HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdsl1i Structured version   Visualization version   GIF version

Theorem mdsl1i 32353
Description: If the modular pair property holds in a sublattice, it holds in the whole lattice. Lemma 1.4 of [MaedaMaeda] p. 2. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdsl.1 𝐴C
mdsl.2 𝐵C
Assertion
Ref Expression
mdsl1i (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) ↔ 𝐴 𝑀 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem mdsl1i
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sseq2 4035 . . . . . . . 8 (𝑥 = (𝑦 (𝐴𝐵)) → ((𝐴𝐵) ⊆ 𝑥 ↔ (𝐴𝐵) ⊆ (𝑦 (𝐴𝐵))))
2 sseq1 4034 . . . . . . . 8 (𝑥 = (𝑦 (𝐴𝐵)) → (𝑥 ⊆ (𝐴 𝐵) ↔ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)))
31, 2anbi12d 631 . . . . . . 7 (𝑥 = (𝑦 (𝐴𝐵)) → (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) ↔ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))))
4 sseq1 4034 . . . . . . . 8 (𝑥 = (𝑦 (𝐴𝐵)) → (𝑥𝐵 ↔ (𝑦 (𝐴𝐵)) ⊆ 𝐵))
5 oveq1 7455 . . . . . . . . . 10 (𝑥 = (𝑦 (𝐴𝐵)) → (𝑥 𝐴) = ((𝑦 (𝐴𝐵)) ∨ 𝐴))
65ineq1d 4240 . . . . . . . . 9 (𝑥 = (𝑦 (𝐴𝐵)) → ((𝑥 𝐴) ∩ 𝐵) = (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵))
7 oveq1 7455 . . . . . . . . 9 (𝑥 = (𝑦 (𝐴𝐵)) → (𝑥 (𝐴𝐵)) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)))
86, 7eqeq12d 2756 . . . . . . . 8 (𝑥 = (𝑦 (𝐴𝐵)) → (((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)) ↔ (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))
94, 8imbi12d 344 . . . . . . 7 (𝑥 = (𝑦 (𝐴𝐵)) → ((𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) ↔ ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)))))
103, 9imbi12d 344 . . . . . 6 (𝑥 = (𝑦 (𝐴𝐵)) → ((((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) ↔ (((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))))
1110rspccv 3632 . . . . 5 (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) → ((𝑦 (𝐴𝐵)) ∈ C → (((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))))
12 impexp 450 . . . . . . 7 (((((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) ∧ (𝑦 (𝐴𝐵)) ⊆ 𝐵) → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))) ↔ (((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)))))
13 impexp 450 . . . . . . 7 ((((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)))) ↔ ((𝑦 (𝐴𝐵)) ∈ C → (((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))))
1412, 13bitr2i 276 . . . . . 6 (((𝑦 (𝐴𝐵)) ∈ C → (((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))) ↔ ((((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) ∧ (𝑦 (𝐴𝐵)) ⊆ 𝐵) → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))
15 inss2 4259 . . . . . . . . . . . 12 (𝐴𝐵) ⊆ 𝐵
16 mdsl.1 . . . . . . . . . . . . . . 15 𝐴C
17 mdsl.2 . . . . . . . . . . . . . . 15 𝐵C
1816, 17chincli 31492 . . . . . . . . . . . . . 14 (𝐴𝐵) ∈ C
19 chlub 31541 . . . . . . . . . . . . . 14 ((𝑦C ∧ (𝐴𝐵) ∈ C𝐵C ) → ((𝑦𝐵 ∧ (𝐴𝐵) ⊆ 𝐵) ↔ (𝑦 (𝐴𝐵)) ⊆ 𝐵))
2018, 17, 19mp3an23 1453 . . . . . . . . . . . . 13 (𝑦C → ((𝑦𝐵 ∧ (𝐴𝐵) ⊆ 𝐵) ↔ (𝑦 (𝐴𝐵)) ⊆ 𝐵))
2120biimpd 229 . . . . . . . . . . . 12 (𝑦C → ((𝑦𝐵 ∧ (𝐴𝐵) ⊆ 𝐵) → (𝑦 (𝐴𝐵)) ⊆ 𝐵))
2215, 21mpan2i 696 . . . . . . . . . . 11 (𝑦C → (𝑦𝐵 → (𝑦 (𝐴𝐵)) ⊆ 𝐵))
2317, 16chub2i 31502 . . . . . . . . . . . 12 𝐵 ⊆ (𝐴 𝐵)
24 sstr 4017 . . . . . . . . . . . 12 (((𝑦 (𝐴𝐵)) ⊆ 𝐵𝐵 ⊆ (𝐴 𝐵)) → (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))
2523, 24mpan2 690 . . . . . . . . . . 11 ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))
2622, 25syl6 35 . . . . . . . . . 10 (𝑦C → (𝑦𝐵 → (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)))
27 chub2 31540 . . . . . . . . . . 11 (((𝐴𝐵) ∈ C𝑦C ) → (𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)))
2818, 27mpan 689 . . . . . . . . . 10 (𝑦C → (𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)))
2926, 28jctild 525 . . . . . . . . 9 (𝑦C → (𝑦𝐵 → ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))))
30 chjcl 31389 . . . . . . . . . 10 ((𝑦C ∧ (𝐴𝐵) ∈ C ) → (𝑦 (𝐴𝐵)) ∈ C )
3118, 30mpan2 690 . . . . . . . . 9 (𝑦C → (𝑦 (𝐴𝐵)) ∈ C )
3229, 31jctild 525 . . . . . . . 8 (𝑦C → (𝑦𝐵 → ((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)))))
3332, 22jcad 512 . . . . . . 7 (𝑦C → (𝑦𝐵 → (((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) ∧ (𝑦 (𝐴𝐵)) ⊆ 𝐵)))
34 chjass 31565 . . . . . . . . . . . 12 ((𝑦C ∧ (𝐴𝐵) ∈ C𝐴C ) → ((𝑦 (𝐴𝐵)) ∨ 𝐴) = (𝑦 ((𝐴𝐵) ∨ 𝐴)))
3518, 16, 34mp3an23 1453 . . . . . . . . . . 11 (𝑦C → ((𝑦 (𝐴𝐵)) ∨ 𝐴) = (𝑦 ((𝐴𝐵) ∨ 𝐴)))
3618, 16chjcomi 31500 . . . . . . . . . . . . 13 ((𝐴𝐵) ∨ 𝐴) = (𝐴 (𝐴𝐵))
3716, 17chabs1i 31550 . . . . . . . . . . . . 13 (𝐴 (𝐴𝐵)) = 𝐴
3836, 37eqtri 2768 . . . . . . . . . . . 12 ((𝐴𝐵) ∨ 𝐴) = 𝐴
3938oveq2i 7459 . . . . . . . . . . 11 (𝑦 ((𝐴𝐵) ∨ 𝐴)) = (𝑦 𝐴)
4035, 39eqtrdi 2796 . . . . . . . . . 10 (𝑦C → ((𝑦 (𝐴𝐵)) ∨ 𝐴) = (𝑦 𝐴))
4140ineq1d 4240 . . . . . . . . 9 (𝑦C → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 𝐴) ∩ 𝐵))
42 chjass 31565 . . . . . . . . . . 11 ((𝑦C ∧ (𝐴𝐵) ∈ C ∧ (𝐴𝐵) ∈ C ) → ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)) = (𝑦 ((𝐴𝐵) ∨ (𝐴𝐵))))
4318, 18, 42mp3an23 1453 . . . . . . . . . 10 (𝑦C → ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)) = (𝑦 ((𝐴𝐵) ∨ (𝐴𝐵))))
4418chjidmi 31553 . . . . . . . . . . 11 ((𝐴𝐵) ∨ (𝐴𝐵)) = (𝐴𝐵)
4544oveq2i 7459 . . . . . . . . . 10 (𝑦 ((𝐴𝐵) ∨ (𝐴𝐵))) = (𝑦 (𝐴𝐵))
4643, 45eqtrdi 2796 . . . . . . . . 9 (𝑦C → ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)) = (𝑦 (𝐴𝐵)))
4741, 46eqeq12d 2756 . . . . . . . 8 (𝑦C → ((((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)) ↔ ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
4847biimpd 229 . . . . . . 7 (𝑦C → ((((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)) → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
4933, 48imim12d 81 . . . . . 6 (𝑦C → (((((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) ∧ (𝑦 (𝐴𝐵)) ⊆ 𝐵) → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))) → (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
5014, 49biimtrid 242 . . . . 5 (𝑦C → (((𝑦 (𝐴𝐵)) ∈ C → (((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))) → (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
5111, 50syl5com 31 . . . 4 (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) → (𝑦C → (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
5251ralrimiv 3151 . . 3 (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) → ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
53 mdbr 32326 . . . 4 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
5416, 17, 53mp2an 691 . . 3 (𝐴 𝑀 𝐵 ↔ ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
5552, 54sylibr 234 . 2 (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) → 𝐴 𝑀 𝐵)
56 mdbr 32326 . . . 4 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
5716, 17, 56mp2an 691 . . 3 (𝐴 𝑀 𝐵 ↔ ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))))
58 ax-1 6 . . . 4 ((𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) → (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
5958ralimi 3089 . . 3 (∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) → ∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
6057, 59sylbi 217 . 2 (𝐴 𝑀 𝐵 → ∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
6155, 60impbii 209 1 (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) ↔ 𝐴 𝑀 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  cin 3975  wss 3976   class class class wbr 5166  (class class class)co 7448   C cch 30961   chj 30965   𝑀 cmd 30998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264  ax-hilex 31031  ax-hfvadd 31032  ax-hvcom 31033  ax-hvass 31034  ax-hv0cl 31035  ax-hvaddid 31036  ax-hfvmul 31037  ax-hvmulid 31038  ax-hvmulass 31039  ax-hvdistr1 31040  ax-hvdistr2 31041  ax-hvmul0 31042  ax-hfi 31111  ax-his1 31114  ax-his2 31115  ax-his3 31116  ax-his4 31117  ax-hcompl 31234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-cn 23256  df-cnp 23257  df-lm 23258  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cfil 25308  df-cau 25309  df-cmet 25310  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-dip 30733  df-ssp 30754  df-ph 30845  df-cbn 30895  df-hnorm 31000  df-hba 31001  df-hvsub 31003  df-hlim 31004  df-hcau 31005  df-sh 31239  df-ch 31253  df-oc 31284  df-ch0 31285  df-shs 31340  df-chj 31342  df-md 32312
This theorem is referenced by:  mdsl2i  32354  cvmdi  32356
  Copyright terms: Public domain W3C validator