Users' Mathboxes Mathbox for OpenAI < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rntrclfvOAI Structured version   Visualization version   GIF version

Theorem rntrclfvOAI 42695
Description: The range of the transitive closure is equal to the range of the relation. (Contributed by OpenAI, 7-Jul-2020.)
Assertion
Ref Expression
rntrclfvOAI (𝑅𝑉 → ran (t+‘𝑅) = ran 𝑅)

Proof of Theorem rntrclfvOAI
StepHypRef Expression
1 trclfvub 15052 . . . 4 (𝑅𝑉 → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
2 rnss 5957 . . . 4 ((t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → ran (t+‘𝑅) ⊆ ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
31, 2syl 17 . . 3 (𝑅𝑉 → ran (t+‘𝑅) ⊆ ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
4 rnun 6173 . . . . 5 ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅))
54a1i 11 . . . 4 (𝑅𝑉 → ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅)))
6 rnxpss 6200 . . . . 5 ran (dom 𝑅 × ran 𝑅) ⊆ ran 𝑅
7 ssequn2 4202 . . . . 5 (ran (dom 𝑅 × ran 𝑅) ⊆ ran 𝑅 ↔ (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅)) = ran 𝑅)
86, 7mpbi 230 . . . 4 (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅)) = ran 𝑅
95, 8eqtrdi 2793 . . 3 (𝑅𝑉 → ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = ran 𝑅)
103, 9sseqtrd 4039 . 2 (𝑅𝑉 → ran (t+‘𝑅) ⊆ ran 𝑅)
11 trclfvlb 15053 . . 3 (𝑅𝑉𝑅 ⊆ (t+‘𝑅))
12 rnss 5957 . . 3 (𝑅 ⊆ (t+‘𝑅) → ran 𝑅 ⊆ ran (t+‘𝑅))
1311, 12syl 17 . 2 (𝑅𝑉 → ran 𝑅 ⊆ ran (t+‘𝑅))
1410, 13eqssd 4016 1 (𝑅𝑉 → ran (t+‘𝑅) = ran 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cun 3964  wss 3966   × cxp 5691  dom cdm 5693  ran crn 5694  cfv 6569  t+ctcl 15030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-int 4955  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-iota 6522  df-fun 6571  df-fv 6577  df-trcl 15032
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator