Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngciso Structured version   Visualization version   GIF version

Theorem rngciso 43731
Description: An isomorphism in the category of non-unital rings is a bijection. (Contributed by AV, 28-Feb-2020.)
Hypotheses
Ref Expression
rngcsect.c 𝐶 = (RngCat‘𝑈)
rngcsect.b 𝐵 = (Base‘𝐶)
rngcsect.u (𝜑𝑈𝑉)
rngcsect.x (𝜑𝑋𝐵)
rngcsect.y (𝜑𝑌𝐵)
rngciso.n 𝐼 = (Iso‘𝐶)
Assertion
Ref Expression
rngciso (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RngIsom 𝑌)))

Proof of Theorem rngciso
StepHypRef Expression
1 rngcsect.b . . . 4 𝐵 = (Base‘𝐶)
2 eqid 2795 . . . 4 (Inv‘𝐶) = (Inv‘𝐶)
3 rngcsect.u . . . . 5 (𝜑𝑈𝑉)
4 rngcsect.c . . . . . 6 𝐶 = (RngCat‘𝑈)
54rngccat 43727 . . . . 5 (𝑈𝑉𝐶 ∈ Cat)
63, 5syl 17 . . . 4 (𝜑𝐶 ∈ Cat)
7 rngcsect.x . . . 4 (𝜑𝑋𝐵)
8 rngcsect.y . . . 4 (𝜑𝑌𝐵)
9 rngciso.n . . . 4 𝐼 = (Iso‘𝐶)
101, 2, 6, 7, 8, 9isoval 16864 . . 3 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌))
1110eleq2d 2868 . 2 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
121, 2, 6, 7, 8invfun 16863 . . . . 5 (𝜑 → Fun (𝑋(Inv‘𝐶)𝑌))
13 funfvbrb 6686 . . . . 5 (Fun (𝑋(Inv‘𝐶)𝑌) → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
1412, 13syl 17 . . . 4 (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
154, 1, 3, 7, 8, 2rngcinv 43730 . . . . 5 (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) ↔ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = 𝐹)))
16 simpl 483 . . . . 5 ((𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = 𝐹) → 𝐹 ∈ (𝑋 RngIsom 𝑌))
1715, 16syl6bi 254 . . . 4 (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) → 𝐹 ∈ (𝑋 RngIsom 𝑌)))
1814, 17sylbid 241 . . 3 (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) → 𝐹 ∈ (𝑋 RngIsom 𝑌)))
19 eqid 2795 . . . 4 𝐹 = 𝐹
204, 1, 3, 7, 8, 2rngcinv 43730 . . . . 5 (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)𝐹 ↔ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐹 = 𝐹)))
21 funrel 6242 . . . . . . 7 (Fun (𝑋(Inv‘𝐶)𝑌) → Rel (𝑋(Inv‘𝐶)𝑌))
2212, 21syl 17 . . . . . 6 (𝜑 → Rel (𝑋(Inv‘𝐶)𝑌))
23 releldm 5696 . . . . . . 7 ((Rel (𝑋(Inv‘𝐶)𝑌) ∧ 𝐹(𝑋(Inv‘𝐶)𝑌)𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))
2423ex 413 . . . . . 6 (Rel (𝑋(Inv‘𝐶)𝑌) → (𝐹(𝑋(Inv‘𝐶)𝑌)𝐹𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
2522, 24syl 17 . . . . 5 (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)𝐹𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
2620, 25sylbird 261 . . . 4 (𝜑 → ((𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐹 = 𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
2719, 26mpan2i 693 . . 3 (𝜑 → (𝐹 ∈ (𝑋 RngIsom 𝑌) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
2818, 27impbid 213 . 2 (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹 ∈ (𝑋 RngIsom 𝑌)))
2911, 28bitrd 280 1 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RngIsom 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081   class class class wbr 4962  ccnv 5442  dom cdm 5443  Rel wrel 5448  Fun wfun 6219  cfv 6225  (class class class)co 7016  Basecbs 16312  Catccat 16764  Invcinv 16844  Isociso 16845   RngIsom crngs 43635  RngCatcrngc 43706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-fz 12743  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-hom 16418  df-cco 16419  df-0g 16544  df-cat 16768  df-cid 16769  df-homf 16770  df-sect 16846  df-inv 16847  df-iso 16848  df-ssc 16909  df-resc 16910  df-subc 16911  df-estrc 17202  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-mhm 17774  df-grp 17864  df-ghm 18097  df-abl 18636  df-mgp 18930  df-mgmhm 43528  df-rng0 43624  df-rnghomo 43636  df-rngisom 43637  df-rngc 43708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator