SubGrp‘𝑃))
151150ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑇 ∈ (SubGrp‘𝑃))
152125subgcl 19049 . . . . . . . 8 ((𝑇 ∈ (SubGrp‘𝑃) ∧ 𝑥𝑇𝑦𝑇) → (𝑥(+g𝑃)𝑦) ∈ 𝑇)
153151, 112, 114, 152syl3anc 1373 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝑥(+g𝑃)𝑦) ∈ 𝑇)
154142ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → 𝑃 ∈ Grp)
1552, 125, 154, 113, 115grpcld 18860 . . . . . . . 8 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝑥(+g𝑃)𝑦) ∈ 𝑈)
1565, 128, 29, 13, 129, 130, 131, 30, 23, 2, 132, 133, 134, 135, 136, 22, 97, 48, 155algextdeglem7 33736 . . . . . . 7 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → ((𝑥(+g𝑃)𝑦) ∈ 𝑇 ↔ (𝐻‘(𝑥(+g𝑃)𝑦)) = (𝑥(+g𝑃)𝑦)))
157153, 156mpbid 232 . . . . . 6 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝐻‘(𝑥(+g𝑃)𝑦)) = (𝑥(+g𝑃)𝑦))
158127, 141, 1573eqtr3d 2774 . . . . 5 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝑥(+g‘(𝐻s 𝑃))𝑦) = (𝑥(+g𝑃)𝑦))
159 fvex 6835 . . . . . . . . 9 (deg1𝐾) ∈ V
160 cnvexg 7854 . . . . . . . . 9 ((deg1𝐾) ∈ V → (deg1𝐾) ∈ V)
161 imaexg 7843 . . . . . . . . 9 ((deg1𝐾) ∈ V → ((deg1𝐾) “ (-∞[,)(𝐷‘(𝑀𝐴)))) ∈ V)
162159, 160, 161mp2b 10 . . . . . . . 8 ((deg1𝐾) “ (-∞[,)(𝐷‘(𝑀𝐴)))) ∈ V
16348, 162eqeltri 2827 . . . . . . 7 𝑇 ∈ V
164105, 125ressplusg 17195 . . . . . . 7 (𝑇 ∈ V → (+g𝑃) = (+g‘(𝑃s 𝑇)))
165163, 164ax-mp 5 . . . . . 6 (+g𝑃) = (+g‘(𝑃s 𝑇))
166165oveqi 7359 . . . . 5 (𝑥(+g𝑃)𝑦) = (𝑥(+g‘(𝑃s 𝑇))𝑦)
167158, 166eqtrdi 2782 . . . 4 (((𝜑𝑥𝑇) ∧ 𝑦𝑇) → (𝑥(+g‘(𝐻s 𝑃))𝑦) = (𝑥(+g‘(𝑃s 𝑇))𝑦))
168167anasss 466 . . 3 ((𝜑 ∧ (𝑥𝑇𝑦𝑇)) → (𝑥(+g‘(𝐻s 𝑃))𝑦) = (𝑥(+g‘(𝑃s 𝑇))𝑦))
169 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑦𝑇)
17012adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐸 ∈ Field)
1714adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐹 ∈ (SubDRing‘𝐸))
17214adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐴 ∈ (𝐸 IntgRing 𝐹))
173104adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑇𝑈)
174173, 169sseldd 3930 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑦𝑈)
1755, 128, 29, 13, 170, 171, 172, 30, 23, 2, 132, 133, 134, 135, 136, 22, 97, 48, 174algextdeglem7 33736 . . . . . . 7 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑦𝑇 ↔ (𝐻𝑦) = 𝑦))
176169, 175mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝐻𝑦) = 𝑦)
177176oveq2d 7362 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠 ‘(𝐻s 𝑃))(𝐻𝑦)) = (𝑥( ·𝑠 ‘(𝐻s 𝑃))𝑦))
178 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑥𝐹)
17933sdrgss 20708 . . . . . . . . . 10 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ⊆ (Base‘𝐸))
1805, 33ressbas2 17149 . . . . . . . . . 10 (𝐹 ⊆ (Base‘𝐸) → 𝐹 = (Base‘𝐾))
1814, 179, 1803syl 18 . . . . . . . . 9 (𝜑𝐹 = (Base‘𝐾))
18223ply1sca 22165 . . . . . . . . . . 11 (𝐾 ∈ Ring → 𝐾 = (Scalar‘𝑃))
1838, 182syl 17 . . . . . . . . . 10 (𝜑𝐾 = (Scalar‘𝑃))
184183fveq2d 6826 . . . . . . . . 9 (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘𝑃)))
185181, 184eqtrd 2766 . . . . . . . 8 (𝜑𝐹 = (Base‘(Scalar‘𝑃)))
186185adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐹 = (Base‘(Scalar‘𝑃)))
187178, 186eleqtrd 2833 . . . . . 6 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑥 ∈ (Base‘(Scalar‘𝑃)))
188118adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐻:𝑈onto→(Base‘(𝐻s 𝑃)))
189120adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐻 ∈ (𝑃 LMHom (𝐻s 𝑃)))
190 eqid 2731 . . . . . 6 ( ·𝑠𝑃) = ( ·𝑠𝑃)
191 eqid 2731 . . . . . 6 ( ·𝑠 ‘(𝐻s 𝑃)) = ( ·𝑠 ‘(𝐻s 𝑃))
192 eqid 2731 . . . . . 6 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
193109, 2, 110, 187, 174, 188, 189, 190, 191, 192lmhmimasvsca 33020 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠 ‘(𝐻s 𝑃))(𝐻𝑦)) = (𝐻‘(𝑥( ·𝑠𝑃)𝑦)))
194177, 193eqtr3d 2768 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠 ‘(𝐻s 𝑃))𝑦) = (𝐻‘(𝑥( ·𝑠𝑃)𝑦)))
19564, 97fmptd 7047 . . . . . 6 (𝜑𝐻:𝑈𝑇)
196195adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝐻:𝑈𝑇)
197 eqid 2731 . . . . . 6 (Scalar‘𝑃) = (Scalar‘𝑃)
198143lveclmodd 21041 . . . . . . 7 (𝜑𝑃 ∈ LMod)
199198adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑃 ∈ LMod)
2002, 197, 190, 192, 199, 187, 174lmodvscld 20812 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠𝑃)𝑦) ∈ 𝑈)
201196, 200ffvelcdmd 7018 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝐻‘(𝑥( ·𝑠𝑃)𝑦)) ∈ 𝑇)
202194, 201eqeltrd 2831 . . 3 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠 ‘(𝐻s 𝑃))𝑦) ∈ 𝑇)
203144adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → 𝑇 ∈ (LSubSp‘𝑃))
204197, 190, 192, 145lssvscl 20888 . . . . . 6 (((𝑃 ∈ LMod ∧ 𝑇 ∈ (LSubSp‘𝑃)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑦𝑇)) → (𝑥( ·𝑠𝑃)𝑦) ∈ 𝑇)
205199, 203, 187, 169, 204syl22anc 838 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠𝑃)𝑦) ∈ 𝑇)
2065, 128, 29, 13, 170, 171, 172, 30, 23, 2, 132, 133, 134, 135, 136, 22, 97, 48, 200algextdeglem7 33736 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → ((𝑥( ·𝑠𝑃)𝑦) ∈ 𝑇 ↔ (𝐻‘(𝑥( ·𝑠𝑃)𝑦)) = (𝑥( ·𝑠𝑃)𝑦)))
207205, 206mpbid 232 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝐻‘(𝑥( ·𝑠𝑃)𝑦)) = (𝑥( ·𝑠𝑃)𝑦))
208105, 190ressvsca 17248 . . . . . 6 (𝑇 ∈ V → ( ·𝑠𝑃) = ( ·𝑠 ‘(𝑃s 𝑇)))
209163, 208mp1i 13 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → ( ·𝑠𝑃) = ( ·𝑠 ‘(𝑃s 𝑇)))
210209oveqd 7363 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠𝑃)𝑦) = (𝑥( ·𝑠 ‘(𝑃s 𝑇))𝑦))
211194, 207, 2103eqtrd 2770 . . 3 ((𝜑 ∧ (𝑥𝐹𝑦𝑇)) → (𝑥( ·𝑠 ‘(𝐻s 𝑃))𝑦) = (𝑥( ·𝑠 ‘(𝑃s 𝑇))𝑦))
212 eqid 2731 . . 3 (Scalar‘(𝐻s 𝑃)) = (Scalar‘(𝐻s 𝑃))
213105, 197resssca 17247 . . . 4 (𝑇 ∈ V → (Scalar‘𝑃) = (Scalar‘(𝑃s 𝑇)))
214163, 213ax-mp 5 . . 3 (Scalar‘𝑃) = (Scalar‘(𝑃s 𝑇))
2151, 3, 99, 101, 197imassca 17423 . . . . . 6 (𝜑 → (Scalar‘𝑃) = (Scalar‘(𝐻s 𝑃)))
216183, 215eqtrd 2766 . . . . 5 (𝜑𝐾 = (Scalar‘(𝐻s 𝑃)))
217216fveq2d 6826 . . . 4 (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘(𝐻s 𝑃))))
218181, 217eqtrd 2766 . . 3 (𝜑𝐹 = (Base‘(Scalar‘(𝐻s 𝑃))))
219215fveq2d 6826 . . . . . 6 (𝜑 → (+g‘(Scalar‘𝑃)) = (+g‘(Scalar‘(𝐻s 𝑃))))
220219oveqd 7363 . . . . 5 (𝜑 → (𝑥(+g‘(Scalar‘𝑃))𝑦) = (𝑥(+g‘(Scalar‘(𝐻s 𝑃)))𝑦))
221220eqcomd 2737 . . . 4 (𝜑 → (𝑥(+g‘(Scalar‘(𝐻s 𝑃)))𝑦) = (𝑥(+g‘(Scalar‘𝑃))𝑦))
222221adantr 480 . . 3 ((𝜑 ∧ (𝑥𝐹𝑦𝐹)) → (𝑥(+g‘(Scalar‘(𝐻s 𝑃)))𝑦) = (𝑥(+g‘(Scalar‘𝑃))𝑦))
223 lmhmlvec2 33632 . . . 4 ((𝑃 ∈ LVec ∧ 𝐻 ∈ (𝑃 LMHom (𝐻s 𝑃))) → (𝐻s 𝑃) ∈ LVec)
224143, 120, 223syl2anc 584 . . 3 (𝜑 → (𝐻s 𝑃) ∈ LVec)
225102, 107, 108, 168, 202, 211, 212, 214, 218, 185, 222, 224, 147dimpropd 33621 . 2 (𝜑 → (dim‘(𝐻s 𝑃)) = (dim‘(𝑃s 𝑇)))
22623, 26, 48, 61, 7, 105ply1degltdim 33636 . 2 (𝜑 → (dim‘(𝑃s 𝑇)) = (𝐷‘(𝑀𝐴)))
227225, 226eqtrd 2766 1 (𝜑 → (dim‘(𝐻s 𝑃)) = (𝐷‘(𝑀𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  cun 3895  cin 3896  wss 3897  {csn 4573   cuni 4856   class class class wbr 5089  cmpt 5170  ccnv 5613  dom cdm 5614  cima 5617  wf 6477  ontowfo 6479  cfv 6481  (class class class)co 7346  [cec 8620  1c1 11007  -∞cmnf 11144   < clt 11146  cle 11147  cmin 11344  0cn0 12381  cz 12468  [,)cico 13247  Basecbs 17120  s cress 17141  +gcplusg 17161  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  s cimas 17408   /s cqus 17409   MndHom cmhm 18689  Grpcgrp 18846  SubGrpcsubg 19033   ~QG cqg 19035   GrpHom cghm 19124  Ringcrg 20151  SubRingcsubrg 20484  Domncdomn 20607  IDomncidom 20608  DivRingcdr 20644  Fieldcfield 20645  SubDRingcsdrg 20701  LModclmod 20793  LSubSpclss 20864   LMHom clmhm 20953  LVecclvec 21036  RSpancrsp 21144  PwSer1cps1 22087  Poly1cpl1 22089   evalSub1 ces1 22228  deg1cdg1 25986  Monic1pcmn1 26058  Unic1pcuc1p 26059  rem1pcr1p 26061  idlGen1pcig1p 26062   fldGen cfldgen 33276  dimcldim 33611   IntgRing cirng 33696   minPoly cminply 33712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-reg 9478  ax-inf2 9531  ax-ac2 10354  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-rpss 7656  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-inf 9327  df-oi 9396  df-r1 9657  df-rank 9658  df-dju 9794  df-card 9832  df-acn 9835  df-ac 10007  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-ico 13251  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ocomp 17182  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-imas 17412  df-mre 17488  df-mrc 17489  df-mri 17490  df-acs 17491  df-proset 18200  df-drs 18201  df-poset 18219  df-ipo 18434  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-srg 20105  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-rhm 20390  df-nzr 20428  df-subrng 20461  df-subrg 20485  df-rlreg 20609  df-domn 20610  df-idom 20611  df-drng 20646  df-field 20647  df-sdrg 20702  df-lmod 20795  df-lss 20865  df-lsp 20905  df-lmhm 20956  df-lbs 21009  df-lvec 21037  df-sra 21107  df-rgmod 21108  df-lidl 21145  df-rsp 21146  df-cnfld 21292  df-dsmm 21669  df-frlm 21684  df-uvc 21720  df-lindf 21743  df-linds 21744  df-assa 21790  df-asp 21791  df-ascl 21792  df-psr 21846  df-mvr 21847  df-mpl 21848  df-opsr 21850  df-evls 22009  df-evl 22010  df-psr1 22092  df-vr1 22093  df-ply1 22094  df-coe1 22095  df-evls1 22230  df-evl1 22231  df-mdeg 25987  df-deg1 25988  df-mon1 26063  df-uc1p 26064  df-q1p 26065  df-r1p 26066  df-ig1p 26067  df-dim 33612  df-irng 33697  df-minply 33713
This theorem is referenced by:  algextdeg  33738
  Copyright terms: Public domain W3C validator