| Mathbox for OpenAI |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rntrclfvOAI | Structured version Visualization version GIF version | ||
| Description: The range of the transitive closure is equal to the range of the relation. (Contributed by OpenAI, 7-Jul-2020.) |
| Ref | Expression |
|---|---|
| rntrclfvOAI | ⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) = ran 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trclfvub 14921 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) | |
| 2 | rnss 5885 | . . . 4 ⊢ ((t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → ran (t+‘𝑅) ⊆ ran (𝑅 ∪ (dom 𝑅 × ran 𝑅))) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) ⊆ ran (𝑅 ∪ (dom 𝑅 × ran 𝑅))) |
| 4 | rnun 6100 | . . . . 5 ⊢ ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅)) | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅))) |
| 6 | rnxpss 6127 | . . . . 5 ⊢ ran (dom 𝑅 × ran 𝑅) ⊆ ran 𝑅 | |
| 7 | ssequn2 4138 | . . . . 5 ⊢ (ran (dom 𝑅 × ran 𝑅) ⊆ ran 𝑅 ↔ (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅)) = ran 𝑅) | |
| 8 | 6, 7 | mpbi 230 | . . . 4 ⊢ (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅)) = ran 𝑅 |
| 9 | 5, 8 | eqtrdi 2784 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = ran 𝑅) |
| 10 | 3, 9 | sseqtrd 3967 | . 2 ⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) ⊆ ran 𝑅) |
| 11 | trclfvlb 14922 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ⊆ (t+‘𝑅)) | |
| 12 | rnss 5885 | . . 3 ⊢ (𝑅 ⊆ (t+‘𝑅) → ran 𝑅 ⊆ ran (t+‘𝑅)) | |
| 13 | 11, 12 | syl 17 | . 2 ⊢ (𝑅 ∈ 𝑉 → ran 𝑅 ⊆ ran (t+‘𝑅)) |
| 14 | 10, 13 | eqssd 3948 | 1 ⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) = ran 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∪ cun 3896 ⊆ wss 3898 × cxp 5619 dom cdm 5621 ran crn 5622 ‘cfv 6489 t+ctcl 14899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-iota 6445 df-fun 6491 df-fv 6497 df-trcl 14901 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |