HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdsl1i Structured version   Visualization version   GIF version

Theorem mdsl1i 32203
Description: If the modular pair property holds in a sublattice, it holds in the whole lattice. Lemma 1.4 of [MaedaMaeda] p. 2. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdsl.1 𝐴C
mdsl.2 𝐵C
Assertion
Ref Expression
mdsl1i (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) ↔ 𝐴 𝑀 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem mdsl1i
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sseq2 4003 . . . . . . . 8 (𝑥 = (𝑦 (𝐴𝐵)) → ((𝐴𝐵) ⊆ 𝑥 ↔ (𝐴𝐵) ⊆ (𝑦 (𝐴𝐵))))
2 sseq1 4002 . . . . . . . 8 (𝑥 = (𝑦 (𝐴𝐵)) → (𝑥 ⊆ (𝐴 𝐵) ↔ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)))
31, 2anbi12d 630 . . . . . . 7 (𝑥 = (𝑦 (𝐴𝐵)) → (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) ↔ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))))
4 sseq1 4002 . . . . . . . 8 (𝑥 = (𝑦 (𝐴𝐵)) → (𝑥𝐵 ↔ (𝑦 (𝐴𝐵)) ⊆ 𝐵))
5 oveq1 7426 . . . . . . . . . 10 (𝑥 = (𝑦 (𝐴𝐵)) → (𝑥 𝐴) = ((𝑦 (𝐴𝐵)) ∨ 𝐴))
65ineq1d 4209 . . . . . . . . 9 (𝑥 = (𝑦 (𝐴𝐵)) → ((𝑥 𝐴) ∩ 𝐵) = (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵))
7 oveq1 7426 . . . . . . . . 9 (𝑥 = (𝑦 (𝐴𝐵)) → (𝑥 (𝐴𝐵)) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)))
86, 7eqeq12d 2741 . . . . . . . 8 (𝑥 = (𝑦 (𝐴𝐵)) → (((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)) ↔ (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))
94, 8imbi12d 343 . . . . . . 7 (𝑥 = (𝑦 (𝐴𝐵)) → ((𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) ↔ ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)))))
103, 9imbi12d 343 . . . . . 6 (𝑥 = (𝑦 (𝐴𝐵)) → ((((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) ↔ (((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))))
1110rspccv 3603 . . . . 5 (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) → ((𝑦 (𝐴𝐵)) ∈ C → (((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))))
12 impexp 449 . . . . . . 7 (((((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) ∧ (𝑦 (𝐴𝐵)) ⊆ 𝐵) → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))) ↔ (((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)))))
13 impexp 449 . . . . . . 7 ((((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)))) ↔ ((𝑦 (𝐴𝐵)) ∈ C → (((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))))
1412, 13bitr2i 275 . . . . . 6 (((𝑦 (𝐴𝐵)) ∈ C → (((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))) ↔ ((((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) ∧ (𝑦 (𝐴𝐵)) ⊆ 𝐵) → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))
15 inss2 4228 . . . . . . . . . . . 12 (𝐴𝐵) ⊆ 𝐵
16 mdsl.1 . . . . . . . . . . . . . . 15 𝐴C
17 mdsl.2 . . . . . . . . . . . . . . 15 𝐵C
1816, 17chincli 31342 . . . . . . . . . . . . . 14 (𝐴𝐵) ∈ C
19 chlub 31391 . . . . . . . . . . . . . 14 ((𝑦C ∧ (𝐴𝐵) ∈ C𝐵C ) → ((𝑦𝐵 ∧ (𝐴𝐵) ⊆ 𝐵) ↔ (𝑦 (𝐴𝐵)) ⊆ 𝐵))
2018, 17, 19mp3an23 1449 . . . . . . . . . . . . 13 (𝑦C → ((𝑦𝐵 ∧ (𝐴𝐵) ⊆ 𝐵) ↔ (𝑦 (𝐴𝐵)) ⊆ 𝐵))
2120biimpd 228 . . . . . . . . . . . 12 (𝑦C → ((𝑦𝐵 ∧ (𝐴𝐵) ⊆ 𝐵) → (𝑦 (𝐴𝐵)) ⊆ 𝐵))
2215, 21mpan2i 695 . . . . . . . . . . 11 (𝑦C → (𝑦𝐵 → (𝑦 (𝐴𝐵)) ⊆ 𝐵))
2317, 16chub2i 31352 . . . . . . . . . . . 12 𝐵 ⊆ (𝐴 𝐵)
24 sstr 3985 . . . . . . . . . . . 12 (((𝑦 (𝐴𝐵)) ⊆ 𝐵𝐵 ⊆ (𝐴 𝐵)) → (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))
2523, 24mpan2 689 . . . . . . . . . . 11 ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))
2622, 25syl6 35 . . . . . . . . . 10 (𝑦C → (𝑦𝐵 → (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)))
27 chub2 31390 . . . . . . . . . . 11 (((𝐴𝐵) ∈ C𝑦C ) → (𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)))
2818, 27mpan 688 . . . . . . . . . 10 (𝑦C → (𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)))
2926, 28jctild 524 . . . . . . . . 9 (𝑦C → (𝑦𝐵 → ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))))
30 chjcl 31239 . . . . . . . . . 10 ((𝑦C ∧ (𝐴𝐵) ∈ C ) → (𝑦 (𝐴𝐵)) ∈ C )
3118, 30mpan2 689 . . . . . . . . 9 (𝑦C → (𝑦 (𝐴𝐵)) ∈ C )
3229, 31jctild 524 . . . . . . . 8 (𝑦C → (𝑦𝐵 → ((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)))))
3332, 22jcad 511 . . . . . . 7 (𝑦C → (𝑦𝐵 → (((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) ∧ (𝑦 (𝐴𝐵)) ⊆ 𝐵)))
34 chjass 31415 . . . . . . . . . . . 12 ((𝑦C ∧ (𝐴𝐵) ∈ C𝐴C ) → ((𝑦 (𝐴𝐵)) ∨ 𝐴) = (𝑦 ((𝐴𝐵) ∨ 𝐴)))
3518, 16, 34mp3an23 1449 . . . . . . . . . . 11 (𝑦C → ((𝑦 (𝐴𝐵)) ∨ 𝐴) = (𝑦 ((𝐴𝐵) ∨ 𝐴)))
3618, 16chjcomi 31350 . . . . . . . . . . . . 13 ((𝐴𝐵) ∨ 𝐴) = (𝐴 (𝐴𝐵))
3716, 17chabs1i 31400 . . . . . . . . . . . . 13 (𝐴 (𝐴𝐵)) = 𝐴
3836, 37eqtri 2753 . . . . . . . . . . . 12 ((𝐴𝐵) ∨ 𝐴) = 𝐴
3938oveq2i 7430 . . . . . . . . . . 11 (𝑦 ((𝐴𝐵) ∨ 𝐴)) = (𝑦 𝐴)
4035, 39eqtrdi 2781 . . . . . . . . . 10 (𝑦C → ((𝑦 (𝐴𝐵)) ∨ 𝐴) = (𝑦 𝐴))
4140ineq1d 4209 . . . . . . . . 9 (𝑦C → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 𝐴) ∩ 𝐵))
42 chjass 31415 . . . . . . . . . . 11 ((𝑦C ∧ (𝐴𝐵) ∈ C ∧ (𝐴𝐵) ∈ C ) → ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)) = (𝑦 ((𝐴𝐵) ∨ (𝐴𝐵))))
4318, 18, 42mp3an23 1449 . . . . . . . . . 10 (𝑦C → ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)) = (𝑦 ((𝐴𝐵) ∨ (𝐴𝐵))))
4418chjidmi 31403 . . . . . . . . . . 11 ((𝐴𝐵) ∨ (𝐴𝐵)) = (𝐴𝐵)
4544oveq2i 7430 . . . . . . . . . 10 (𝑦 ((𝐴𝐵) ∨ (𝐴𝐵))) = (𝑦 (𝐴𝐵))
4643, 45eqtrdi 2781 . . . . . . . . 9 (𝑦C → ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)) = (𝑦 (𝐴𝐵)))
4741, 46eqeq12d 2741 . . . . . . . 8 (𝑦C → ((((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)) ↔ ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
4847biimpd 228 . . . . . . 7 (𝑦C → ((((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)) → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
4933, 48imim12d 81 . . . . . 6 (𝑦C → (((((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) ∧ (𝑦 (𝐴𝐵)) ⊆ 𝐵) → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))) → (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
5014, 49biimtrid 241 . . . . 5 (𝑦C → (((𝑦 (𝐴𝐵)) ∈ C → (((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))) → (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
5111, 50syl5com 31 . . . 4 (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) → (𝑦C → (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
5251ralrimiv 3134 . . 3 (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) → ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
53 mdbr 32176 . . . 4 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
5416, 17, 53mp2an 690 . . 3 (𝐴 𝑀 𝐵 ↔ ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
5552, 54sylibr 233 . 2 (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) → 𝐴 𝑀 𝐵)
56 mdbr 32176 . . . 4 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
5716, 17, 56mp2an 690 . . 3 (𝐴 𝑀 𝐵 ↔ ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))))
58 ax-1 6 . . . 4 ((𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) → (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
5958ralimi 3072 . . 3 (∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) → ∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
6057, 59sylbi 216 . 2 (𝐴 𝑀 𝐵 → ∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
6155, 60impbii 208 1 (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) ↔ 𝐴 𝑀 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3050  cin 3943  wss 3944   class class class wbr 5149  (class class class)co 7419   C cch 30811   chj 30815   𝑀 cmd 30848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cc 10460  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219  ax-mulf 11220  ax-hilex 30881  ax-hfvadd 30882  ax-hvcom 30883  ax-hvass 30884  ax-hv0cl 30885  ax-hvaddid 30886  ax-hfvmul 30887  ax-hvmulid 30888  ax-hvmulass 30889  ax-hvdistr1 30890  ax-hvdistr2 30891  ax-hvmul0 30892  ax-hfi 30961  ax-his1 30964  ax-his2 30965  ax-his3 30966  ax-his4 30967  ax-hcompl 31084
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-omul 8492  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-acn 9967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-clim 15468  df-rlim 15469  df-sum 15669  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-xrs 17487  df-qtop 17492  df-imas 17493  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-mulg 19032  df-cntz 19280  df-cmn 19749  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-nei 23046  df-cn 23175  df-cnp 23176  df-lm 23177  df-haus 23263  df-tx 23510  df-hmeo 23703  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-xms 24270  df-ms 24271  df-tms 24272  df-cfil 25227  df-cau 25228  df-cmet 25229  df-grpo 30375  df-gid 30376  df-ginv 30377  df-gdiv 30378  df-ablo 30427  df-vc 30441  df-nv 30474  df-va 30477  df-ba 30478  df-sm 30479  df-0v 30480  df-vs 30481  df-nmcv 30482  df-ims 30483  df-dip 30583  df-ssp 30604  df-ph 30695  df-cbn 30745  df-hnorm 30850  df-hba 30851  df-hvsub 30853  df-hlim 30854  df-hcau 30855  df-sh 31089  df-ch 31103  df-oc 31134  df-ch0 31135  df-shs 31190  df-chj 31192  df-md 32162
This theorem is referenced by:  mdsl2i  32204  cvmdi  32206
  Copyright terms: Public domain W3C validator