| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > quslvec | Structured version Visualization version GIF version | ||
| Description: If 𝑆 is a vector subspace in 𝑊, then 𝑄 = 𝑊 / 𝑆 is a vector space, called the quotient space of 𝑊 by 𝑆. (Contributed by Thierry Arnoux, 18-May-2023.) |
| Ref | Expression |
|---|---|
| quslvec.n | ⊢ 𝑄 = (𝑊 /s (𝑊 ~QG 𝑆)) |
| quslvec.1 | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| quslvec.2 | ⊢ (𝜑 → 𝑆 ∈ (LSubSp‘𝑊)) |
| Ref | Expression |
|---|---|
| quslvec | ⊢ (𝜑 → 𝑄 ∈ LVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | quslvec.n | . . 3 ⊢ 𝑄 = (𝑊 /s (𝑊 ~QG 𝑆)) | |
| 2 | eqid 2734 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 3 | quslvec.1 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 4 | 3 | lveclmodd 21075 | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 5 | quslvec.2 | . . 3 ⊢ (𝜑 → 𝑆 ∈ (LSubSp‘𝑊)) | |
| 6 | 1, 2, 4, 5 | quslmod 33326 | . 2 ⊢ (𝜑 → 𝑄 ∈ LMod) |
| 7 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑄 = (𝑊 /s (𝑊 ~QG 𝑆))) |
| 8 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → (Base‘𝑊) = (Base‘𝑊)) |
| 9 | ovexd 7448 | . . . 4 ⊢ (𝜑 → (𝑊 ~QG 𝑆) ∈ V) | |
| 10 | eqid 2734 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 11 | 7, 8, 9, 3, 10 | quss 17563 | . . 3 ⊢ (𝜑 → (Scalar‘𝑊) = (Scalar‘𝑄)) |
| 12 | 10 | lvecdrng 21073 | . . . 4 ⊢ (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing) |
| 13 | 3, 12 | syl 17 | . . 3 ⊢ (𝜑 → (Scalar‘𝑊) ∈ DivRing) |
| 14 | 11, 13 | eqeltrrd 2834 | . 2 ⊢ (𝜑 → (Scalar‘𝑄) ∈ DivRing) |
| 15 | eqid 2734 | . . 3 ⊢ (Scalar‘𝑄) = (Scalar‘𝑄) | |
| 16 | 15 | islvec 21072 | . 2 ⊢ (𝑄 ∈ LVec ↔ (𝑄 ∈ LMod ∧ (Scalar‘𝑄) ∈ DivRing)) |
| 17 | 6, 14, 16 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝑄 ∈ LVec) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 Scalarcsca 17277 /s cqus 17522 ~QG cqg 19110 DivRingcdr 20698 LModclmod 20827 LSubSpclss 20898 LVecclvec 21070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-ec 8729 df-qs 8733 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-inf 9465 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-mulr 17288 df-sca 17290 df-vsca 17291 df-ip 17292 df-tset 17293 df-ple 17294 df-ds 17296 df-0g 17458 df-imas 17525 df-qus 17526 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-nsg 19112 df-eqg 19113 df-cmn 19769 df-abl 19770 df-mgp 20107 df-rng 20119 df-ur 20148 df-ring 20201 df-lmod 20829 df-lss 20899 df-lvec 21071 |
| This theorem is referenced by: algextdeglem3 33704 |
| Copyright terms: Public domain | W3C validator |