Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringciso | Structured version Visualization version GIF version |
Description: An isomorphism in the category of unital rings is a bijection. (Contributed by AV, 14-Feb-2020.) |
Ref | Expression |
---|---|
ringcsect.c | ⊢ 𝐶 = (RingCat‘𝑈) |
ringcsect.b | ⊢ 𝐵 = (Base‘𝐶) |
ringcsect.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
ringcsect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ringcsect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ringciso.n | ⊢ 𝐼 = (Iso‘𝐶) |
Ref | Expression |
---|---|
ringciso | ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RingIso 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcsect.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | eqid 2738 | . . . 4 ⊢ (Inv‘𝐶) = (Inv‘𝐶) | |
3 | ringcsect.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
4 | ringcsect.c | . . . . . 6 ⊢ 𝐶 = (RingCat‘𝑈) | |
5 | 4 | ringccat 45470 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
7 | ringcsect.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | ringcsect.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | ringciso.n | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
10 | 1, 2, 6, 7, 8, 9 | isoval 17394 | . . 3 ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌)) |
11 | 10 | eleq2d 2824 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
12 | 1, 2, 6, 7, 8 | invfun 17393 | . . . . 5 ⊢ (𝜑 → Fun (𝑋(Inv‘𝐶)𝑌)) |
13 | funfvbrb 6910 | . . . . 5 ⊢ (Fun (𝑋(Inv‘𝐶)𝑌) → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) |
15 | 4, 1, 3, 7, 8, 2 | ringcinv 45478 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) ↔ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = ◡𝐹))) |
16 | simpl 482 | . . . . 5 ⊢ ((𝐹 ∈ (𝑋 RingIso 𝑌) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = ◡𝐹) → 𝐹 ∈ (𝑋 RingIso 𝑌)) | |
17 | 15, 16 | syl6bi 252 | . . . 4 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) → 𝐹 ∈ (𝑋 RingIso 𝑌))) |
18 | 14, 17 | sylbid 239 | . . 3 ⊢ (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) → 𝐹 ∈ (𝑋 RingIso 𝑌))) |
19 | eqid 2738 | . . . 4 ⊢ ◡𝐹 = ◡𝐹 | |
20 | 4, 1, 3, 7, 8, 2 | ringcinv 45478 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹 ↔ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ ◡𝐹 = ◡𝐹))) |
21 | funrel 6435 | . . . . . . 7 ⊢ (Fun (𝑋(Inv‘𝐶)𝑌) → Rel (𝑋(Inv‘𝐶)𝑌)) | |
22 | 12, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → Rel (𝑋(Inv‘𝐶)𝑌)) |
23 | releldm 5842 | . . . . . . 7 ⊢ ((Rel (𝑋(Inv‘𝐶)𝑌) ∧ 𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)) | |
24 | 23 | ex 412 | . . . . . 6 ⊢ (Rel (𝑋(Inv‘𝐶)𝑌) → (𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹 → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
25 | 22, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹 → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
26 | 20, 25 | sylbird 259 | . . . 4 ⊢ (𝜑 → ((𝐹 ∈ (𝑋 RingIso 𝑌) ∧ ◡𝐹 = ◡𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
27 | 19, 26 | mpan2i 693 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝑋 RingIso 𝑌) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
28 | 18, 27 | impbid 211 | . 2 ⊢ (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹 ∈ (𝑋 RingIso 𝑌))) |
29 | 11, 28 | bitrd 278 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RingIso 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ◡ccnv 5579 dom cdm 5580 Rel wrel 5585 Fun wfun 6412 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Catccat 17290 Invcinv 17374 Isociso 17375 RingIso crs 19872 RingCatcringc 45449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-hom 16912 df-cco 16913 df-0g 17069 df-cat 17294 df-cid 17295 df-homf 17296 df-sect 17376 df-inv 17377 df-iso 17378 df-ssc 17439 df-resc 17440 df-subc 17441 df-estrc 17755 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-grp 18495 df-ghm 18747 df-mgp 19636 df-ur 19653 df-ring 19700 df-rnghom 19874 df-rngiso 19875 df-ringc 45451 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |