MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcwf Structured version   Visualization version   GIF version

Theorem tcwf 9641
Description: The transitive closure function is well-founded if its argument is. (Contributed by Mario Carneiro, 23-Jun-2013.)
Assertion
Ref Expression
tcwf (𝐴 (𝑅1 “ On) → (TC‘𝐴) ∈ (𝑅1 “ On))

Proof of Theorem tcwf
StepHypRef Expression
1 r1elssi 9563 . . 3 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
2 dftr3 5195 . . . . 5 (Tr (𝑅1 “ On) ↔ ∀𝑥 (𝑅1 “ On)𝑥 (𝑅1 “ On))
3 r1elssi 9563 . . . . 5 (𝑥 (𝑅1 “ On) → 𝑥 (𝑅1 “ On))
42, 3mprgbir 3079 . . . 4 Tr (𝑅1 “ On)
5 tcmin 9499 . . . 4 (𝐴 (𝑅1 “ On) → ((𝐴 (𝑅1 “ On) ∧ Tr (𝑅1 “ On)) → (TC‘𝐴) ⊆ (𝑅1 “ On)))
64, 5mpan2i 694 . . 3 (𝐴 (𝑅1 “ On) → (𝐴 (𝑅1 “ On) → (TC‘𝐴) ⊆ (𝑅1 “ On)))
71, 6mpd 15 . 2 (𝐴 (𝑅1 “ On) → (TC‘𝐴) ⊆ (𝑅1 “ On))
8 fvex 6787 . . 3 (TC‘𝐴) ∈ V
98r1elss 9564 . 2 ((TC‘𝐴) ∈ (𝑅1 “ On) ↔ (TC‘𝐴) ⊆ (𝑅1 “ On))
107, 9sylibr 233 1 (𝐴 (𝑅1 “ On) → (TC‘𝐴) ∈ (𝑅1 “ On))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wss 3887   cuni 4839  Tr wtr 5191  cima 5592  Oncon0 6266  cfv 6433  TCctc 9494  𝑅1cr1 9520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-tc 9495  df-r1 9522
This theorem is referenced by:  tcrank  9642
  Copyright terms: Public domain W3C validator