Users' Mathboxes Mathbox for OpenAI < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rntrclfvOAI Structured version   Visualization version   GIF version

Theorem rntrclfvOAI 42724
Description: The range of the transitive closure is equal to the range of the relation. (Contributed by OpenAI, 7-Jul-2020.)
Assertion
Ref Expression
rntrclfvOAI (𝑅𝑉 → ran (t+‘𝑅) = ran 𝑅)

Proof of Theorem rntrclfvOAI
StepHypRef Expression
1 trclfvub 14909 . . . 4 (𝑅𝑉 → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
2 rnss 5874 . . . 4 ((t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → ran (t+‘𝑅) ⊆ ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
31, 2syl 17 . . 3 (𝑅𝑉 → ran (t+‘𝑅) ⊆ ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
4 rnun 6087 . . . . 5 ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅))
54a1i 11 . . . 4 (𝑅𝑉 → ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅)))
6 rnxpss 6114 . . . . 5 ran (dom 𝑅 × ran 𝑅) ⊆ ran 𝑅
7 ssequn2 4134 . . . . 5 (ran (dom 𝑅 × ran 𝑅) ⊆ ran 𝑅 ↔ (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅)) = ran 𝑅)
86, 7mpbi 230 . . . 4 (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅)) = ran 𝑅
95, 8eqtrdi 2782 . . 3 (𝑅𝑉 → ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = ran 𝑅)
103, 9sseqtrd 3966 . 2 (𝑅𝑉 → ran (t+‘𝑅) ⊆ ran 𝑅)
11 trclfvlb 14910 . . 3 (𝑅𝑉𝑅 ⊆ (t+‘𝑅))
12 rnss 5874 . . 3 (𝑅 ⊆ (t+‘𝑅) → ran 𝑅 ⊆ ran (t+‘𝑅))
1311, 12syl 17 . 2 (𝑅𝑉 → ran 𝑅 ⊆ ran (t+‘𝑅))
1410, 13eqssd 3947 1 (𝑅𝑉 → ran (t+‘𝑅) = ran 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cun 3895  wss 3897   × cxp 5609  dom cdm 5611  ran crn 5612  cfv 6476  t+ctcl 14887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-iota 6432  df-fun 6478  df-fv 6484  df-trcl 14889
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator