| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmn12 | Structured version Visualization version GIF version | ||
| Description: Commutative/associative law for commutative monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| ablcom.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablcom.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| cmn12 | ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcom.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | ablcom.p | . 2 ⊢ + = (+g‘𝐺) | |
| 3 | cmnmnd 19710 | . . 3 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐺 ∈ Mnd) |
| 5 | simpr1 1195 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 6 | simpr2 1196 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 7 | simpr3 1197 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
| 8 | 1, 2 | cmncom 19711 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| 9 | 8 | 3adant3r3 1185 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| 10 | 1, 2, 4, 5, 6, 7, 9 | mnd12g 18655 | 1 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 Mndcmnd 18642 CMndccmn 19693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-sgrp 18627 df-mnd 18643 df-cmn 19695 |
| This theorem is referenced by: sraassaOLD 21808 mamuvs2 22322 mdetuni0 22537 1arithidomlem1 33498 |
| Copyright terms: Public domain | W3C validator |