Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvecgrpd Structured version   Visualization version   GIF version

Theorem lvecgrpd 41107
Description: A vector space is a group. (Contributed by SN, 16-May-2024.)
Hypothesis
Ref Expression
lvecgrpd.1 (𝜑𝑊 ∈ LVec)
Assertion
Ref Expression
lvecgrpd (𝜑𝑊 ∈ Grp)

Proof of Theorem lvecgrpd
StepHypRef Expression
1 lvecgrpd.1 . . 3 (𝜑𝑊 ∈ LVec)
21lveclmodd 20718 . 2 (𝜑𝑊 ∈ LMod)
32lmodgrpd 20481 1 (𝜑𝑊 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Grpcgrp 18819  LVecclvec 20713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7412  df-lmod 20473  df-lvec 20714
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator