| Mathbox for OpenAI |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rntrclfvOAI | Structured version Visualization version GIF version | ||
| Description: The range of the transitive closure is equal to the range of the relation. (Contributed by OpenAI, 7-Jul-2020.) |
| Ref | Expression |
|---|---|
| rntrclfvOAI | ⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) = ran 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trclfvub 14983 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) | |
| 2 | rnss 5911 | . . . 4 ⊢ ((t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → ran (t+‘𝑅) ⊆ ran (𝑅 ∪ (dom 𝑅 × ran 𝑅))) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) ⊆ ran (𝑅 ∪ (dom 𝑅 × ran 𝑅))) |
| 4 | rnun 6126 | . . . . 5 ⊢ ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅)) | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅))) |
| 6 | rnxpss 6153 | . . . . 5 ⊢ ran (dom 𝑅 × ran 𝑅) ⊆ ran 𝑅 | |
| 7 | ssequn2 4160 | . . . . 5 ⊢ (ran (dom 𝑅 × ran 𝑅) ⊆ ran 𝑅 ↔ (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅)) = ran 𝑅) | |
| 8 | 6, 7 | mpbi 230 | . . . 4 ⊢ (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅)) = ran 𝑅 |
| 9 | 5, 8 | eqtrdi 2781 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = ran 𝑅) |
| 10 | 3, 9 | sseqtrd 3991 | . 2 ⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) ⊆ ran 𝑅) |
| 11 | trclfvlb 14984 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ⊆ (t+‘𝑅)) | |
| 12 | rnss 5911 | . . 3 ⊢ (𝑅 ⊆ (t+‘𝑅) → ran 𝑅 ⊆ ran (t+‘𝑅)) | |
| 13 | 11, 12 | syl 17 | . 2 ⊢ (𝑅 ∈ 𝑉 → ran 𝑅 ⊆ ran (t+‘𝑅)) |
| 14 | 10, 13 | eqssd 3972 | 1 ⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) = ran 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cun 3920 ⊆ wss 3922 × cxp 5644 dom cdm 5646 ran crn 5647 ‘cfv 6519 t+ctcl 14961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-iota 6472 df-fun 6521 df-fv 6527 df-trcl 14963 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |