| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngciso | Structured version Visualization version GIF version | ||
| Description: An isomorphism in the category of non-unital rings is a bijection. (Contributed by AV, 28-Feb-2020.) |
| Ref | Expression |
|---|---|
| rngcsect.c | ⊢ 𝐶 = (RngCat‘𝑈) |
| rngcsect.b | ⊢ 𝐵 = (Base‘𝐶) |
| rngcsect.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rngcsect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| rngcsect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| rngciso.n | ⊢ 𝐼 = (Iso‘𝐶) |
| Ref | Expression |
|---|---|
| rngciso | ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RngIso 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcsect.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | eqid 2730 | . . . 4 ⊢ (Inv‘𝐶) = (Inv‘𝐶) | |
| 3 | rngcsect.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 4 | rngcsect.c | . . . . . 6 ⊢ 𝐶 = (RngCat‘𝑈) | |
| 5 | 4 | rngccat 20542 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
| 6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 7 | rngcsect.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | rngcsect.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | rngciso.n | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
| 10 | 1, 2, 6, 7, 8, 9 | isoval 17664 | . . 3 ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌)) |
| 11 | 10 | eleq2d 2815 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
| 12 | 1, 2, 6, 7, 8 | invfun 17663 | . . . . 5 ⊢ (𝜑 → Fun (𝑋(Inv‘𝐶)𝑌)) |
| 13 | funfvbrb 6979 | . . . . 5 ⊢ (Fun (𝑋(Inv‘𝐶)𝑌) → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) |
| 15 | 4, 1, 3, 7, 8, 2 | rngcinv 20545 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) ↔ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = ◡𝐹))) |
| 16 | simpl 482 | . . . . 5 ⊢ ((𝐹 ∈ (𝑋 RngIso 𝑌) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = ◡𝐹) → 𝐹 ∈ (𝑋 RngIso 𝑌)) | |
| 17 | 15, 16 | biimtrdi 253 | . . . 4 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) → 𝐹 ∈ (𝑋 RngIso 𝑌))) |
| 18 | 14, 17 | sylbid 240 | . . 3 ⊢ (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) → 𝐹 ∈ (𝑋 RngIso 𝑌))) |
| 19 | eqid 2730 | . . . 4 ⊢ ◡𝐹 = ◡𝐹 | |
| 20 | 4, 1, 3, 7, 8, 2 | rngcinv 20545 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹 ↔ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ ◡𝐹 = ◡𝐹))) |
| 21 | funrel 6494 | . . . . . . 7 ⊢ (Fun (𝑋(Inv‘𝐶)𝑌) → Rel (𝑋(Inv‘𝐶)𝑌)) | |
| 22 | 12, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → Rel (𝑋(Inv‘𝐶)𝑌)) |
| 23 | releldm 5881 | . . . . . . 7 ⊢ ((Rel (𝑋(Inv‘𝐶)𝑌) ∧ 𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)) | |
| 24 | 23 | ex 412 | . . . . . 6 ⊢ (Rel (𝑋(Inv‘𝐶)𝑌) → (𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹 → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
| 25 | 22, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹 → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
| 26 | 20, 25 | sylbird 260 | . . . 4 ⊢ (𝜑 → ((𝐹 ∈ (𝑋 RngIso 𝑌) ∧ ◡𝐹 = ◡𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
| 27 | 19, 26 | mpan2i 697 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝑋 RngIso 𝑌) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
| 28 | 18, 27 | impbid 212 | . 2 ⊢ (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹 ∈ (𝑋 RngIso 𝑌))) |
| 29 | 11, 28 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RngIso 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 class class class wbr 5089 ◡ccnv 5613 dom cdm 5614 Rel wrel 5619 Fun wfun 6471 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 Catccat 17562 Invcinv 17644 Isociso 17645 RngIso crngim 20346 RngCatcrngc 20524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-fz 13400 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-hom 17177 df-cco 17178 df-0g 17337 df-cat 17566 df-cid 17567 df-homf 17568 df-sect 17646 df-inv 17647 df-iso 17648 df-ssc 17709 df-resc 17710 df-subc 17711 df-estrc 18021 df-mgm 18540 df-mgmhm 18592 df-sgrp 18619 df-mnd 18635 df-mhm 18683 df-grp 18841 df-ghm 19118 df-abl 19688 df-mgp 20052 df-rng 20064 df-rnghm 20347 df-rngim 20348 df-rngc 20525 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |