MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecgrpd Structured version   Visualization version   GIF version

Theorem lvecgrpd 21015
Description: A vector space is a group. (Contributed by SN, 16-May-2024.)
Hypothesis
Ref Expression
lvecgrpd.1 (𝜑𝑊 ∈ LVec)
Assertion
Ref Expression
lvecgrpd (𝜑𝑊 ∈ Grp)

Proof of Theorem lvecgrpd
StepHypRef Expression
1 lvecgrpd.1 . . 3 (𝜑𝑊 ∈ LVec)
21lveclmodd 21014 . 2 (𝜑𝑊 ∈ LMod)
32lmodgrpd 20776 1 (𝜑𝑊 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Grpcgrp 18865  LVecclvec 21009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-lmod 20768  df-lvec 21010
This theorem is referenced by:  dimkerim  33623  lvecendof1f1o  33629  algextdeglem8  33714
  Copyright terms: Public domain W3C validator