Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mnd4g | Structured version Visualization version GIF version |
Description: Commutative/associative law for commutative monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
mndcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mndcl.p | ⊢ + = (+g‘𝐺) |
mnd4g.1 | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
mnd4g.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
mnd4g.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
mnd4g.4 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
mnd4g.5 | ⊢ (𝜑 → 𝑊 ∈ 𝐵) |
mnd4g.6 | ⊢ (𝜑 → (𝑌 + 𝑍) = (𝑍 + 𝑌)) |
Ref | Expression |
---|---|
mnd4g | ⊢ (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mndcl.p | . . . 4 ⊢ + = (+g‘𝐺) | |
3 | mnd4g.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
4 | mnd4g.3 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
5 | mnd4g.4 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
6 | mnd4g.5 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝐵) | |
7 | mnd4g.6 | . . . 4 ⊢ (𝜑 → (𝑌 + 𝑍) = (𝑍 + 𝑌)) | |
8 | 1, 2, 3, 4, 5, 6, 7 | mnd12g 18313 | . . 3 ⊢ (𝜑 → (𝑌 + (𝑍 + 𝑊)) = (𝑍 + (𝑌 + 𝑊))) |
9 | 8 | oveq2d 7271 | . 2 ⊢ (𝜑 → (𝑋 + (𝑌 + (𝑍 + 𝑊))) = (𝑋 + (𝑍 + (𝑌 + 𝑊)))) |
10 | mnd4g.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
11 | 1, 2 | mndcl 18308 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑍 + 𝑊) ∈ 𝐵) |
12 | 3, 5, 6, 11 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝑍 + 𝑊) ∈ 𝐵) |
13 | 1, 2 | mndass 18309 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = (𝑋 + (𝑌 + (𝑍 + 𝑊)))) |
14 | 3, 10, 4, 12, 13 | syl13anc 1370 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = (𝑋 + (𝑌 + (𝑍 + 𝑊)))) |
15 | 1, 2 | mndcl 18308 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑌 + 𝑊) ∈ 𝐵) |
16 | 3, 4, 6, 15 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝑌 + 𝑊) ∈ 𝐵) |
17 | 1, 2 | mndass 18309 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ (𝑌 + 𝑊) ∈ 𝐵)) → ((𝑋 + 𝑍) + (𝑌 + 𝑊)) = (𝑋 + (𝑍 + (𝑌 + 𝑊)))) |
18 | 3, 10, 5, 16, 17 | syl13anc 1370 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑍) + (𝑌 + 𝑊)) = (𝑋 + (𝑍 + (𝑌 + 𝑊)))) |
19 | 9, 14, 18 | 3eqtr4d 2788 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Mndcmnd 18300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-mgm 18241 df-sgrp 18290 df-mnd 18301 |
This theorem is referenced by: lsmsubm 19173 pj1ghm 19224 cmn4 19321 gsumzaddlem 19437 |
Copyright terms: Public domain | W3C validator |