![]() |
Mathbox for OpenAI |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rntrclfvOAI | Structured version Visualization version GIF version |
Description: The range of the transitive closure is equal to the range of the relation. (Contributed by OpenAI, 7-Jul-2020.) |
Ref | Expression |
---|---|
rntrclfvOAI | ⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) = ran 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trclfvub 15052 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) | |
2 | rnss 5957 | . . . 4 ⊢ ((t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → ran (t+‘𝑅) ⊆ ran (𝑅 ∪ (dom 𝑅 × ran 𝑅))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) ⊆ ran (𝑅 ∪ (dom 𝑅 × ran 𝑅))) |
4 | rnun 6173 | . . . . 5 ⊢ ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅)) | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅))) |
6 | rnxpss 6200 | . . . . 5 ⊢ ran (dom 𝑅 × ran 𝑅) ⊆ ran 𝑅 | |
7 | ssequn2 4202 | . . . . 5 ⊢ (ran (dom 𝑅 × ran 𝑅) ⊆ ran 𝑅 ↔ (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅)) = ran 𝑅) | |
8 | 6, 7 | mpbi 230 | . . . 4 ⊢ (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅)) = ran 𝑅 |
9 | 5, 8 | eqtrdi 2793 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = ran 𝑅) |
10 | 3, 9 | sseqtrd 4039 | . 2 ⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) ⊆ ran 𝑅) |
11 | trclfvlb 15053 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ⊆ (t+‘𝑅)) | |
12 | rnss 5957 | . . 3 ⊢ (𝑅 ⊆ (t+‘𝑅) → ran 𝑅 ⊆ ran (t+‘𝑅)) | |
13 | 11, 12 | syl 17 | . 2 ⊢ (𝑅 ∈ 𝑉 → ran 𝑅 ⊆ ran (t+‘𝑅)) |
14 | 10, 13 | eqssd 4016 | 1 ⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) = ran 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∪ cun 3964 ⊆ wss 3966 × cxp 5691 dom cdm 5693 ran crn 5694 ‘cfv 6569 t+ctcl 15030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-iota 6522 df-fun 6571 df-fv 6577 df-trcl 15032 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |