![]() |
Mathbox for OpenAI |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rntrclfvOAI | Structured version Visualization version GIF version |
Description: The range of the transitive closure is equal to the range of the relation. (Contributed by OpenAI, 7-Jul-2020.) |
Ref | Expression |
---|---|
rntrclfvOAI | ⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) = ran 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trclfvub 15058 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) | |
2 | rnss 5964 | . . . 4 ⊢ ((t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → ran (t+‘𝑅) ⊆ ran (𝑅 ∪ (dom 𝑅 × ran 𝑅))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) ⊆ ran (𝑅 ∪ (dom 𝑅 × ran 𝑅))) |
4 | rnun 6179 | . . . . 5 ⊢ ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅)) | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅))) |
6 | rnxpss 6205 | . . . . 5 ⊢ ran (dom 𝑅 × ran 𝑅) ⊆ ran 𝑅 | |
7 | ssequn2 4212 | . . . . 5 ⊢ (ran (dom 𝑅 × ran 𝑅) ⊆ ran 𝑅 ↔ (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅)) = ran 𝑅) | |
8 | 6, 7 | mpbi 230 | . . . 4 ⊢ (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅)) = ran 𝑅 |
9 | 5, 8 | eqtrdi 2796 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = ran 𝑅) |
10 | 3, 9 | sseqtrd 4049 | . 2 ⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) ⊆ ran 𝑅) |
11 | trclfvlb 15059 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ⊆ (t+‘𝑅)) | |
12 | rnss 5964 | . . 3 ⊢ (𝑅 ⊆ (t+‘𝑅) → ran 𝑅 ⊆ ran (t+‘𝑅)) | |
13 | 11, 12 | syl 17 | . 2 ⊢ (𝑅 ∈ 𝑉 → ran 𝑅 ⊆ ran (t+‘𝑅)) |
14 | 10, 13 | eqssd 4026 | 1 ⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) = ran 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 ⊆ wss 3976 × cxp 5698 dom cdm 5700 ran crn 5701 ‘cfv 6575 t+ctcl 15036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6527 df-fun 6577 df-fv 6583 df-trcl 15038 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |