MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmn12 Structured version   Visualization version   GIF version

Theorem cmn12 18856
Description: Commutative/associative law for Abelian monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablcom.b 𝐵 = (Base‘𝐺)
ablcom.p + = (+g𝐺)
Assertion
Ref Expression
cmn12 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍)))

Proof of Theorem cmn12
StepHypRef Expression
1 ablcom.b . 2 𝐵 = (Base‘𝐺)
2 ablcom.p . 2 + = (+g𝐺)
3 cmnmnd 18851 . . 3 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
43adantr 481 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Mnd)
5 simpr1 1186 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
6 simpr2 1187 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
7 simpr3 1188 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
81, 2cmncom 18852 . . 3 ((𝐺 ∈ CMnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
983adant3r3 1176 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
101, 2, 4, 5, 6, 7, 9mnd12g 17912 1 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  cfv 6348  (class class class)co 7145  Basecbs 16471  +gcplusg 16553  Mndcmnd 17899  CMndccmn 18835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-nul 5201
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-iota 6307  df-fv 6356  df-ov 7148  df-sgrp 17889  df-mnd 17900  df-cmn 18837
This theorem is referenced by:  sraassa  20027  mamuvs2  20943  mdetuni0  21158
  Copyright terms: Public domain W3C validator