HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdsl1i Structured version   Visualization version   GIF version

Theorem mdsl1i 32269
Description: If the modular pair property holds in a sublattice, it holds in the whole lattice. Lemma 1.4 of [MaedaMaeda] p. 2. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdsl.1 𝐴C
mdsl.2 𝐵C
Assertion
Ref Expression
mdsl1i (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) ↔ 𝐴 𝑀 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem mdsl1i
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3990 . . . . . . . 8 (𝑥 = (𝑦 (𝐴𝐵)) → ((𝐴𝐵) ⊆ 𝑥 ↔ (𝐴𝐵) ⊆ (𝑦 (𝐴𝐵))))
2 sseq1 3989 . . . . . . . 8 (𝑥 = (𝑦 (𝐴𝐵)) → (𝑥 ⊆ (𝐴 𝐵) ↔ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)))
31, 2anbi12d 632 . . . . . . 7 (𝑥 = (𝑦 (𝐴𝐵)) → (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) ↔ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))))
4 sseq1 3989 . . . . . . . 8 (𝑥 = (𝑦 (𝐴𝐵)) → (𝑥𝐵 ↔ (𝑦 (𝐴𝐵)) ⊆ 𝐵))
5 oveq1 7420 . . . . . . . . . 10 (𝑥 = (𝑦 (𝐴𝐵)) → (𝑥 𝐴) = ((𝑦 (𝐴𝐵)) ∨ 𝐴))
65ineq1d 4199 . . . . . . . . 9 (𝑥 = (𝑦 (𝐴𝐵)) → ((𝑥 𝐴) ∩ 𝐵) = (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵))
7 oveq1 7420 . . . . . . . . 9 (𝑥 = (𝑦 (𝐴𝐵)) → (𝑥 (𝐴𝐵)) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)))
86, 7eqeq12d 2750 . . . . . . . 8 (𝑥 = (𝑦 (𝐴𝐵)) → (((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)) ↔ (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))
94, 8imbi12d 344 . . . . . . 7 (𝑥 = (𝑦 (𝐴𝐵)) → ((𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) ↔ ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)))))
103, 9imbi12d 344 . . . . . 6 (𝑥 = (𝑦 (𝐴𝐵)) → ((((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) ↔ (((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))))
1110rspccv 3602 . . . . 5 (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) → ((𝑦 (𝐴𝐵)) ∈ C → (((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))))
12 impexp 450 . . . . . . 7 (((((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) ∧ (𝑦 (𝐴𝐵)) ⊆ 𝐵) → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))) ↔ (((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)))))
13 impexp 450 . . . . . . 7 ((((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)))) ↔ ((𝑦 (𝐴𝐵)) ∈ C → (((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))))
1412, 13bitr2i 276 . . . . . 6 (((𝑦 (𝐴𝐵)) ∈ C → (((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))) ↔ ((((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) ∧ (𝑦 (𝐴𝐵)) ⊆ 𝐵) → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))
15 inss2 4218 . . . . . . . . . . . 12 (𝐴𝐵) ⊆ 𝐵
16 mdsl.1 . . . . . . . . . . . . . . 15 𝐴C
17 mdsl.2 . . . . . . . . . . . . . . 15 𝐵C
1816, 17chincli 31408 . . . . . . . . . . . . . 14 (𝐴𝐵) ∈ C
19 chlub 31457 . . . . . . . . . . . . . 14 ((𝑦C ∧ (𝐴𝐵) ∈ C𝐵C ) → ((𝑦𝐵 ∧ (𝐴𝐵) ⊆ 𝐵) ↔ (𝑦 (𝐴𝐵)) ⊆ 𝐵))
2018, 17, 19mp3an23 1454 . . . . . . . . . . . . 13 (𝑦C → ((𝑦𝐵 ∧ (𝐴𝐵) ⊆ 𝐵) ↔ (𝑦 (𝐴𝐵)) ⊆ 𝐵))
2120biimpd 229 . . . . . . . . . . . 12 (𝑦C → ((𝑦𝐵 ∧ (𝐴𝐵) ⊆ 𝐵) → (𝑦 (𝐴𝐵)) ⊆ 𝐵))
2215, 21mpan2i 697 . . . . . . . . . . 11 (𝑦C → (𝑦𝐵 → (𝑦 (𝐴𝐵)) ⊆ 𝐵))
2317, 16chub2i 31418 . . . . . . . . . . . 12 𝐵 ⊆ (𝐴 𝐵)
24 sstr 3972 . . . . . . . . . . . 12 (((𝑦 (𝐴𝐵)) ⊆ 𝐵𝐵 ⊆ (𝐴 𝐵)) → (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))
2523, 24mpan2 691 . . . . . . . . . . 11 ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))
2622, 25syl6 35 . . . . . . . . . 10 (𝑦C → (𝑦𝐵 → (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)))
27 chub2 31456 . . . . . . . . . . 11 (((𝐴𝐵) ∈ C𝑦C ) → (𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)))
2818, 27mpan 690 . . . . . . . . . 10 (𝑦C → (𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)))
2926, 28jctild 525 . . . . . . . . 9 (𝑦C → (𝑦𝐵 → ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))))
30 chjcl 31305 . . . . . . . . . 10 ((𝑦C ∧ (𝐴𝐵) ∈ C ) → (𝑦 (𝐴𝐵)) ∈ C )
3118, 30mpan2 691 . . . . . . . . 9 (𝑦C → (𝑦 (𝐴𝐵)) ∈ C )
3229, 31jctild 525 . . . . . . . 8 (𝑦C → (𝑦𝐵 → ((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)))))
3332, 22jcad 512 . . . . . . 7 (𝑦C → (𝑦𝐵 → (((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) ∧ (𝑦 (𝐴𝐵)) ⊆ 𝐵)))
34 chjass 31481 . . . . . . . . . . . 12 ((𝑦C ∧ (𝐴𝐵) ∈ C𝐴C ) → ((𝑦 (𝐴𝐵)) ∨ 𝐴) = (𝑦 ((𝐴𝐵) ∨ 𝐴)))
3518, 16, 34mp3an23 1454 . . . . . . . . . . 11 (𝑦C → ((𝑦 (𝐴𝐵)) ∨ 𝐴) = (𝑦 ((𝐴𝐵) ∨ 𝐴)))
3618, 16chjcomi 31416 . . . . . . . . . . . . 13 ((𝐴𝐵) ∨ 𝐴) = (𝐴 (𝐴𝐵))
3716, 17chabs1i 31466 . . . . . . . . . . . . 13 (𝐴 (𝐴𝐵)) = 𝐴
3836, 37eqtri 2757 . . . . . . . . . . . 12 ((𝐴𝐵) ∨ 𝐴) = 𝐴
3938oveq2i 7424 . . . . . . . . . . 11 (𝑦 ((𝐴𝐵) ∨ 𝐴)) = (𝑦 𝐴)
4035, 39eqtrdi 2785 . . . . . . . . . 10 (𝑦C → ((𝑦 (𝐴𝐵)) ∨ 𝐴) = (𝑦 𝐴))
4140ineq1d 4199 . . . . . . . . 9 (𝑦C → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 𝐴) ∩ 𝐵))
42 chjass 31481 . . . . . . . . . . 11 ((𝑦C ∧ (𝐴𝐵) ∈ C ∧ (𝐴𝐵) ∈ C ) → ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)) = (𝑦 ((𝐴𝐵) ∨ (𝐴𝐵))))
4318, 18, 42mp3an23 1454 . . . . . . . . . 10 (𝑦C → ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)) = (𝑦 ((𝐴𝐵) ∨ (𝐴𝐵))))
4418chjidmi 31469 . . . . . . . . . . 11 ((𝐴𝐵) ∨ (𝐴𝐵)) = (𝐴𝐵)
4544oveq2i 7424 . . . . . . . . . 10 (𝑦 ((𝐴𝐵) ∨ (𝐴𝐵))) = (𝑦 (𝐴𝐵))
4643, 45eqtrdi 2785 . . . . . . . . 9 (𝑦C → ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)) = (𝑦 (𝐴𝐵)))
4741, 46eqeq12d 2750 . . . . . . . 8 (𝑦C → ((((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)) ↔ ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
4847biimpd 229 . . . . . . 7 (𝑦C → ((((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)) → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
4933, 48imim12d 81 . . . . . 6 (𝑦C → (((((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) ∧ (𝑦 (𝐴𝐵)) ⊆ 𝐵) → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))) → (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
5014, 49biimtrid 242 . . . . 5 (𝑦C → (((𝑦 (𝐴𝐵)) ∈ C → (((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))) → (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
5111, 50syl5com 31 . . . 4 (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) → (𝑦C → (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
5251ralrimiv 3132 . . 3 (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) → ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
53 mdbr 32242 . . . 4 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
5416, 17, 53mp2an 692 . . 3 (𝐴 𝑀 𝐵 ↔ ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
5552, 54sylibr 234 . 2 (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) → 𝐴 𝑀 𝐵)
56 mdbr 32242 . . . 4 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
5716, 17, 56mp2an 692 . . 3 (𝐴 𝑀 𝐵 ↔ ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))))
58 ax-1 6 . . . 4 ((𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) → (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
5958ralimi 3072 . . 3 (∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) → ∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
6057, 59sylbi 217 . 2 (𝐴 𝑀 𝐵 → ∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
6155, 60impbii 209 1 (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) ↔ 𝐴 𝑀 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  cin 3930  wss 3931   class class class wbr 5123  (class class class)co 7413   C cch 30877   chj 30881   𝑀 cmd 30914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cc 10457  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216  ax-mulf 11217  ax-hilex 30947  ax-hfvadd 30948  ax-hvcom 30949  ax-hvass 30950  ax-hv0cl 30951  ax-hvaddid 30952  ax-hfvmul 30953  ax-hvmulid 30954  ax-hvmulass 30955  ax-hvdistr1 30956  ax-hvdistr2 30957  ax-hvmul0 30958  ax-hfi 31027  ax-his1 31030  ax-his2 31031  ax-his3 31032  ax-his4 31033  ax-hcompl 31150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-omul 8493  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-fi 9433  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-acn 9964  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-ioo 13373  df-ico 13375  df-icc 13376  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-rlim 15508  df-sum 15706  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-starv 17289  df-sca 17290  df-vsca 17291  df-ip 17292  df-tset 17293  df-ple 17294  df-ds 17296  df-unif 17297  df-hom 17298  df-cco 17299  df-rest 17439  df-topn 17440  df-0g 17458  df-gsum 17459  df-topgen 17460  df-pt 17461  df-prds 17464  df-xrs 17519  df-qtop 17524  df-imas 17525  df-xps 17527  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19769  df-psmet 21319  df-xmet 21320  df-met 21321  df-bl 21322  df-mopn 21323  df-fbas 21324  df-fg 21325  df-cnfld 21328  df-top 22849  df-topon 22866  df-topsp 22888  df-bases 22901  df-cld 22974  df-ntr 22975  df-cls 22976  df-nei 23053  df-cn 23182  df-cnp 23183  df-lm 23184  df-haus 23270  df-tx 23517  df-hmeo 23710  df-fil 23801  df-fm 23893  df-flim 23894  df-flf 23895  df-xms 24276  df-ms 24277  df-tms 24278  df-cfil 25226  df-cau 25227  df-cmet 25228  df-grpo 30441  df-gid 30442  df-ginv 30443  df-gdiv 30444  df-ablo 30493  df-vc 30507  df-nv 30540  df-va 30543  df-ba 30544  df-sm 30545  df-0v 30546  df-vs 30547  df-nmcv 30548  df-ims 30549  df-dip 30649  df-ssp 30670  df-ph 30761  df-cbn 30811  df-hnorm 30916  df-hba 30917  df-hvsub 30919  df-hlim 30920  df-hcau 30921  df-sh 31155  df-ch 31169  df-oc 31200  df-ch0 31201  df-shs 31256  df-chj 31258  df-md 32228
This theorem is referenced by:  mdsl2i  32270  cvmdi  32272
  Copyright terms: Public domain W3C validator