![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > quslvec | Structured version Visualization version GIF version |
Description: If π is a vector subspace in π, then π = π / π is a vector space, called the quotient space of π by π. (Contributed by Thierry Arnoux, 18-May-2023.) |
Ref | Expression |
---|---|
quslvec.n | β’ π = (π /s (π ~QG π)) |
quslvec.1 | β’ (π β π β LVec) |
quslvec.2 | β’ (π β π β (LSubSpβπ)) |
Ref | Expression |
---|---|
quslvec | β’ (π β π β LVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | quslvec.n | . . 3 β’ π = (π /s (π ~QG π)) | |
2 | eqid 2732 | . . 3 β’ (Baseβπ) = (Baseβπ) | |
3 | quslvec.1 | . . . 4 β’ (π β π β LVec) | |
4 | 3 | lveclmodd 20862 | . . 3 β’ (π β π β LMod) |
5 | quslvec.2 | . . 3 β’ (π β π β (LSubSpβπ)) | |
6 | 1, 2, 4, 5 | quslmod 32731 | . 2 β’ (π β π β LMod) |
7 | 1 | a1i 11 | . . . 4 β’ (π β π = (π /s (π ~QG π))) |
8 | 2 | a1i 11 | . . . 4 β’ (π β (Baseβπ) = (Baseβπ)) |
9 | ovexd 7446 | . . . 4 β’ (π β (π ~QG π) β V) | |
10 | eqid 2732 | . . . 4 β’ (Scalarβπ) = (Scalarβπ) | |
11 | 7, 8, 9, 3, 10 | quss 17496 | . . 3 β’ (π β (Scalarβπ) = (Scalarβπ)) |
12 | 10 | lvecdrng 20860 | . . . 4 β’ (π β LVec β (Scalarβπ) β DivRing) |
13 | 3, 12 | syl 17 | . . 3 β’ (π β (Scalarβπ) β DivRing) |
14 | 11, 13 | eqeltrrd 2834 | . 2 β’ (π β (Scalarβπ) β DivRing) |
15 | eqid 2732 | . . 3 β’ (Scalarβπ) = (Scalarβπ) | |
16 | 15 | islvec 20859 | . 2 β’ (π β LVec β (π β LMod β§ (Scalarβπ) β DivRing)) |
17 | 6, 14, 16 | sylanbrc 583 | 1 β’ (π β π β LVec) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 Vcvv 3474 βcfv 6543 (class class class)co 7411 Basecbs 17148 Scalarcsca 17204 /s cqus 17455 ~QG cqg 19038 DivRingcdr 20500 LModclmod 20614 LSubSpclss 20686 LVecclvec 20857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-ec 8707 df-qs 8711 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13489 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-0g 17391 df-imas 17458 df-qus 17459 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-minusg 18859 df-sbg 18860 df-subg 19039 df-nsg 19040 df-eqg 19041 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-lmod 20616 df-lss 20687 df-lvec 20858 |
This theorem is referenced by: algextdeglem3 33052 |
Copyright terms: Public domain | W3C validator |