Users' Mathboxes Mathbox for OpenAI < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rntrclfvOAI Structured version   Visualization version   GIF version

Theorem rntrclfvOAI 42640
Description: The range of the transitive closure is equal to the range of the relation. (Contributed by OpenAI, 7-Jul-2020.)
Assertion
Ref Expression
rntrclfvOAI (𝑅𝑉 → ran (t+‘𝑅) = ran 𝑅)

Proof of Theorem rntrclfvOAI
StepHypRef Expression
1 trclfvub 15027 . . . 4 (𝑅𝑉 → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
2 rnss 5930 . . . 4 ((t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → ran (t+‘𝑅) ⊆ ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
31, 2syl 17 . . 3 (𝑅𝑉 → ran (t+‘𝑅) ⊆ ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
4 rnun 6145 . . . . 5 ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅))
54a1i 11 . . . 4 (𝑅𝑉 → ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅)))
6 rnxpss 6172 . . . . 5 ran (dom 𝑅 × ran 𝑅) ⊆ ran 𝑅
7 ssequn2 4169 . . . . 5 (ran (dom 𝑅 × ran 𝑅) ⊆ ran 𝑅 ↔ (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅)) = ran 𝑅)
86, 7mpbi 230 . . . 4 (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅)) = ran 𝑅
95, 8eqtrdi 2785 . . 3 (𝑅𝑉 → ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = ran 𝑅)
103, 9sseqtrd 4000 . 2 (𝑅𝑉 → ran (t+‘𝑅) ⊆ ran 𝑅)
11 trclfvlb 15028 . . 3 (𝑅𝑉𝑅 ⊆ (t+‘𝑅))
12 rnss 5930 . . 3 (𝑅 ⊆ (t+‘𝑅) → ran 𝑅 ⊆ ran (t+‘𝑅))
1311, 12syl 17 . 2 (𝑅𝑉 → ran 𝑅 ⊆ ran (t+‘𝑅))
1410, 13eqssd 3981 1 (𝑅𝑉 → ran (t+‘𝑅) = ran 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cun 3929  wss 3931   × cxp 5663  dom cdm 5665  ran crn 5666  cfv 6540  t+ctcl 15005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-iota 6493  df-fun 6542  df-fv 6548  df-trcl 15007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator