MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecgrpd Structured version   Visualization version   GIF version

Theorem lvecgrpd 21066
Description: A vector space is a group. (Contributed by SN, 16-May-2024.)
Hypothesis
Ref Expression
lvecgrpd.1 (𝜑𝑊 ∈ LVec)
Assertion
Ref Expression
lvecgrpd (𝜑𝑊 ∈ Grp)

Proof of Theorem lvecgrpd
StepHypRef Expression
1 lvecgrpd.1 . . 3 (𝜑𝑊 ∈ LVec)
21lveclmodd 21065 . 2 (𝜑𝑊 ∈ LMod)
32lmodgrpd 20827 1 (𝜑𝑊 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Grpcgrp 18916  LVecclvec 21060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ov 7408  df-lmod 20819  df-lvec 21061
This theorem is referenced by:  dimkerim  33667  lvecendof1f1o  33673  algextdeglem8  33758
  Copyright terms: Public domain W3C validator