Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum4primesprm Structured version   Visualization version   GIF version

Theorem nnsum4primesprm 43941
 Description: Every prime is "the sum of at most 4" (actually one - the prime itself) primes. (Contributed by AV, 23-Jul-2020.) (Proof shortened by AV, 2-Aug-2020.)
Assertion
Ref Expression
nnsum4primesprm (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Distinct variable group:   𝑃,𝑑,𝑓,𝑘

Proof of Theorem nnsum4primesprm
StepHypRef Expression
1 nnsum3primesprm 43940 . 2 (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
2 3lt4 11803 . . . . . 6 3 < 4
3 nnre 11637 . . . . . . 7 (𝑑 ∈ ℕ → 𝑑 ∈ ℝ)
4 3re 11709 . . . . . . . 8 3 ∈ ℝ
54a1i 11 . . . . . . 7 (𝑑 ∈ ℕ → 3 ∈ ℝ)
6 4re 11713 . . . . . . . 8 4 ∈ ℝ
76a1i 11 . . . . . . 7 (𝑑 ∈ ℕ → 4 ∈ ℝ)
8 leltletr 43478 . . . . . . 7 ((𝑑 ∈ ℝ ∧ 3 ∈ ℝ ∧ 4 ∈ ℝ) → ((𝑑 ≤ 3 ∧ 3 < 4) → 𝑑 ≤ 4))
93, 5, 7, 8syl3anc 1365 . . . . . 6 (𝑑 ∈ ℕ → ((𝑑 ≤ 3 ∧ 3 < 4) → 𝑑 ≤ 4))
102, 9mpan2i 695 . . . . 5 (𝑑 ∈ ℕ → (𝑑 ≤ 3 → 𝑑 ≤ 4))
1110anim1d 612 . . . 4 (𝑑 ∈ ℕ → ((𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) → (𝑑 ≤ 4 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
1211reximdv 3271 . . 3 (𝑑 ∈ ℕ → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) → ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
1312reximia 3240 . 2 (∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
141, 13syl 17 1 (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   = wceq 1530   ∈ wcel 2107  ∃wrex 3137   class class class wbr 5057  ‘cfv 6348  (class class class)co 7148   ↑m cmap 8398  ℝcr 10528  1c1 10530   < clt 10667   ≤ cle 10668  ℕcn 11630  3c3 11685  4c4 11686  ...cfz 12884  Σcsu 15034  ℙcprime 16007 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12885  df-fzo 13026  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-prm 16008 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator