| Step | Hyp | Ref
| Expression |
| 1 | | sseq2 4010 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) → ((𝐴 ∩ 𝐵) ⊆ 𝑥 ↔ (𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)))) |
| 2 | | sseq1 4009 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) → (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) ↔ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵))) |
| 3 | 1, 2 | anbi12d 632 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) → (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) ↔ ((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵)))) |
| 4 | | sseq1 4009 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) → (𝑥 ⊆ 𝐵 ↔ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵)) |
| 5 | | oveq1 7438 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) → (𝑥 ∨ℋ 𝐴) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴)) |
| 6 | 5 | ineq1d 4219 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵)) |
| 7 | | oveq1 7438 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) → (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵))) |
| 8 | 6, 7 | eqeq12d 2753 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) → (((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ↔ (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵)))) |
| 9 | 4, 8 | imbi12d 344 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) → ((𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) ↔ ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵 → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵))))) |
| 10 | 3, 9 | imbi12d 344 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) → ((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) ↔ (((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵)) → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵 → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵)))))) |
| 11 | 10 | rspccv 3619 |
. . . . 5
⊢
(∀𝑥 ∈
Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∈ Cℋ
→ (((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵)) → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵 → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵)))))) |
| 12 | | impexp 450 |
. . . . . . 7
⊢
(((((𝑦
∨ℋ (𝐴
∩ 𝐵)) ∈
Cℋ ∧ ((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵))) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵) → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵))) ↔ (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∈ Cℋ
∧ ((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵))) → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵 → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵))))) |
| 13 | | impexp 450 |
. . . . . . 7
⊢ ((((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∈ Cℋ
∧ ((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵))) → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵 → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵)))) ↔ ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∈ Cℋ
→ (((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵)) → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵 → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵)))))) |
| 14 | 12, 13 | bitr2i 276 |
. . . . . 6
⊢ (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∈ Cℋ
→ (((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵)) → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵 → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵))))) ↔ ((((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∈ Cℋ
∧ ((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵))) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵) → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵)))) |
| 15 | | inss2 4238 |
. . . . . . . . . . . 12
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
| 16 | | mdsl.1 |
. . . . . . . . . . . . . . 15
⊢ 𝐴 ∈
Cℋ |
| 17 | | mdsl.2 |
. . . . . . . . . . . . . . 15
⊢ 𝐵 ∈
Cℋ |
| 18 | 16, 17 | chincli 31479 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∩ 𝐵) ∈
Cℋ |
| 19 | | chlub 31528 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈
Cℋ ∧ (𝐴 ∩ 𝐵) ∈ Cℋ
∧ 𝐵 ∈
Cℋ ) → ((𝑦 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) ⊆ 𝐵) ↔ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵)) |
| 20 | 18, 17, 19 | mp3an23 1455 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈
Cℋ → ((𝑦 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) ⊆ 𝐵) ↔ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵)) |
| 21 | 20 | biimpd 229 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈
Cℋ → ((𝑦 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) ⊆ 𝐵) → (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵)) |
| 22 | 15, 21 | mpan2i 697 |
. . . . . . . . . . 11
⊢ (𝑦 ∈
Cℋ → (𝑦 ⊆ 𝐵 → (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵)) |
| 23 | 17, 16 | chub2i 31489 |
. . . . . . . . . . . 12
⊢ 𝐵 ⊆ (𝐴 ∨ℋ 𝐵) |
| 24 | | sstr 3992 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵 ∧ 𝐵 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵)) |
| 25 | 23, 24 | mpan2 691 |
. . . . . . . . . . 11
⊢ ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵 → (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵)) |
| 26 | 22, 25 | syl6 35 |
. . . . . . . . . 10
⊢ (𝑦 ∈
Cℋ → (𝑦 ⊆ 𝐵 → (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵))) |
| 27 | | chub2 31527 |
. . . . . . . . . . 11
⊢ (((𝐴 ∩ 𝐵) ∈ Cℋ
∧ 𝑦 ∈
Cℋ ) → (𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵))) |
| 28 | 18, 27 | mpan 690 |
. . . . . . . . . 10
⊢ (𝑦 ∈
Cℋ → (𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵))) |
| 29 | 26, 28 | jctild 525 |
. . . . . . . . 9
⊢ (𝑦 ∈
Cℋ → (𝑦 ⊆ 𝐵 → ((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵)))) |
| 30 | | chjcl 31376 |
. . . . . . . . . 10
⊢ ((𝑦 ∈
Cℋ ∧ (𝐴 ∩ 𝐵) ∈ Cℋ )
→ (𝑦
∨ℋ (𝐴
∩ 𝐵)) ∈
Cℋ ) |
| 31 | 18, 30 | mpan2 691 |
. . . . . . . . 9
⊢ (𝑦 ∈
Cℋ → (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∈ Cℋ
) |
| 32 | 29, 31 | jctild 525 |
. . . . . . . 8
⊢ (𝑦 ∈
Cℋ → (𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∈ Cℋ
∧ ((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵))))) |
| 33 | 32, 22 | jcad 512 |
. . . . . . 7
⊢ (𝑦 ∈
Cℋ → (𝑦 ⊆ 𝐵 → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∈ Cℋ
∧ ((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵))) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵))) |
| 34 | | chjass 31552 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈
Cℋ ∧ (𝐴 ∩ 𝐵) ∈ Cℋ
∧ 𝐴 ∈
Cℋ ) → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) = (𝑦 ∨ℋ ((𝐴 ∩ 𝐵) ∨ℋ 𝐴))) |
| 35 | 18, 16, 34 | mp3an23 1455 |
. . . . . . . . . . 11
⊢ (𝑦 ∈
Cℋ → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) = (𝑦 ∨ℋ ((𝐴 ∩ 𝐵) ∨ℋ 𝐴))) |
| 36 | 18, 16 | chjcomi 31487 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∩ 𝐵) ∨ℋ 𝐴) = (𝐴 ∨ℋ (𝐴 ∩ 𝐵)) |
| 37 | 16, 17 | chabs1i 31537 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∨ℋ (𝐴 ∩ 𝐵)) = 𝐴 |
| 38 | 36, 37 | eqtri 2765 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∩ 𝐵) ∨ℋ 𝐴) = 𝐴 |
| 39 | 38 | oveq2i 7442 |
. . . . . . . . . . 11
⊢ (𝑦 ∨ℋ ((𝐴 ∩ 𝐵) ∨ℋ 𝐴)) = (𝑦 ∨ℋ 𝐴) |
| 40 | 35, 39 | eqtrdi 2793 |
. . . . . . . . . 10
⊢ (𝑦 ∈
Cℋ → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) = (𝑦 ∨ℋ 𝐴)) |
| 41 | 40 | ineq1d 4219 |
. . . . . . . . 9
⊢ (𝑦 ∈
Cℋ → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ 𝐴) ∩ 𝐵)) |
| 42 | | chjass 31552 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈
Cℋ ∧ (𝐴 ∩ 𝐵) ∈ Cℋ
∧ (𝐴 ∩ 𝐵) ∈
Cℋ ) → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵)) = (𝑦 ∨ℋ ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)))) |
| 43 | 18, 18, 42 | mp3an23 1455 |
. . . . . . . . . 10
⊢ (𝑦 ∈
Cℋ → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵)) = (𝑦 ∨ℋ ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)))) |
| 44 | 18 | chjidmi 31540 |
. . . . . . . . . . 11
⊢ ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)) = (𝐴 ∩ 𝐵) |
| 45 | 44 | oveq2i 7442 |
. . . . . . . . . 10
⊢ (𝑦 ∨ℋ ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵))) = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) |
| 46 | 43, 45 | eqtrdi 2793 |
. . . . . . . . 9
⊢ (𝑦 ∈
Cℋ → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵)) = (𝑦 ∨ℋ (𝐴 ∩ 𝐵))) |
| 47 | 41, 46 | eqeq12d 2753 |
. . . . . . . 8
⊢ (𝑦 ∈
Cℋ → ((((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵)) ↔ ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)))) |
| 48 | 47 | biimpd 229 |
. . . . . . 7
⊢ (𝑦 ∈
Cℋ → ((((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵)) → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)))) |
| 49 | 33, 48 | imim12d 81 |
. . . . . 6
⊢ (𝑦 ∈
Cℋ → (((((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∈ Cℋ
∧ ((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵))) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵) → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵))) → (𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) = (𝑦 ∨ℋ (𝐴 ∩ 𝐵))))) |
| 50 | 14, 49 | biimtrid 242 |
. . . . 5
⊢ (𝑦 ∈
Cℋ → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∈ Cℋ
→ (((𝐴 ∩ 𝐵) ⊆ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝐴 ∨ℋ 𝐵)) → ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ 𝐵 → (((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑦 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ (𝐴 ∩ 𝐵))))) → (𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) = (𝑦 ∨ℋ (𝐴 ∩ 𝐵))))) |
| 51 | 11, 50 | syl5com 31 |
. . . 4
⊢
(∀𝑥 ∈
Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) → (𝑦 ∈ Cℋ
→ (𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) = (𝑦 ∨ℋ (𝐴 ∩ 𝐵))))) |
| 52 | 51 | ralrimiv 3145 |
. . 3
⊢
(∀𝑥 ∈
Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) → ∀𝑦 ∈ Cℋ
(𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)))) |
| 53 | | mdbr 32313 |
. . . 4
⊢ ((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
→ (𝐴
𝑀ℋ 𝐵 ↔ ∀𝑦 ∈ Cℋ
(𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) = (𝑦 ∨ℋ (𝐴 ∩ 𝐵))))) |
| 54 | 16, 17, 53 | mp2an 692 |
. . 3
⊢ (𝐴 𝑀ℋ
𝐵 ↔ ∀𝑦 ∈
Cℋ (𝑦 ⊆ 𝐵 → ((𝑦 ∨ℋ 𝐴) ∩ 𝐵) = (𝑦 ∨ℋ (𝐴 ∩ 𝐵)))) |
| 55 | 52, 54 | sylibr 234 |
. 2
⊢
(∀𝑥 ∈
Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) → 𝐴 𝑀ℋ 𝐵) |
| 56 | | mdbr 32313 |
. . . 4
⊢ ((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
→ (𝐴
𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ
(𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
| 57 | 16, 17, 56 | mp2an 692 |
. . 3
⊢ (𝐴 𝑀ℋ
𝐵 ↔ ∀𝑥 ∈
Cℋ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) |
| 58 | | ax-1 6 |
. . . 4
⊢ ((𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) → (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
| 59 | 58 | ralimi 3083 |
. . 3
⊢
(∀𝑥 ∈
Cℋ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) → ∀𝑥 ∈ Cℋ
(((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
| 60 | 57, 59 | sylbi 217 |
. 2
⊢ (𝐴 𝑀ℋ
𝐵 → ∀𝑥 ∈
Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
| 61 | 55, 60 | impbii 209 |
1
⊢
(∀𝑥 ∈
Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) ↔ 𝐴 𝑀ℋ 𝐵) |