MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sincosq1lem Structured version   Visualization version   GIF version

Theorem sincosq1lem 26439
Description: Lemma for sincosq1sgn 26440. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq1lem ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2)) → 0 < (sin‘𝐴))

Proof of Theorem sincosq1lem
StepHypRef Expression
1 halfpire 26406 . . . . . 6 (π / 2) ∈ ℝ
2 ltle 11238 . . . . . 6 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 < (π / 2) → 𝐴 ≤ (π / 2)))
31, 2mpan2 691 . . . . 5 (𝐴 ∈ ℝ → (𝐴 < (π / 2) → 𝐴 ≤ (π / 2)))
4 pire 26399 . . . . . . . 8 π ∈ ℝ
5 4re 12246 . . . . . . . 8 4 ∈ ℝ
6 pigt2lt4 26397 . . . . . . . . 9 (2 < π ∧ π < 4)
76simpri 485 . . . . . . . 8 π < 4
84, 5, 7ltleii 11273 . . . . . . 7 π ≤ 4
9 2re 12236 . . . . . . . . 9 2 ∈ ℝ
10 2pos 12265 . . . . . . . . . 10 0 < 2
119, 10pm3.2i 470 . . . . . . . . 9 (2 ∈ ℝ ∧ 0 < 2)
12 ledivmul 12035 . . . . . . . . 9 ((π ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((π / 2) ≤ 2 ↔ π ≤ (2 · 2)))
134, 9, 11, 12mp3an 1463 . . . . . . . 8 ((π / 2) ≤ 2 ↔ π ≤ (2 · 2))
14 2t2e4 12321 . . . . . . . . 9 (2 · 2) = 4
1514breq2i 5110 . . . . . . . 8 (π ≤ (2 · 2) ↔ π ≤ 4)
1613, 15bitri 275 . . . . . . 7 ((π / 2) ≤ 2 ↔ π ≤ 4)
178, 16mpbir 231 . . . . . 6 (π / 2) ≤ 2
18 letr 11244 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ 2 ∈ ℝ) → ((𝐴 ≤ (π / 2) ∧ (π / 2) ≤ 2) → 𝐴 ≤ 2))
191, 9, 18mp3an23 1455 . . . . . 6 (𝐴 ∈ ℝ → ((𝐴 ≤ (π / 2) ∧ (π / 2) ≤ 2) → 𝐴 ≤ 2))
2017, 19mpan2i 697 . . . . 5 (𝐴 ∈ ℝ → (𝐴 ≤ (π / 2) → 𝐴 ≤ 2))
213, 20syld 47 . . . 4 (𝐴 ∈ ℝ → (𝐴 < (π / 2) → 𝐴 ≤ 2))
2221adantr 480 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 < (π / 2) → 𝐴 ≤ 2))
23223impia 1117 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2)) → 𝐴 ≤ 2)
24 0xr 11197 . . . 4 0 ∈ ℝ*
25 elioc2 13346 . . . 4 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (𝐴 ∈ (0(,]2) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2)))
2624, 9, 25mp2an 692 . . 3 (𝐴 ∈ (0(,]2) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2))
27 sin02gt0 16136 . . 3 (𝐴 ∈ (0(,]2) → 0 < (sin‘𝐴))
2826, 27sylbir 235 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2) → 0 < (sin‘𝐴))
2923, 28syld3an3 1411 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2)) → 0 < (sin‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044   · cmul 11049  *cxr 11183   < clt 11184  cle 11185   / cdiv 11811  2c2 12217  4c4 12219  (,]cioc 13283  sincsin 16005  πcpi 16008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801
This theorem is referenced by:  sincosq1sgn  26440  sinq12gt0  26449
  Copyright terms: Public domain W3C validator