Step | Hyp | Ref
| Expression |
1 | | sseq2 3947 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) → ((𝐴 ∩ 𝐵) ⊆ 𝑥 ↔ (𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)))) |
2 | | sseq1 3946 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) → (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) ↔ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵))) |
3 | 1, 2 | anbi12d 631 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) → (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) ↔ ((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵)))) |
4 | | sseq1 3946 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) → (𝑥 ⊆ 𝐵 ↔ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵)) |
5 | | oveq1 7282 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) → (𝑥 ∨ℋ 𝐴) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴)) |
6 | 5 | ineq1d 4145 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵)) |
7 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) → (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵))) |
8 | 6, 7 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) → (((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ↔ (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵)))) |
9 | 4, 8 | imbi12d 345 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) → ((𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) ↔ ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵 → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵))))) |
10 | 3, 9 | imbi12d 345 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) → ((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) ↔ (((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵)) → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵 → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵)))))) |
11 | 10 | rspccv 3558 |
. . . . 5
⊢
(∀𝑥 ∈
Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∈ Cℋ
→ (((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵)) → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵 → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵)))))) |
12 | | impexp 451 |
. . . . . . 7
⊢
(((((𝑦
∨ℋ (𝐴
∩ 𝐵)) ∈
Cℋ ∧ ((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵))) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵) → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵))) ↔ (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∈ Cℋ
∧ ((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵))) → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵 → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵))))) |
13 | | impexp 451 |
. . . . . . 7
⊢ ((((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∈ Cℋ
∧ ((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵))) → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵 → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵)))) ↔ ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∈ Cℋ
→ (((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵)) → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵 → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵)))))) |
14 | 12, 13 | bitr2i 275 |
. . . . . 6
⊢ (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∈ Cℋ
→ (((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵)) → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵 → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵))))) ↔ ((((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∈ Cℋ
∧ ((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵))) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵) → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵)))) |
15 | | inss2 4163 |
. . . . . . . . . . . 12
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
16 | | mdsl.1 |
. . . . . . . . . . . . . . 15
⊢ 𝐴 ∈
Cℋ |
17 | | mdsl.2 |
. . . . . . . . . . . . . . 15
⊢ 𝐵 ∈
Cℋ |
18 | 16, 17 | chincli 29822 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∩ 𝐵) ∈
Cℋ |
19 | | chlub 29871 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈
Cℋ ∧ (𝐴 ∩ 𝐵) ∈ Cℋ
∧ 𝐵 ∈
Cℋ ) → ((𝑦 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) ⊆ 𝐵) ↔ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵)) |
20 | 18, 17, 19 | mp3an23 1452 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈
Cℋ → ((𝑦 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) ⊆ 𝐵) ↔ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵)) |
21 | 20 | biimpd 228 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈
Cℋ → ((𝑦 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) ⊆ 𝐵) → (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵)) |
22 | 15, 21 | mpan2i 694 |
. . . . . . . . . . 11
⊢ (𝑦 ∈
Cℋ → (𝑦 ⊆ 𝐵 → (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵)) |
23 | 17, 16 | chub2i 29832 |
. . . . . . . . . . . 12
⊢ 𝐵 ⊆ (𝐴 ∨ℋ 𝐵) |
24 | | sstr 3929 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵 ∧ 𝐵 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵)) |
25 | 23, 24 | mpan2 688 |
. . . . . . . . . . 11
⊢ ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵 → (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵)) |
26 | 22, 25 | syl6 35 |
. . . . . . . . . 10
⊢ (𝑦 ∈
Cℋ → (𝑦 ⊆ 𝐵 → (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵))) |
27 | | chub2 29870 |
. . . . . . . . . . 11
⊢ (((𝐴 ∩ 𝐵) ∈ Cℋ
∧ 𝑦 ∈
Cℋ ) → (𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵))) |
28 | 18, 27 | mpan 687 |
. . . . . . . . . 10
⊢ (𝑦 ∈
Cℋ → (𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵))) |
29 | 26, 28 | jctild 526 |
. . . . . . . . 9
⊢ (𝑦 ∈
Cℋ → (𝑦 ⊆ 𝐵 → ((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵)))) |
30 | | chjcl 29719 |
. . . . . . . . . 10
⊢ ((𝑦 ∈
Cℋ ∧ (𝐴 ∩ 𝐵) ∈ Cℋ )
→ (𝑦
∨ℋ (𝐴
∩ 𝐵)) ∈
Cℋ ) |
31 | 18, 30 | mpan2 688 |
. . . . . . . . 9
⊢ (𝑦 ∈
Cℋ → (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∈ Cℋ
) |
32 | 29, 31 | jctild 526 |
. . . . . . . 8
⊢ (𝑦 ∈
Cℋ → (𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∈ Cℋ
∧ ((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵))))) |
33 | 32, 22 | jcad 513 |
. . . . . . 7
⊢ (𝑦 ∈
Cℋ → (𝑦 ⊆ 𝐵 → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∈ Cℋ
∧ ((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵))) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵))) |
34 | | chjass 29895 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈
Cℋ ∧ (𝐴 ∩ 𝐵) ∈ Cℋ
∧ 𝐴 ∈
Cℋ ) → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) = (𝑦 ∨ℋ ((𝐴 ∩ 𝐵) ∨ℋ 𝐴))) |
35 | 18, 16, 34 | mp3an23 1452 |
. . . . . . . . . . 11
⊢ (𝑦 ∈
Cℋ → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) = (𝑦 ∨ℋ ((𝐴 ∩ 𝐵) ∨ℋ 𝐴))) |
36 | 18, 16 | chjcomi 29830 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∩ 𝐵) ∨ℋ 𝐴) = (𝐴 ∨ℋ (𝐴 ∩ 𝐵)) |
37 | 16, 17 | chabs1i 29880 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∨ℋ (𝐴 ∩ 𝐵)) = 𝐴 |
38 | 36, 37 | eqtri 2766 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∩ 𝐵) ∨ℋ 𝐴) = 𝐴 |
39 | 38 | oveq2i 7286 |
. . . . . . . . . . 11
⊢ (𝑦 ∨ℋ ((𝐴 ∩ 𝐵) ∨ℋ 𝐴)) = (𝑦 ∨ℋ 𝐴) |
40 | 35, 39 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ (𝑦 ∈
Cℋ → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) = (𝑦 ∨ℋ 𝐴)) |
41 | 40 | ineq1d 4145 |
. . . . . . . . 9
⊢ (𝑦 ∈
Cℋ → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ 𝐴) ∩ 𝐵)) |
42 | | chjass 29895 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈
Cℋ ∧ (𝐴 ∩ 𝐵) ∈ Cℋ
∧ (𝐴 ∩ 𝐵) ∈
Cℋ ) → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵)) = (𝑦 ∨ℋ ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)))) |
43 | 18, 18, 42 | mp3an23 1452 |
. . . . . . . . . 10
⊢ (𝑦 ∈
Cℋ → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵)) = (𝑦 ∨ℋ ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)))) |
44 | 18 | chjidmi 29883 |
. . . . . . . . . . 11
⊢ ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)) = (𝐴 ∩ 𝐵) |
45 | 44 | oveq2i 7286 |
. . . . . . . . . 10
⊢ (𝑦 ∨ℋ ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵))) = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) |
46 | 43, 45 | eqtrdi 2794 |
. . . . . . . . 9
⊢ (𝑦 ∈
Cℋ → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵)) = (𝑦 ∨ℋ (𝐴 ∩ 𝐵))) |
47 | 41, 46 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑦 ∈
Cℋ → ((((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵)) ↔ ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)))) |
48 | 47 | biimpd 228 |
. . . . . . 7
⊢ (𝑦 ∈
Cℋ → ((((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵)) → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)))) |
49 | 33, 48 | imim12d 81 |
. . . . . 6
⊢ (𝑦 ∈
Cℋ → (((((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∈ Cℋ
∧ ((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵))) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵) → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵))) → (𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) = (𝑦 ∨ℋ (𝐴 ∩ 𝐵))))) |
50 | 14, 49 | syl5bi 241 |
. . . . 5
⊢ (𝑦 ∈
Cℋ → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∈ Cℋ
→ (((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵)) → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵 → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵))))) → (𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) = (𝑦 ∨ℋ (𝐴 ∩ 𝐵))))) |
51 | 11, 50 | syl5com 31 |
. . . 4
⊢
(∀𝑥 ∈
Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) → (𝑦 ∈ Cℋ
→ (𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) = (𝑦 ∨ℋ (𝐴 ∩ 𝐵))))) |
52 | 51 | ralrimiv 3102 |
. . 3
⊢
(∀𝑥 ∈
Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) → ∀𝑦 ∈ Cℋ
(𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)))) |
53 | | mdbr 30656 |
. . . 4
⊢ ((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
→ (𝐴
𝑀ℋ 𝐵 ↔ ∀𝑦 ∈ Cℋ
(𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) = (𝑦 ∨ℋ (𝐴 ∩ 𝐵))))) |
54 | 16, 17, 53 | mp2an 689 |
. . 3
⊢ (𝐴 𝑀ℋ
𝐵 ↔ ∀𝑦 ∈
Cℋ (𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)))) |
55 | 52, 54 | sylibr 233 |
. 2
⊢
(∀𝑥 ∈
Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) → 𝐴 𝑀ℋ 𝐵) |
56 | | mdbr 30656 |
. . . 4
⊢ ((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
→ (𝐴
𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ
(𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
57 | 16, 17, 56 | mp2an 689 |
. . 3
⊢ (𝐴 𝑀ℋ
𝐵 ↔ ∀𝑥 ∈
Cℋ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) |
58 | | ax-1 6 |
. . . 4
⊢ ((𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) → (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
59 | 58 | ralimi 3087 |
. . 3
⊢
(∀𝑥 ∈
Cℋ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) → ∀𝑥 ∈ Cℋ
(((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
60 | 57, 59 | sylbi 216 |
. 2
⊢ (𝐴 𝑀ℋ
𝐵 → ∀𝑥 ∈
Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
61 | 55, 60 | impbii 208 |
1
⊢
(∀𝑥 ∈
Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) ↔ 𝐴 𝑀ℋ 𝐵) |