Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mnd12g | Structured version Visualization version GIF version |
Description: Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
mndcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mndcl.p | ⊢ + = (+g‘𝐺) |
mnd4g.1 | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
mnd4g.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
mnd4g.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
mnd4g.4 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
mnd12g.5 | ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Ref | Expression |
---|---|
mnd12g | ⊢ (𝜑 → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnd12g.5 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | |
2 | 1 | oveq1d 7290 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑌 + 𝑋) + 𝑍)) |
3 | mnd4g.1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
4 | mnd4g.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | mnd4g.3 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | mnd4g.4 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
7 | mndcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
8 | mndcl.p | . . . 4 ⊢ + = (+g‘𝐺) | |
9 | 7, 8 | mndass 18394 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
10 | 3, 4, 5, 6, 9 | syl13anc 1371 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
11 | 7, 8 | mndass 18394 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑌 + 𝑋) + 𝑍) = (𝑌 + (𝑋 + 𝑍))) |
12 | 3, 5, 4, 6, 11 | syl13anc 1371 | . 2 ⊢ (𝜑 → ((𝑌 + 𝑋) + 𝑍) = (𝑌 + (𝑋 + 𝑍))) |
13 | 2, 10, 12 | 3eqtr3d 2786 | 1 ⊢ (𝜑 → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 Mndcmnd 18385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-sgrp 18375 df-mnd 18386 |
This theorem is referenced by: mnd4g 18399 cmn12 19407 |
Copyright terms: Public domain | W3C validator |