Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > pjcompi | Structured version Visualization version GIF version |
Description: Component of a projection. (Contributed by NM, 31-Oct-1999.) (Revised by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjidm.1 | ⊢ 𝐻 ∈ Cℋ |
Ref | Expression |
---|---|
pjcompi | ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → ((projℎ‘𝐻)‘(𝐴 +ℎ 𝐵)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjidm.1 | . . . 4 ⊢ 𝐻 ∈ Cℋ | |
2 | 1 | cheli 29883 | . . . . 5 ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) |
3 | 1 | choccli 29958 | . . . . . 6 ⊢ (⊥‘𝐻) ∈ Cℋ |
4 | 3 | cheli 29883 | . . . . 5 ⊢ (𝐵 ∈ (⊥‘𝐻) → 𝐵 ∈ ℋ) |
5 | hvaddcl 29663 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) | |
6 | 2, 4, 5 | syl2an 596 | . . . 4 ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → (𝐴 +ℎ 𝐵) ∈ ℋ) |
7 | axpjpj 30071 | . . . 4 ⊢ ((𝐻 ∈ Cℋ ∧ (𝐴 +ℎ 𝐵) ∈ ℋ) → (𝐴 +ℎ 𝐵) = (((projℎ‘𝐻)‘(𝐴 +ℎ 𝐵)) +ℎ ((projℎ‘(⊥‘𝐻))‘(𝐴 +ℎ 𝐵)))) | |
8 | 1, 6, 7 | sylancr 587 | . . 3 ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → (𝐴 +ℎ 𝐵) = (((projℎ‘𝐻)‘(𝐴 +ℎ 𝐵)) +ℎ ((projℎ‘(⊥‘𝐻))‘(𝐴 +ℎ 𝐵)))) |
9 | eqid 2736 | . . . 4 ⊢ (𝐴 +ℎ 𝐵) = (𝐴 +ℎ 𝐵) | |
10 | axpjcl 30051 | . . . . . 6 ⊢ ((𝐻 ∈ Cℋ ∧ (𝐴 +ℎ 𝐵) ∈ ℋ) → ((projℎ‘𝐻)‘(𝐴 +ℎ 𝐵)) ∈ 𝐻) | |
11 | 1, 6, 10 | sylancr 587 | . . . . 5 ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → ((projℎ‘𝐻)‘(𝐴 +ℎ 𝐵)) ∈ 𝐻) |
12 | axpjcl 30051 | . . . . . 6 ⊢ (((⊥‘𝐻) ∈ Cℋ ∧ (𝐴 +ℎ 𝐵) ∈ ℋ) → ((projℎ‘(⊥‘𝐻))‘(𝐴 +ℎ 𝐵)) ∈ (⊥‘𝐻)) | |
13 | 3, 6, 12 | sylancr 587 | . . . . 5 ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → ((projℎ‘(⊥‘𝐻))‘(𝐴 +ℎ 𝐵)) ∈ (⊥‘𝐻)) |
14 | simpl 483 | . . . . 5 ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → 𝐴 ∈ 𝐻) | |
15 | simpr 485 | . . . . 5 ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → 𝐵 ∈ (⊥‘𝐻)) | |
16 | 1 | chocunii 29952 | . . . . 5 ⊢ (((((projℎ‘𝐻)‘(𝐴 +ℎ 𝐵)) ∈ 𝐻 ∧ ((projℎ‘(⊥‘𝐻))‘(𝐴 +ℎ 𝐵)) ∈ (⊥‘𝐻)) ∧ (𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻))) → (((𝐴 +ℎ 𝐵) = (((projℎ‘𝐻)‘(𝐴 +ℎ 𝐵)) +ℎ ((projℎ‘(⊥‘𝐻))‘(𝐴 +ℎ 𝐵))) ∧ (𝐴 +ℎ 𝐵) = (𝐴 +ℎ 𝐵)) → (((projℎ‘𝐻)‘(𝐴 +ℎ 𝐵)) = 𝐴 ∧ ((projℎ‘(⊥‘𝐻))‘(𝐴 +ℎ 𝐵)) = 𝐵))) |
17 | 11, 13, 14, 15, 16 | syl22anc 836 | . . . 4 ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → (((𝐴 +ℎ 𝐵) = (((projℎ‘𝐻)‘(𝐴 +ℎ 𝐵)) +ℎ ((projℎ‘(⊥‘𝐻))‘(𝐴 +ℎ 𝐵))) ∧ (𝐴 +ℎ 𝐵) = (𝐴 +ℎ 𝐵)) → (((projℎ‘𝐻)‘(𝐴 +ℎ 𝐵)) = 𝐴 ∧ ((projℎ‘(⊥‘𝐻))‘(𝐴 +ℎ 𝐵)) = 𝐵))) |
18 | 9, 17 | mpan2i 694 | . . 3 ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → ((𝐴 +ℎ 𝐵) = (((projℎ‘𝐻)‘(𝐴 +ℎ 𝐵)) +ℎ ((projℎ‘(⊥‘𝐻))‘(𝐴 +ℎ 𝐵))) → (((projℎ‘𝐻)‘(𝐴 +ℎ 𝐵)) = 𝐴 ∧ ((projℎ‘(⊥‘𝐻))‘(𝐴 +ℎ 𝐵)) = 𝐵))) |
19 | 8, 18 | mpd 15 | . 2 ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → (((projℎ‘𝐻)‘(𝐴 +ℎ 𝐵)) = 𝐴 ∧ ((projℎ‘(⊥‘𝐻))‘(𝐴 +ℎ 𝐵)) = 𝐵)) |
20 | 19 | simpld 495 | 1 ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → ((projℎ‘𝐻)‘(𝐴 +ℎ 𝐵)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ‘cfv 6480 (class class class)co 7338 ℋchba 29570 +ℎ cva 29571 Cℋ cch 29580 ⊥cort 29581 projℎcpjh 29588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-inf2 9499 ax-cc 10293 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 ax-pre-sup 11051 ax-addf 11052 ax-mulf 11053 ax-hilex 29650 ax-hfvadd 29651 ax-hvcom 29652 ax-hvass 29653 ax-hv0cl 29654 ax-hvaddid 29655 ax-hfvmul 29656 ax-hvmulid 29657 ax-hvmulass 29658 ax-hvdistr1 29659 ax-hvdistr2 29660 ax-hvmul0 29661 ax-hfi 29730 ax-his1 29733 ax-his2 29734 ax-his3 29735 ax-his4 29736 ax-hcompl 29853 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4854 df-int 4896 df-iun 4944 df-iin 4945 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-se 5577 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-isom 6489 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-of 7596 df-om 7782 df-1st 7900 df-2nd 7901 df-supp 8049 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-2o 8369 df-oadd 8372 df-omul 8373 df-er 8570 df-map 8689 df-pm 8690 df-ixp 8758 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-fsupp 9228 df-fi 9269 df-sup 9300 df-inf 9301 df-oi 9368 df-card 9797 df-acn 9800 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-div 11735 df-nn 12076 df-2 12138 df-3 12139 df-4 12140 df-5 12141 df-6 12142 df-7 12143 df-8 12144 df-9 12145 df-n0 12336 df-z 12422 df-dec 12540 df-uz 12685 df-q 12791 df-rp 12833 df-xneg 12950 df-xadd 12951 df-xmul 12952 df-ioo 13185 df-ico 13187 df-icc 13188 df-fz 13342 df-fzo 13485 df-fl 13614 df-seq 13824 df-exp 13885 df-hash 14147 df-cj 14910 df-re 14911 df-im 14912 df-sqrt 15046 df-abs 15047 df-clim 15297 df-rlim 15298 df-sum 15498 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-starv 17075 df-sca 17076 df-vsca 17077 df-ip 17078 df-tset 17079 df-ple 17080 df-ds 17082 df-unif 17083 df-hom 17084 df-cco 17085 df-rest 17231 df-topn 17232 df-0g 17250 df-gsum 17251 df-topgen 17252 df-pt 17253 df-prds 17256 df-xrs 17311 df-qtop 17316 df-imas 17317 df-xps 17319 df-mre 17393 df-mrc 17394 df-acs 17396 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-submnd 18529 df-mulg 18798 df-cntz 19020 df-cmn 19484 df-psmet 20696 df-xmet 20697 df-met 20698 df-bl 20699 df-mopn 20700 df-fbas 20701 df-fg 20702 df-cnfld 20705 df-top 22150 df-topon 22167 df-topsp 22189 df-bases 22203 df-cld 22277 df-ntr 22278 df-cls 22279 df-nei 22356 df-cn 22485 df-cnp 22486 df-lm 22487 df-haus 22573 df-tx 22820 df-hmeo 23013 df-fil 23104 df-fm 23196 df-flim 23197 df-flf 23198 df-xms 23580 df-ms 23581 df-tms 23582 df-cfil 24526 df-cau 24527 df-cmet 24528 df-grpo 29144 df-gid 29145 df-ginv 29146 df-gdiv 29147 df-ablo 29196 df-vc 29210 df-nv 29243 df-va 29246 df-ba 29247 df-sm 29248 df-0v 29249 df-vs 29250 df-nmcv 29251 df-ims 29252 df-dip 29352 df-ssp 29373 df-ph 29464 df-cbn 29514 df-hnorm 29619 df-hba 29620 df-hvsub 29622 df-hlim 29623 df-hcau 29624 df-sh 29858 df-ch 29872 df-oc 29903 df-ch0 29904 df-shs 29959 df-pjh 30046 |
This theorem is referenced by: pjaddii 30326 pjmulii 30328 pjvi 30356 hmopidmpji 30803 |
Copyright terms: Public domain | W3C validator |