MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngciso Structured version   Visualization version   GIF version

Theorem rngciso 20559
Description: An isomorphism in the category of non-unital rings is a bijection. (Contributed by AV, 28-Feb-2020.)
Hypotheses
Ref Expression
rngcsect.c 𝐶 = (RngCat‘𝑈)
rngcsect.b 𝐵 = (Base‘𝐶)
rngcsect.u (𝜑𝑈𝑉)
rngcsect.x (𝜑𝑋𝐵)
rngcsect.y (𝜑𝑌𝐵)
rngciso.n 𝐼 = (Iso‘𝐶)
Assertion
Ref Expression
rngciso (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RngIso 𝑌)))

Proof of Theorem rngciso
StepHypRef Expression
1 rngcsect.b . . . 4 𝐵 = (Base‘𝐶)
2 eqid 2729 . . . 4 (Inv‘𝐶) = (Inv‘𝐶)
3 rngcsect.u . . . . 5 (𝜑𝑈𝑉)
4 rngcsect.c . . . . . 6 𝐶 = (RngCat‘𝑈)
54rngccat 20555 . . . . 5 (𝑈𝑉𝐶 ∈ Cat)
63, 5syl 17 . . . 4 (𝜑𝐶 ∈ Cat)
7 rngcsect.x . . . 4 (𝜑𝑋𝐵)
8 rngcsect.y . . . 4 (𝜑𝑌𝐵)
9 rngciso.n . . . 4 𝐼 = (Iso‘𝐶)
101, 2, 6, 7, 8, 9isoval 17708 . . 3 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌))
1110eleq2d 2814 . 2 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
121, 2, 6, 7, 8invfun 17707 . . . . 5 (𝜑 → Fun (𝑋(Inv‘𝐶)𝑌))
13 funfvbrb 7005 . . . . 5 (Fun (𝑋(Inv‘𝐶)𝑌) → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
1412, 13syl 17 . . . 4 (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
154, 1, 3, 7, 8, 2rngcinv 20558 . . . . 5 (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) ↔ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = 𝐹)))
16 simpl 482 . . . . 5 ((𝐹 ∈ (𝑋 RngIso 𝑌) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = 𝐹) → 𝐹 ∈ (𝑋 RngIso 𝑌))
1715, 16biimtrdi 253 . . . 4 (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) → 𝐹 ∈ (𝑋 RngIso 𝑌)))
1814, 17sylbid 240 . . 3 (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) → 𝐹 ∈ (𝑋 RngIso 𝑌)))
19 eqid 2729 . . . 4 𝐹 = 𝐹
204, 1, 3, 7, 8, 2rngcinv 20558 . . . . 5 (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)𝐹 ↔ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐹 = 𝐹)))
21 funrel 6517 . . . . . . 7 (Fun (𝑋(Inv‘𝐶)𝑌) → Rel (𝑋(Inv‘𝐶)𝑌))
2212, 21syl 17 . . . . . 6 (𝜑 → Rel (𝑋(Inv‘𝐶)𝑌))
23 releldm 5897 . . . . . . 7 ((Rel (𝑋(Inv‘𝐶)𝑌) ∧ 𝐹(𝑋(Inv‘𝐶)𝑌)𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))
2423ex 412 . . . . . 6 (Rel (𝑋(Inv‘𝐶)𝑌) → (𝐹(𝑋(Inv‘𝐶)𝑌)𝐹𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
2522, 24syl 17 . . . . 5 (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)𝐹𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
2620, 25sylbird 260 . . . 4 (𝜑 → ((𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐹 = 𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
2719, 26mpan2i 697 . . 3 (𝜑 → (𝐹 ∈ (𝑋 RngIso 𝑌) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
2818, 27impbid 212 . 2 (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹 ∈ (𝑋 RngIso 𝑌)))
2911, 28bitrd 279 1 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RngIso 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5102  ccnv 5630  dom cdm 5631  Rel wrel 5636  Fun wfun 6493  cfv 6499  (class class class)co 7369  Basecbs 17156  Catccat 17606  Invcinv 17688  Isociso 17689   RngIso crngim 20356  RngCatcrngc 20537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-9 12234  df-n0 12421  df-z 12508  df-dec 12628  df-uz 12772  df-fz 13447  df-struct 17094  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-ress 17178  df-plusg 17210  df-hom 17221  df-cco 17222  df-0g 17381  df-cat 17610  df-cid 17611  df-homf 17612  df-sect 17690  df-inv 17691  df-iso 17692  df-ssc 17753  df-resc 17754  df-subc 17755  df-estrc 18065  df-mgm 18550  df-mgmhm 18602  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-grp 18851  df-ghm 19128  df-abl 19698  df-mgp 20062  df-rng 20074  df-rnghm 20357  df-rngim 20358  df-rngc 20538
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator