MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sincosq1lem Structured version   Visualization version   GIF version

Theorem sincosq1lem 24462
Description: Lemma for sincosq1sgn 24463. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq1lem ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2)) → 0 < (sin‘𝐴))

Proof of Theorem sincosq1lem
StepHypRef Expression
1 halfpire 24429 . . . . . 6 (π / 2) ∈ ℝ
2 ltle 10409 . . . . . 6 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 < (π / 2) → 𝐴 ≤ (π / 2)))
31, 2mpan2 674 . . . . 5 (𝐴 ∈ ℝ → (𝐴 < (π / 2) → 𝐴 ≤ (π / 2)))
4 pire 24423 . . . . . . . 8 π ∈ ℝ
5 4re 11379 . . . . . . . 8 4 ∈ ℝ
6 pigt2lt4 24421 . . . . . . . . 9 (2 < π ∧ π < 4)
76simpri 475 . . . . . . . 8 π < 4
84, 5, 7ltleii 10443 . . . . . . 7 π ≤ 4
9 2re 11372 . . . . . . . . 9 2 ∈ ℝ
10 2pos 11393 . . . . . . . . . 10 0 < 2
119, 10pm3.2i 458 . . . . . . . . 9 (2 ∈ ℝ ∧ 0 < 2)
12 ledivmul 11182 . . . . . . . . 9 ((π ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((π / 2) ≤ 2 ↔ π ≤ (2 · 2)))
134, 9, 11, 12mp3an 1578 . . . . . . . 8 ((π / 2) ≤ 2 ↔ π ≤ (2 · 2))
14 2t2e4 11453 . . . . . . . . 9 (2 · 2) = 4
1514breq2i 4850 . . . . . . . 8 (π ≤ (2 · 2) ↔ π ≤ 4)
1613, 15bitri 266 . . . . . . 7 ((π / 2) ≤ 2 ↔ π ≤ 4)
178, 16mpbir 222 . . . . . 6 (π / 2) ≤ 2
18 letr 10414 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ 2 ∈ ℝ) → ((𝐴 ≤ (π / 2) ∧ (π / 2) ≤ 2) → 𝐴 ≤ 2))
191, 9, 18mp3an23 1570 . . . . . 6 (𝐴 ∈ ℝ → ((𝐴 ≤ (π / 2) ∧ (π / 2) ≤ 2) → 𝐴 ≤ 2))
2017, 19mpan2i 680 . . . . 5 (𝐴 ∈ ℝ → (𝐴 ≤ (π / 2) → 𝐴 ≤ 2))
213, 20syld 47 . . . 4 (𝐴 ∈ ℝ → (𝐴 < (π / 2) → 𝐴 ≤ 2))
2221adantr 468 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 < (π / 2) → 𝐴 ≤ 2))
23223impia 1138 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2)) → 𝐴 ≤ 2)
24 0xr 10369 . . . 4 0 ∈ ℝ*
25 elioc2 12452 . . . 4 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (𝐴 ∈ (0(,]2) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2)))
2624, 9, 25mp2an 675 . . 3 (𝐴 ∈ (0(,]2) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2))
27 sin02gt0 15140 . . 3 (𝐴 ∈ (0(,]2) → 0 < (sin‘𝐴))
2826, 27sylbir 226 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2) → 0 < (sin‘𝐴))
2923, 28syld3an3 1521 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2)) → 0 < (sin‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100  wcel 2156   class class class wbr 4842  cfv 6099  (class class class)co 6872  cr 10218  0cc0 10219   · cmul 10224  *cxr 10356   < clt 10357  cle 10358   / cdiv 10967  2c2 11354  4c4 11356  (,]cioc 12392  sincsin 15012  πcpi 15015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2782  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5094  ax-un 7177  ax-inf2 8783  ax-cnex 10275  ax-resscn 10276  ax-1cn 10277  ax-icn 10278  ax-addcl 10279  ax-addrcl 10280  ax-mulcl 10281  ax-mulrcl 10282  ax-mulcom 10283  ax-addass 10284  ax-mulass 10285  ax-distr 10286  ax-i2m1 10287  ax-1ne0 10288  ax-1rid 10289  ax-rnegex 10290  ax-rrecex 10291  ax-cnre 10292  ax-pre-lttri 10293  ax-pre-lttrn 10294  ax-pre-ltadd 10295  ax-pre-mulgt0 10296  ax-pre-sup 10297  ax-addf 10298  ax-mulf 10299
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2791  df-cleq 2797  df-clel 2800  df-nfc 2935  df-ne 2977  df-nel 3080  df-ral 3099  df-rex 3100  df-reu 3101  df-rmo 3102  df-rab 3103  df-v 3391  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4115  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-br 4843  df-opab 4905  df-mpt 4922  df-tr 4945  df-id 5217  df-eprel 5222  df-po 5230  df-so 5231  df-fr 5268  df-se 5269  df-we 5270  df-xp 5315  df-rel 5316  df-cnv 5317  df-co 5318  df-dm 5319  df-rn 5320  df-res 5321  df-ima 5322  df-pred 5891  df-ord 5937  df-on 5938  df-lim 5939  df-suc 5940  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-isom 6108  df-riota 6833  df-ov 6875  df-oprab 6876  df-mpt2 6877  df-of 7125  df-om 7294  df-1st 7396  df-2nd 7397  df-supp 7528  df-wrecs 7640  df-recs 7702  df-rdg 7740  df-1o 7794  df-2o 7795  df-oadd 7798  df-er 7977  df-map 8092  df-pm 8093  df-ixp 8144  df-en 8191  df-dom 8192  df-sdom 8193  df-fin 8194  df-fsupp 8513  df-fi 8554  df-sup 8585  df-inf 8586  df-oi 8652  df-card 9046  df-cda 9273  df-pnf 10359  df-mnf 10360  df-xr 10361  df-ltxr 10362  df-le 10363  df-sub 10551  df-neg 10552  df-div 10968  df-nn 11304  df-2 11362  df-3 11363  df-4 11364  df-5 11365  df-6 11366  df-7 11367  df-8 11368  df-9 11369  df-n0 11558  df-z 11642  df-dec 11758  df-uz 11903  df-q 12006  df-rp 12045  df-xneg 12160  df-xadd 12161  df-xmul 12162  df-ioo 12395  df-ioc 12396  df-ico 12397  df-icc 12398  df-fz 12548  df-fzo 12688  df-fl 12815  df-seq 13023  df-exp 13082  df-fac 13279  df-bc 13308  df-hash 13336  df-shft 14028  df-cj 14060  df-re 14061  df-im 14062  df-sqrt 14196  df-abs 14197  df-limsup 14423  df-clim 14440  df-rlim 14441  df-sum 14638  df-ef 15016  df-sin 15018  df-cos 15019  df-pi 15021  df-struct 16068  df-ndx 16069  df-slot 16070  df-base 16072  df-sets 16073  df-ress 16074  df-plusg 16164  df-mulr 16165  df-starv 16166  df-sca 16167  df-vsca 16168  df-ip 16169  df-tset 16170  df-ple 16171  df-ds 16173  df-unif 16174  df-hom 16175  df-cco 16176  df-rest 16286  df-topn 16287  df-0g 16305  df-gsum 16306  df-topgen 16307  df-pt 16308  df-prds 16311  df-xrs 16365  df-qtop 16370  df-imas 16371  df-xps 16373  df-mre 16449  df-mrc 16450  df-acs 16452  df-mgm 17445  df-sgrp 17487  df-mnd 17498  df-submnd 17539  df-mulg 17744  df-cntz 17949  df-cmn 18394  df-psmet 19944  df-xmet 19945  df-met 19946  df-bl 19947  df-mopn 19948  df-fbas 19949  df-fg 19950  df-cnfld 19953  df-top 20910  df-topon 20927  df-topsp 20949  df-bases 20962  df-cld 21035  df-ntr 21036  df-cls 21037  df-nei 21114  df-lp 21152  df-perf 21153  df-cn 21243  df-cnp 21244  df-haus 21331  df-tx 21577  df-hmeo 21770  df-fil 21861  df-fm 21953  df-flim 21954  df-flf 21955  df-xms 22336  df-ms 22337  df-tms 22338  df-cncf 22892  df-limc 23842  df-dv 23843
This theorem is referenced by:  sincosq1sgn  24463  sinq12gt0  24472
  Copyright terms: Public domain W3C validator