Users' Mathboxes Mathbox for OpenAI < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rntrclfvOAI Structured version   Visualization version   GIF version

Theorem rntrclfvOAI 42652
Description: The range of the transitive closure is equal to the range of the relation. (Contributed by OpenAI, 7-Jul-2020.)
Assertion
Ref Expression
rntrclfvOAI (𝑅𝑉 → ran (t+‘𝑅) = ran 𝑅)

Proof of Theorem rntrclfvOAI
StepHypRef Expression
1 trclfvub 14949 . . . 4 (𝑅𝑉 → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
2 rnss 5892 . . . 4 ((t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → ran (t+‘𝑅) ⊆ ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
31, 2syl 17 . . 3 (𝑅𝑉 → ran (t+‘𝑅) ⊆ ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
4 rnun 6106 . . . . 5 ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅))
54a1i 11 . . . 4 (𝑅𝑉 → ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅)))
6 rnxpss 6133 . . . . 5 ran (dom 𝑅 × ran 𝑅) ⊆ ran 𝑅
7 ssequn2 4148 . . . . 5 (ran (dom 𝑅 × ran 𝑅) ⊆ ran 𝑅 ↔ (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅)) = ran 𝑅)
86, 7mpbi 230 . . . 4 (ran 𝑅 ∪ ran (dom 𝑅 × ran 𝑅)) = ran 𝑅
95, 8eqtrdi 2780 . . 3 (𝑅𝑉 → ran (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = ran 𝑅)
103, 9sseqtrd 3980 . 2 (𝑅𝑉 → ran (t+‘𝑅) ⊆ ran 𝑅)
11 trclfvlb 14950 . . 3 (𝑅𝑉𝑅 ⊆ (t+‘𝑅))
12 rnss 5892 . . 3 (𝑅 ⊆ (t+‘𝑅) → ran 𝑅 ⊆ ran (t+‘𝑅))
1311, 12syl 17 . 2 (𝑅𝑉 → ran 𝑅 ⊆ ran (t+‘𝑅))
1410, 13eqssd 3961 1 (𝑅𝑉 → ran (t+‘𝑅) = ran 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cun 3909  wss 3911   × cxp 5629  dom cdm 5631  ran crn 5632  cfv 6499  t+ctcl 14927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-iota 6452  df-fun 6501  df-fv 6507  df-trcl 14929
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator