![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mnd12g | Structured version Visualization version GIF version |
Description: Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
mndcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mndcl.p | ⊢ + = (+g‘𝐺) |
mnd4g.1 | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
mnd4g.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
mnd4g.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
mnd4g.4 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
mnd12g.5 | ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Ref | Expression |
---|---|
mnd12g | ⊢ (𝜑 → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnd12g.5 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | |
2 | 1 | oveq1d 7419 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑌 + 𝑋) + 𝑍)) |
3 | mnd4g.1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
4 | mnd4g.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | mnd4g.3 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | mnd4g.4 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
7 | mndcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
8 | mndcl.p | . . . 4 ⊢ + = (+g‘𝐺) | |
9 | 7, 8 | mndass 18674 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
10 | 3, 4, 5, 6, 9 | syl13anc 1369 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
11 | 7, 8 | mndass 18674 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑌 + 𝑋) + 𝑍) = (𝑌 + (𝑋 + 𝑍))) |
12 | 3, 5, 4, 6, 11 | syl13anc 1369 | . 2 ⊢ (𝜑 → ((𝑌 + 𝑋) + 𝑍) = (𝑌 + (𝑋 + 𝑍))) |
13 | 2, 10, 12 | 3eqtr3d 2774 | 1 ⊢ (𝜑 → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ‘cfv 6536 (class class class)co 7404 Basecbs 17151 +gcplusg 17204 Mndcmnd 18665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-nul 5299 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-iota 6488 df-fv 6544 df-ov 7407 df-sgrp 18650 df-mnd 18666 |
This theorem is referenced by: mnd4g 18679 cmn12 19720 |
Copyright terms: Public domain | W3C validator |