MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnd12g Structured version   Visualization version   GIF version

Theorem mnd12g 18681
Description: Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
mndcl.b 𝐵 = (Base‘𝐺)
mndcl.p + = (+g𝐺)
mnd4g.1 (𝜑𝐺 ∈ Mnd)
mnd4g.2 (𝜑𝑋𝐵)
mnd4g.3 (𝜑𝑌𝐵)
mnd4g.4 (𝜑𝑍𝐵)
mnd12g.5 (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Assertion
Ref Expression
mnd12g (𝜑 → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍)))

Proof of Theorem mnd12g
StepHypRef Expression
1 mnd12g.5 . . 3 (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))
21oveq1d 7405 . 2 (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑌 + 𝑋) + 𝑍))
3 mnd4g.1 . . 3 (𝜑𝐺 ∈ Mnd)
4 mnd4g.2 . . 3 (𝜑𝑋𝐵)
5 mnd4g.3 . . 3 (𝜑𝑌𝐵)
6 mnd4g.4 . . 3 (𝜑𝑍𝐵)
7 mndcl.b . . . 4 𝐵 = (Base‘𝐺)
8 mndcl.p . . . 4 + = (+g𝐺)
97, 8mndass 18677 . . 3 ((𝐺 ∈ Mnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
103, 4, 5, 6, 9syl13anc 1374 . 2 (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
117, 8mndass 18677 . . 3 ((𝐺 ∈ Mnd ∧ (𝑌𝐵𝑋𝐵𝑍𝐵)) → ((𝑌 + 𝑋) + 𝑍) = (𝑌 + (𝑋 + 𝑍)))
123, 5, 4, 6, 11syl13anc 1374 . 2 (𝜑 → ((𝑌 + 𝑋) + 𝑍) = (𝑌 + (𝑋 + 𝑍)))
132, 10, 123eqtr3d 2773 1 (𝜑 → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  Mndcmnd 18668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-sgrp 18653  df-mnd 18669
This theorem is referenced by:  mnd4g  18682  cmn12  19739
  Copyright terms: Public domain W3C validator