MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  01sqrexlem7 Structured version   Visualization version   GIF version

Theorem 01sqrexlem7 15190
Description: Lemma for 01sqrex 15191. (Contributed by Mario Carneiro, 10-Jul-2013.) (Proof shortened by AV, 9-Jul-2022.)
Hypotheses
Ref Expression
01sqrexlem1.1 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
01sqrexlem1.2 𝐵 = sup(𝑆, ℝ, < )
01sqrexlem5.3 𝑇 = {𝑦 ∣ ∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏)}
Assertion
Ref Expression
01sqrexlem7 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) = 𝐴)
Distinct variable groups:   𝑎,𝑏,𝑦,𝑆   𝑥,𝑎,𝐴,𝑏,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥,𝑎,𝑏)   𝑆(𝑥)   𝑇(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem 01sqrexlem7
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 01sqrexlem1.1 . . 3 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
2 01sqrexlem1.2 . . 3 𝐵 = sup(𝑆, ℝ, < )
3 01sqrexlem5.3 . . 3 𝑇 = {𝑦 ∣ ∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏)}
41, 2, 301sqrexlem6 15189 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) ≤ 𝐴)
51, 201sqrexlem3 15186 . . . . 5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦))
65adantr 480 . . . 4 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦))
71, 201sqrexlem4 15187 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 ∈ ℝ+𝐵 ≤ 1))
87adantr 480 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵 ∈ ℝ+𝐵 ≤ 1))
98simpld 494 . . . . . 6 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐵 ∈ ℝ+)
10 rpre 12936 . . . . . . . . . . 11 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
1110adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴 ∈ ℝ)
12 rpre 12936 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
1312adantr 480 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ+𝐵 ≤ 1) → 𝐵 ∈ ℝ)
147, 13syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ∈ ℝ)
1514resqcld 14066 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) ∈ ℝ)
1611, 15resubcld 11582 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐴 − (𝐵↑2)) ∈ ℝ)
1716adantr 480 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ∈ ℝ)
1815, 11posdifd 11741 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝐵↑2) < 𝐴 ↔ 0 < (𝐴 − (𝐵↑2))))
1918biimpa 476 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 0 < (𝐴 − (𝐵↑2)))
2017, 19elrpd 12968 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ∈ ℝ+)
21 3rp 12933 . . . . . . 7 3 ∈ ℝ+
22 rpdivcl 12954 . . . . . . 7 (((𝐴 − (𝐵↑2)) ∈ ℝ+ ∧ 3 ∈ ℝ+) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ+)
2320, 21, 22sylancl 586 . . . . . 6 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ+)
249, 23rpaddcld 12986 . . . . 5 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ+)
2514adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐵 ∈ ℝ)
2625recnd 11178 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐵 ∈ ℂ)
27 3nn 12241 . . . . . . . . . . 11 3 ∈ ℕ
28 nndivre 12203 . . . . . . . . . . 11 (((𝐴 − (𝐵↑2)) ∈ ℝ ∧ 3 ∈ ℕ) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ)
2916, 27, 28sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ)
3029adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ)
3130recnd 11178 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℂ)
32 binom2 14158 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ ((𝐴 − (𝐵↑2)) / 3) ∈ ℂ) → ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) = (((𝐵↑2) + (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3)))) + (((𝐴 − (𝐵↑2)) / 3)↑2)))
3326, 31, 32syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) = (((𝐵↑2) + (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3)))) + (((𝐴 − (𝐵↑2)) / 3)↑2)))
3415adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵↑2) ∈ ℝ)
3534recnd 11178 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵↑2) ∈ ℂ)
36 2re 12236 . . . . . . . . . 10 2 ∈ ℝ
3725, 30remulcld 11180 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵 · ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ)
38 remulcl 11129 . . . . . . . . . 10 ((2 ∈ ℝ ∧ (𝐵 · ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ) → (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) ∈ ℝ)
3936, 37, 38sylancr 587 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) ∈ ℝ)
4039recnd 11178 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) ∈ ℂ)
4130resqcld 14066 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐴 − (𝐵↑2)) / 3)↑2) ∈ ℝ)
4241recnd 11178 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐴 − (𝐵↑2)) / 3)↑2) ∈ ℂ)
4335, 40, 42addassd 11172 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐵↑2) + (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3)))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) = ((𝐵↑2) + ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2))))
4433, 43eqtrd 2764 . . . . . 6 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) = ((𝐵↑2) + ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2))))
45 2cn 12237 . . . . . . . . . . . 12 2 ∈ ℂ
46 mulass 11132 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ((𝐴 − (𝐵↑2)) / 3) ∈ ℂ) → ((2 · 𝐵) · ((𝐴 − (𝐵↑2)) / 3)) = (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))))
4745, 26, 31, 46mp3an2i 1468 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · 𝐵) · ((𝐴 − (𝐵↑2)) / 3)) = (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))))
4847eqcomd 2735 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) = ((2 · 𝐵) · ((𝐴 − (𝐵↑2)) / 3)))
4931sqvald 14084 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐴 − (𝐵↑2)) / 3)↑2) = (((𝐴 − (𝐵↑2)) / 3) · ((𝐴 − (𝐵↑2)) / 3)))
5048, 49oveq12d 7387 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) = (((2 · 𝐵) · ((𝐴 − (𝐵↑2)) / 3)) + (((𝐴 − (𝐵↑2)) / 3) · ((𝐴 − (𝐵↑2)) / 3))))
51 remulcl 11129 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐵) ∈ ℝ)
5236, 25, 51sylancr 587 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · 𝐵) ∈ ℝ)
5352recnd 11178 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · 𝐵) ∈ ℂ)
5453, 31, 31adddird 11175 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) · ((𝐴 − (𝐵↑2)) / 3)) = (((2 · 𝐵) · ((𝐴 − (𝐵↑2)) / 3)) + (((𝐴 − (𝐵↑2)) / 3) · ((𝐴 − (𝐵↑2)) / 3))))
5550, 54eqtr4d 2767 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) = (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) · ((𝐴 − (𝐵↑2)) / 3)))
567simprd 495 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ≤ 1)
57 1red 11151 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 1 ∈ ℝ)
58 2rp 12932 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
5958a1i 11 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 2 ∈ ℝ+)
6014, 57, 59lemul2d 13015 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 ≤ 1 ↔ (2 · 𝐵) ≤ (2 · 1)))
6156, 60mpbid 232 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (2 · 𝐵) ≤ (2 · 1))
6261adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · 𝐵) ≤ (2 · 1))
63 2t1e2 12320 . . . . . . . . . . . . 13 (2 · 1) = 2
6462, 63breqtrdi 5143 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · 𝐵) ≤ 2)
6511adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐴 ∈ ℝ)
66 1red 11151 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 1 ∈ ℝ)
6725sqge0d 14078 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 0 ≤ (𝐵↑2))
6865, 34addge01d 11742 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (0 ≤ (𝐵↑2) ↔ 𝐴 ≤ (𝐴 + (𝐵↑2))))
6967, 68mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐴 ≤ (𝐴 + (𝐵↑2)))
7065, 34, 65lesubaddd 11751 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) ≤ 𝐴𝐴 ≤ (𝐴 + (𝐵↑2))))
7169, 70mpbird 257 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ≤ 𝐴)
72 simplr 768 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐴 ≤ 1)
7317, 65, 66, 71, 72letrd 11307 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ≤ 1)
74 1le3 12369 . . . . . . . . . . . . . . . 16 1 ≤ 3
75 1re 11150 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
76 3re 12242 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
77 letr 11244 . . . . . . . . . . . . . . . . . 18 (((𝐴 − (𝐵↑2)) ∈ ℝ ∧ 1 ∈ ℝ ∧ 3 ∈ ℝ) → (((𝐴 − (𝐵↑2)) ≤ 1 ∧ 1 ≤ 3) → (𝐴 − (𝐵↑2)) ≤ 3))
7875, 76, 77mp3an23 1455 . . . . . . . . . . . . . . . . 17 ((𝐴 − (𝐵↑2)) ∈ ℝ → (((𝐴 − (𝐵↑2)) ≤ 1 ∧ 1 ≤ 3) → (𝐴 − (𝐵↑2)) ≤ 3))
7917, 78syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐴 − (𝐵↑2)) ≤ 1 ∧ 1 ≤ 3) → (𝐴 − (𝐵↑2)) ≤ 3))
8074, 79mpan2i 697 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) ≤ 1 → (𝐴 − (𝐵↑2)) ≤ 3))
8173, 80mpd 15 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ≤ 3)
82 3t1e3 12322 . . . . . . . . . . . . . 14 (3 · 1) = 3
8381, 82breqtrrdi 5144 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ≤ (3 · 1))
84 3pos 12267 . . . . . . . . . . . . . . 15 0 < 3
85 ledivmul 12035 . . . . . . . . . . . . . . . 16 (((𝐴 − (𝐵↑2)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (((𝐴 − (𝐵↑2)) / 3) ≤ 1 ↔ (𝐴 − (𝐵↑2)) ≤ (3 · 1)))
8675, 85mp3an2 1451 . . . . . . . . . . . . . . 15 (((𝐴 − (𝐵↑2)) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (((𝐴 − (𝐵↑2)) / 3) ≤ 1 ↔ (𝐴 − (𝐵↑2)) ≤ (3 · 1)))
8776, 84, 86mpanr12 705 . . . . . . . . . . . . . 14 ((𝐴 − (𝐵↑2)) ∈ ℝ → (((𝐴 − (𝐵↑2)) / 3) ≤ 1 ↔ (𝐴 − (𝐵↑2)) ≤ (3 · 1)))
8817, 87syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐴 − (𝐵↑2)) / 3) ≤ 1 ↔ (𝐴 − (𝐵↑2)) ≤ (3 · 1)))
8983, 88mpbird 257 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) / 3) ≤ 1)
90 le2add 11636 . . . . . . . . . . . . . 14 ((((2 · 𝐵) ∈ ℝ ∧ ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ) ∧ (2 ∈ ℝ ∧ 1 ∈ ℝ)) → (((2 · 𝐵) ≤ 2 ∧ ((𝐴 − (𝐵↑2)) / 3) ≤ 1) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ (2 + 1)))
9136, 75, 90mpanr12 705 . . . . . . . . . . . . 13 (((2 · 𝐵) ∈ ℝ ∧ ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ) → (((2 · 𝐵) ≤ 2 ∧ ((𝐴 − (𝐵↑2)) / 3) ≤ 1) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ (2 + 1)))
9252, 30, 91syl2anc 584 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((2 · 𝐵) ≤ 2 ∧ ((𝐴 − (𝐵↑2)) / 3) ≤ 1) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ (2 + 1)))
9364, 89, 92mp2and 699 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ (2 + 1))
94 df-3 12226 . . . . . . . . . . 11 3 = (2 + 1)
9593, 94breqtrrdi 5144 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ 3)
9652, 30readdcld 11179 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ)
9776a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 3 ∈ ℝ)
9896, 97, 23lemul1d 13014 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ 3 ↔ (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) · ((𝐴 − (𝐵↑2)) / 3)) ≤ (3 · ((𝐴 − (𝐵↑2)) / 3))))
9995, 98mpbid 232 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) · ((𝐴 − (𝐵↑2)) / 3)) ≤ (3 · ((𝐴 − (𝐵↑2)) / 3)))
10017recnd 11178 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ∈ ℂ)
101 3cn 12243 . . . . . . . . . . 11 3 ∈ ℂ
102 3ne0 12268 . . . . . . . . . . 11 3 ≠ 0
103 divcan2 11821 . . . . . . . . . . 11 (((𝐴 − (𝐵↑2)) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → (3 · ((𝐴 − (𝐵↑2)) / 3)) = (𝐴 − (𝐵↑2)))
104101, 102, 103mp3an23 1455 . . . . . . . . . 10 ((𝐴 − (𝐵↑2)) ∈ ℂ → (3 · ((𝐴 − (𝐵↑2)) / 3)) = (𝐴 − (𝐵↑2)))
105100, 104syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (3 · ((𝐴 − (𝐵↑2)) / 3)) = (𝐴 − (𝐵↑2)))
10699, 105breqtrd 5128 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) · ((𝐴 − (𝐵↑2)) / 3)) ≤ (𝐴 − (𝐵↑2)))
10755, 106eqbrtrd 5124 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) ≤ (𝐴 − (𝐵↑2)))
10839, 41readdcld 11179 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) ∈ ℝ)
10934, 108, 65leaddsub2d 11756 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐵↑2) + ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2))) ≤ 𝐴 ↔ ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) ≤ (𝐴 − (𝐵↑2))))
110107, 109mpbird 257 . . . . . 6 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐵↑2) + ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2))) ≤ 𝐴)
11144, 110eqbrtrd 5124 . . . . 5 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) ≤ 𝐴)
112 oveq1 7376 . . . . . . 7 (𝑦 = (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) → (𝑦↑2) = ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2))
113112breq1d 5112 . . . . . 6 (𝑦 = (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) → ((𝑦↑2) ≤ 𝐴 ↔ ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) ≤ 𝐴))
114 oveq1 7376 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
115114breq1d 5112 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥↑2) ≤ 𝐴 ↔ (𝑦↑2) ≤ 𝐴))
116115cbvrabv 3413 . . . . . . 7 {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} = {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}
1171, 116eqtri 2752 . . . . . 6 𝑆 = {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}
118113, 117elrab2 3659 . . . . 5 ((𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ 𝑆 ↔ ((𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ+ ∧ ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) ≤ 𝐴))
11924, 111, 118sylanbrc 583 . . . 4 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ 𝑆)
120 suprub 12120 . . . . 5 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦) ∧ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ 𝑆) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ sup(𝑆, ℝ, < ))
121120, 2breqtrrdi 5144 . . . 4 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦) ∧ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ 𝑆) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵)
1226, 119, 121syl2anc 584 . . 3 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵)
12323rpgt0d 12974 . . . 4 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 0 < ((𝐴 − (𝐵↑2)) / 3))
12429, 14ltaddposd 11738 . . . . . 6 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (0 < ((𝐴 − (𝐵↑2)) / 3) ↔ 𝐵 < (𝐵 + ((𝐴 − (𝐵↑2)) / 3))))
12514, 29readdcld 11179 . . . . . . 7 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ)
12614, 125ltnled 11297 . . . . . 6 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 < (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ↔ ¬ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵))
127124, 126bitrd 279 . . . . 5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (0 < ((𝐴 − (𝐵↑2)) / 3) ↔ ¬ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵))
128127biimpa 476 . . . 4 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ 0 < ((𝐴 − (𝐵↑2)) / 3)) → ¬ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵)
129123, 128syldan 591 . . 3 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ¬ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵)
130122, 129pm2.65da 816 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ¬ (𝐵↑2) < 𝐴)
13115, 11eqleltd 11294 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝐵↑2) = 𝐴 ↔ ((𝐵↑2) ≤ 𝐴 ∧ ¬ (𝐵↑2) < 𝐴)))
1324, 130, 131mpbir2and 713 1 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  {crab 3402  wss 3911  c0 4292   class class class wbr 5102  (class class class)co 7369  supcsup 9367  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  3c3 12218  +crp 12927  cexp 14002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003
This theorem is referenced by:  01sqrex  15191
  Copyright terms: Public domain W3C validator