Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tan2h Structured version   Visualization version   GIF version

Theorem tan2h 37572
Description: Half-angle rule for tangent. (Contributed by Brendan Leahy, 4-Aug-2018.)
Assertion
Ref Expression
tan2h (𝐴 ∈ (0[,)π) → (tan‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / (1 + (cos‘𝐴)))))

Proof of Theorem tan2h
StepHypRef Expression
1 0re 11292 . . . . . . . 8 0 ∈ ℝ
2 pire 26518 . . . . . . . . 9 π ∈ ℝ
32rexri 11348 . . . . . . . 8 π ∈ ℝ*
4 icossre 13488 . . . . . . . 8 ((0 ∈ ℝ ∧ π ∈ ℝ*) → (0[,)π) ⊆ ℝ)
51, 3, 4mp2an 691 . . . . . . 7 (0[,)π) ⊆ ℝ
65sseli 4004 . . . . . 6 (𝐴 ∈ (0[,)π) → 𝐴 ∈ ℝ)
76recnd 11318 . . . . 5 (𝐴 ∈ (0[,)π) → 𝐴 ∈ ℂ)
87halfcld 12538 . . . 4 (𝐴 ∈ (0[,)π) → (𝐴 / 2) ∈ ℂ)
96rehalfcld 12540 . . . . . . 7 (𝐴 ∈ (0[,)π) → (𝐴 / 2) ∈ ℝ)
109rered 15273 . . . . . 6 (𝐴 ∈ (0[,)π) → (ℜ‘(𝐴 / 2)) = (𝐴 / 2))
11 elico2 13471 . . . . . . . 8 ((0 ∈ ℝ ∧ π ∈ ℝ*) → (𝐴 ∈ (0[,)π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < π)))
121, 3, 11mp2an 691 . . . . . . 7 (𝐴 ∈ (0[,)π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < π))
13 pipos 26520 . . . . . . . . . . . . 13 0 < π
14 lt0neg2 11797 . . . . . . . . . . . . . 14 (π ∈ ℝ → (0 < π ↔ -π < 0))
152, 14ax-mp 5 . . . . . . . . . . . . 13 (0 < π ↔ -π < 0)
1613, 15mpbi 230 . . . . . . . . . . . 12 -π < 0
172renegcli 11597 . . . . . . . . . . . . 13 -π ∈ ℝ
18 ltletr 11382 . . . . . . . . . . . . 13 ((-π ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((-π < 0 ∧ 0 ≤ 𝐴) → -π < 𝐴))
1917, 1, 18mp3an12 1451 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → ((-π < 0 ∧ 0 ≤ 𝐴) → -π < 𝐴))
2016, 19mpani 695 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (0 ≤ 𝐴 → -π < 𝐴))
21 2re 12367 . . . . . . . . . . . . . 14 2 ∈ ℝ
22 2pos 12396 . . . . . . . . . . . . . 14 0 < 2
2321, 22pm3.2i 470 . . . . . . . . . . . . 13 (2 ∈ ℝ ∧ 0 < 2)
24 ltdiv1 12159 . . . . . . . . . . . . 13 ((-π ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (-π < 𝐴 ↔ (-π / 2) < (𝐴 / 2)))
2517, 23, 24mp3an13 1452 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (-π < 𝐴 ↔ (-π / 2) < (𝐴 / 2)))
26 picn 26519 . . . . . . . . . . . . . 14 π ∈ ℂ
27 2cn 12368 . . . . . . . . . . . . . 14 2 ∈ ℂ
28 2ne0 12397 . . . . . . . . . . . . . 14 2 ≠ 0
29 divneg 11986 . . . . . . . . . . . . . 14 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
3026, 27, 28, 29mp3an 1461 . . . . . . . . . . . . 13 -(π / 2) = (-π / 2)
3130breq1i 5173 . . . . . . . . . . . 12 (-(π / 2) < (𝐴 / 2) ↔ (-π / 2) < (𝐴 / 2))
3225, 31bitr4di 289 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (-π < 𝐴 ↔ -(π / 2) < (𝐴 / 2)))
3320, 32sylibd 239 . . . . . . . . . 10 (𝐴 ∈ ℝ → (0 ≤ 𝐴 → -(π / 2) < (𝐴 / 2)))
34 ltdiv1 12159 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 < π ↔ (𝐴 / 2) < (π / 2)))
352, 23, 34mp3an23 1453 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 < π ↔ (𝐴 / 2) < (π / 2)))
3635biimpd 229 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 < π → (𝐴 / 2) < (π / 2)))
3733, 36anim12d 608 . . . . . . . . 9 (𝐴 ∈ ℝ → ((0 ≤ 𝐴𝐴 < π) → (-(π / 2) < (𝐴 / 2) ∧ (𝐴 / 2) < (π / 2))))
38 rehalfcl 12519 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
3938rexrd 11340 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ*)
40 halfpire 26524 . . . . . . . . . . . . 13 (π / 2) ∈ ℝ
4140renegcli 11597 . . . . . . . . . . . 12 -(π / 2) ∈ ℝ
4241rexri 11348 . . . . . . . . . . 11 -(π / 2) ∈ ℝ*
4340rexri 11348 . . . . . . . . . . 11 (π / 2) ∈ ℝ*
44 elioo5 13464 . . . . . . . . . . 11 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ (𝐴 / 2) ∈ ℝ*) → ((𝐴 / 2) ∈ (-(π / 2)(,)(π / 2)) ↔ (-(π / 2) < (𝐴 / 2) ∧ (𝐴 / 2) < (π / 2))))
4542, 43, 44mp3an12 1451 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℝ* → ((𝐴 / 2) ∈ (-(π / 2)(,)(π / 2)) ↔ (-(π / 2) < (𝐴 / 2) ∧ (𝐴 / 2) < (π / 2))))
4639, 45syl 17 . . . . . . . . 9 (𝐴 ∈ ℝ → ((𝐴 / 2) ∈ (-(π / 2)(,)(π / 2)) ↔ (-(π / 2) < (𝐴 / 2) ∧ (𝐴 / 2) < (π / 2))))
4737, 46sylibrd 259 . . . . . . . 8 (𝐴 ∈ ℝ → ((0 ≤ 𝐴𝐴 < π) → (𝐴 / 2) ∈ (-(π / 2)(,)(π / 2))))
48473impib 1116 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < π) → (𝐴 / 2) ∈ (-(π / 2)(,)(π / 2)))
4912, 48sylbi 217 . . . . . 6 (𝐴 ∈ (0[,)π) → (𝐴 / 2) ∈ (-(π / 2)(,)(π / 2)))
5010, 49eqeltrd 2844 . . . . 5 (𝐴 ∈ (0[,)π) → (ℜ‘(𝐴 / 2)) ∈ (-(π / 2)(,)(π / 2)))
51 cosne0 26589 . . . . 5 (((𝐴 / 2) ∈ ℂ ∧ (ℜ‘(𝐴 / 2)) ∈ (-(π / 2)(,)(π / 2))) → (cos‘(𝐴 / 2)) ≠ 0)
528, 50, 51syl2anc 583 . . . 4 (𝐴 ∈ (0[,)π) → (cos‘(𝐴 / 2)) ≠ 0)
53 tanval 16176 . . . 4 (((𝐴 / 2) ∈ ℂ ∧ (cos‘(𝐴 / 2)) ≠ 0) → (tan‘(𝐴 / 2)) = ((sin‘(𝐴 / 2)) / (cos‘(𝐴 / 2))))
548, 52, 53syl2anc 583 . . 3 (𝐴 ∈ (0[,)π) → (tan‘(𝐴 / 2)) = ((sin‘(𝐴 / 2)) / (cos‘(𝐴 / 2))))
55 0xr 11337 . . . . . . 7 0 ∈ ℝ*
56 elico1 13450 . . . . . . 7 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → (𝐴 ∈ (0[,)π) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴𝐴 < π)))
5755, 3, 56mp2an 691 . . . . . 6 (𝐴 ∈ (0[,)π) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴𝐴 < π))
5821, 2remulcli 11306 . . . . . . . . . . 11 (2 · π) ∈ ℝ
5958rexri 11348 . . . . . . . . . 10 (2 · π) ∈ ℝ*
60 1lt2 12464 . . . . . . . . . . . . 13 1 < 2
61 ltmulgt12 12155 . . . . . . . . . . . . . 14 ((π ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < π) → (1 < 2 ↔ π < (2 · π)))
622, 21, 13, 61mp3an 1461 . . . . . . . . . . . . 13 (1 < 2 ↔ π < (2 · π))
6360, 62mpbi 230 . . . . . . . . . . . 12 π < (2 · π)
64 xrlttr 13202 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ* ∧ π ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → ((𝐴 < π ∧ π < (2 · π)) → 𝐴 < (2 · π)))
653, 64mp3an2 1449 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → ((𝐴 < π ∧ π < (2 · π)) → 𝐴 < (2 · π)))
6663, 65mpan2i 696 . . . . . . . . . . 11 ((𝐴 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝐴 < π → 𝐴 < (2 · π)))
67 xrltle 13211 . . . . . . . . . . 11 ((𝐴 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝐴 < (2 · π) → 𝐴 ≤ (2 · π)))
6866, 67syld 47 . . . . . . . . . 10 ((𝐴 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝐴 < π → 𝐴 ≤ (2 · π)))
6959, 68mpan2 690 . . . . . . . . 9 (𝐴 ∈ ℝ* → (𝐴 < π → 𝐴 ≤ (2 · π)))
7069anim2d 611 . . . . . . . 8 (𝐴 ∈ ℝ* → ((0 ≤ 𝐴𝐴 < π) → (0 ≤ 𝐴𝐴 ≤ (2 · π))))
71 elicc4 13474 . . . . . . . . 9 ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ*𝐴 ∈ ℝ*) → (𝐴 ∈ (0[,](2 · π)) ↔ (0 ≤ 𝐴𝐴 ≤ (2 · π))))
7255, 59, 71mp3an12 1451 . . . . . . . 8 (𝐴 ∈ ℝ* → (𝐴 ∈ (0[,](2 · π)) ↔ (0 ≤ 𝐴𝐴 ≤ (2 · π))))
7370, 72sylibrd 259 . . . . . . 7 (𝐴 ∈ ℝ* → ((0 ≤ 𝐴𝐴 < π) → 𝐴 ∈ (0[,](2 · π))))
74733impib 1116 . . . . . 6 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴𝐴 < π) → 𝐴 ∈ (0[,](2 · π)))
7557, 74sylbi 217 . . . . 5 (𝐴 ∈ (0[,)π) → 𝐴 ∈ (0[,](2 · π)))
76 sin2h 37570 . . . . 5 (𝐴 ∈ (0[,](2 · π)) → (sin‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / 2)))
7775, 76syl 17 . . . 4 (𝐴 ∈ (0[,)π) → (sin‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / 2)))
781, 2, 13ltleii 11413 . . . . . . . . . . 11 0 ≤ π
79 le0neg2 11799 . . . . . . . . . . . 12 (π ∈ ℝ → (0 ≤ π ↔ -π ≤ 0))
802, 79ax-mp 5 . . . . . . . . . . 11 (0 ≤ π ↔ -π ≤ 0)
8178, 80mpbi 230 . . . . . . . . . 10 -π ≤ 0
8217rexri 11348 . . . . . . . . . . 11 -π ∈ ℝ*
83 xrletr 13220 . . . . . . . . . . 11 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝐴 ∈ ℝ*) → ((-π ≤ 0 ∧ 0 ≤ 𝐴) → -π ≤ 𝐴))
8482, 55, 83mp3an12 1451 . . . . . . . . . 10 (𝐴 ∈ ℝ* → ((-π ≤ 0 ∧ 0 ≤ 𝐴) → -π ≤ 𝐴))
8581, 84mpani 695 . . . . . . . . 9 (𝐴 ∈ ℝ* → (0 ≤ 𝐴 → -π ≤ 𝐴))
86 xrltle 13211 . . . . . . . . . 10 ((𝐴 ∈ ℝ* ∧ π ∈ ℝ*) → (𝐴 < π → 𝐴 ≤ π))
873, 86mpan2 690 . . . . . . . . 9 (𝐴 ∈ ℝ* → (𝐴 < π → 𝐴 ≤ π))
8885, 87anim12d 608 . . . . . . . 8 (𝐴 ∈ ℝ* → ((0 ≤ 𝐴𝐴 < π) → (-π ≤ 𝐴𝐴 ≤ π)))
89 elicc4 13474 . . . . . . . . 9 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝐴 ∈ ℝ*) → (𝐴 ∈ (-π[,]π) ↔ (-π ≤ 𝐴𝐴 ≤ π)))
9082, 3, 89mp3an12 1451 . . . . . . . 8 (𝐴 ∈ ℝ* → (𝐴 ∈ (-π[,]π) ↔ (-π ≤ 𝐴𝐴 ≤ π)))
9188, 90sylibrd 259 . . . . . . 7 (𝐴 ∈ ℝ* → ((0 ≤ 𝐴𝐴 < π) → 𝐴 ∈ (-π[,]π)))
92913impib 1116 . . . . . 6 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴𝐴 < π) → 𝐴 ∈ (-π[,]π))
9357, 92sylbi 217 . . . . 5 (𝐴 ∈ (0[,)π) → 𝐴 ∈ (-π[,]π))
94 cos2h 37571 . . . . 5 (𝐴 ∈ (-π[,]π) → (cos‘(𝐴 / 2)) = (√‘((1 + (cos‘𝐴)) / 2)))
9593, 94syl 17 . . . 4 (𝐴 ∈ (0[,)π) → (cos‘(𝐴 / 2)) = (√‘((1 + (cos‘𝐴)) / 2)))
9677, 95oveq12d 7466 . . 3 (𝐴 ∈ (0[,)π) → ((sin‘(𝐴 / 2)) / (cos‘(𝐴 / 2))) = ((√‘((1 − (cos‘𝐴)) / 2)) / (√‘((1 + (cos‘𝐴)) / 2))))
9754, 96eqtrd 2780 . 2 (𝐴 ∈ (0[,)π) → (tan‘(𝐴 / 2)) = ((√‘((1 − (cos‘𝐴)) / 2)) / (√‘((1 + (cos‘𝐴)) / 2))))
98 1re 11290 . . . . 5 1 ∈ ℝ
996recoscld 16192 . . . . 5 (𝐴 ∈ (0[,)π) → (cos‘𝐴) ∈ ℝ)
100 resubcl 11600 . . . . 5 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (1 − (cos‘𝐴)) ∈ ℝ)
10198, 99, 100sylancr 586 . . . 4 (𝐴 ∈ (0[,)π) → (1 − (cos‘𝐴)) ∈ ℝ)
102101rehalfcld 12540 . . 3 (𝐴 ∈ (0[,)π) → ((1 − (cos‘𝐴)) / 2) ∈ ℝ)
103 cosbnd 16229 . . . . . 6 (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1))
104103simprd 495 . . . . 5 (𝐴 ∈ ℝ → (cos‘𝐴) ≤ 1)
105 recoscl 16189 . . . . . 6 (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ)
106 subge0 11803 . . . . . . 7 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (0 ≤ (1 − (cos‘𝐴)) ↔ (cos‘𝐴) ≤ 1))
107 halfnneg2 12524 . . . . . . . 8 ((1 − (cos‘𝐴)) ∈ ℝ → (0 ≤ (1 − (cos‘𝐴)) ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
108100, 107syl 17 . . . . . . 7 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (0 ≤ (1 − (cos‘𝐴)) ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
109106, 108bitr3d 281 . . . . . 6 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → ((cos‘𝐴) ≤ 1 ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
11098, 105, 109sylancr 586 . . . . 5 (𝐴 ∈ ℝ → ((cos‘𝐴) ≤ 1 ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
111104, 110mpbid 232 . . . 4 (𝐴 ∈ ℝ → 0 ≤ ((1 − (cos‘𝐴)) / 2))
1126, 111syl 17 . . 3 (𝐴 ∈ (0[,)π) → 0 ≤ ((1 − (cos‘𝐴)) / 2))
113 readdcl 11267 . . . . . 6 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (1 + (cos‘𝐴)) ∈ ℝ)
11498, 99, 113sylancr 586 . . . . 5 (𝐴 ∈ (0[,)π) → (1 + (cos‘𝐴)) ∈ ℝ)
115103simpld 494 . . . . . . . 8 (𝐴 ∈ ℝ → -1 ≤ (cos‘𝐴))
11698renegcli 11597 . . . . . . . . . 10 -1 ∈ ℝ
117 subge0 11803 . . . . . . . . . 10 (((cos‘𝐴) ∈ ℝ ∧ -1 ∈ ℝ) → (0 ≤ ((cos‘𝐴) − -1) ↔ -1 ≤ (cos‘𝐴)))
118105, 116, 117sylancl 585 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 ≤ ((cos‘𝐴) − -1) ↔ -1 ≤ (cos‘𝐴)))
119 recn 11274 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
120119coscld 16179 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℂ)
121 ax-1cn 11242 . . . . . . . . . . 11 1 ∈ ℂ
122 subneg 11585 . . . . . . . . . . . 12 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((cos‘𝐴) − -1) = ((cos‘𝐴) + 1))
123 addcom 11476 . . . . . . . . . . . 12 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((cos‘𝐴) + 1) = (1 + (cos‘𝐴)))
124122, 123eqtrd 2780 . . . . . . . . . . 11 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((cos‘𝐴) − -1) = (1 + (cos‘𝐴)))
125120, 121, 124sylancl 585 . . . . . . . . . 10 (𝐴 ∈ ℝ → ((cos‘𝐴) − -1) = (1 + (cos‘𝐴)))
126125breq2d 5178 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 ≤ ((cos‘𝐴) − -1) ↔ 0 ≤ (1 + (cos‘𝐴))))
127118, 126bitr3d 281 . . . . . . . 8 (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ↔ 0 ≤ (1 + (cos‘𝐴))))
128115, 127mpbid 232 . . . . . . 7 (𝐴 ∈ ℝ → 0 ≤ (1 + (cos‘𝐴)))
1296, 128syl 17 . . . . . 6 (𝐴 ∈ (0[,)π) → 0 ≤ (1 + (cos‘𝐴)))
130 snunioo 13538 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 < π) → ({0} ∪ (0(,)π)) = (0[,)π))
13155, 3, 13, 130mp3an 1461 . . . . . . . . 9 ({0} ∪ (0(,)π)) = (0[,)π)
132131eleq2i 2836 . . . . . . . 8 (𝐴 ∈ ({0} ∪ (0(,)π)) ↔ 𝐴 ∈ (0[,)π))
133 elun 4176 . . . . . . . 8 (𝐴 ∈ ({0} ∪ (0(,)π)) ↔ (𝐴 ∈ {0} ∨ 𝐴 ∈ (0(,)π)))
134132, 133bitr3i 277 . . . . . . 7 (𝐴 ∈ (0[,)π) ↔ (𝐴 ∈ {0} ∨ 𝐴 ∈ (0(,)π)))
135 elsni 4665 . . . . . . . . 9 (𝐴 ∈ {0} → 𝐴 = 0)
136 fveq2 6920 . . . . . . . . . . . . 13 (𝐴 = 0 → (cos‘𝐴) = (cos‘0))
137 cos0 16198 . . . . . . . . . . . . 13 (cos‘0) = 1
138136, 137eqtrdi 2796 . . . . . . . . . . . 12 (𝐴 = 0 → (cos‘𝐴) = 1)
139138oveq2d 7464 . . . . . . . . . . 11 (𝐴 = 0 → (1 + (cos‘𝐴)) = (1 + 1))
140 df-2 12356 . . . . . . . . . . 11 2 = (1 + 1)
141139, 140eqtr4di 2798 . . . . . . . . . 10 (𝐴 = 0 → (1 + (cos‘𝐴)) = 2)
14228a1i 11 . . . . . . . . . 10 (𝐴 = 0 → 2 ≠ 0)
143141, 142eqnetrd 3014 . . . . . . . . 9 (𝐴 = 0 → (1 + (cos‘𝐴)) ≠ 0)
144135, 143syl 17 . . . . . . . 8 (𝐴 ∈ {0} → (1 + (cos‘𝐴)) ≠ 0)
145 sinq12gt0 26567 . . . . . . . . 9 (𝐴 ∈ (0(,)π) → 0 < (sin‘𝐴))
146 ltne 11387 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 0 < (sin‘𝐴)) → (sin‘𝐴) ≠ 0)
1471, 146mpan 689 . . . . . . . . . 10 (0 < (sin‘𝐴) → (sin‘𝐴) ≠ 0)
148 elioore 13437 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)π) → 𝐴 ∈ ℝ)
149148recnd 11318 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)π) → 𝐴 ∈ ℂ)
150 oveq1 7455 . . . . . . . . . . . . . 14 (-1 = (cos‘𝐴) → (-1↑2) = ((cos‘𝐴)↑2))
151150a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (-1 = (cos‘𝐴) → (-1↑2) = ((cos‘𝐴)↑2)))
152 df-neg 11523 . . . . . . . . . . . . . . 15 -1 = (0 − 1)
153152eqeq1i 2745 . . . . . . . . . . . . . 14 (-1 = (cos‘𝐴) ↔ (0 − 1) = (cos‘𝐴))
154 coscl 16175 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
155 0cn 11282 . . . . . . . . . . . . . . . 16 0 ∈ ℂ
156 subadd 11539 . . . . . . . . . . . . . . . 16 ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → ((0 − 1) = (cos‘𝐴) ↔ (1 + (cos‘𝐴)) = 0))
157155, 121, 156mp3an12 1451 . . . . . . . . . . . . . . 15 ((cos‘𝐴) ∈ ℂ → ((0 − 1) = (cos‘𝐴) ↔ (1 + (cos‘𝐴)) = 0))
158154, 157syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((0 − 1) = (cos‘𝐴) ↔ (1 + (cos‘𝐴)) = 0))
159153, 158bitrid 283 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (-1 = (cos‘𝐴) ↔ (1 + (cos‘𝐴)) = 0))
160 sincl 16174 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
161160sqcld 14194 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) ∈ ℂ)
162 0cnd 11283 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 0 ∈ ℂ)
163154sqcld 14194 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) ∈ ℂ)
164161, 162, 163addcan2d 11494 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (0 + ((cos‘𝐴)↑2)) ↔ ((sin‘𝐴)↑2) = 0))
165 sincossq 16224 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
166 neg1sqe1 14245 . . . . . . . . . . . . . . . 16 (-1↑2) = 1
167165, 166eqtr4di 2798 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (-1↑2))
168163addlidd 11491 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (0 + ((cos‘𝐴)↑2)) = ((cos‘𝐴)↑2))
169167, 168eqeq12d 2756 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (0 + ((cos‘𝐴)↑2)) ↔ (-1↑2) = ((cos‘𝐴)↑2)))
170 sqeq0 14170 . . . . . . . . . . . . . . 15 ((sin‘𝐴) ∈ ℂ → (((sin‘𝐴)↑2) = 0 ↔ (sin‘𝐴) = 0))
171160, 170syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) = 0 ↔ (sin‘𝐴) = 0))
172164, 169, 1713bitr3d 309 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((-1↑2) = ((cos‘𝐴)↑2) ↔ (sin‘𝐴) = 0))
173151, 159, 1723imtr3d 293 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((1 + (cos‘𝐴)) = 0 → (sin‘𝐴) = 0))
174149, 173syl 17 . . . . . . . . . . 11 (𝐴 ∈ (0(,)π) → ((1 + (cos‘𝐴)) = 0 → (sin‘𝐴) = 0))
175174necon3d 2967 . . . . . . . . . 10 (𝐴 ∈ (0(,)π) → ((sin‘𝐴) ≠ 0 → (1 + (cos‘𝐴)) ≠ 0))
176147, 175syl5 34 . . . . . . . . 9 (𝐴 ∈ (0(,)π) → (0 < (sin‘𝐴) → (1 + (cos‘𝐴)) ≠ 0))
177145, 176mpd 15 . . . . . . . 8 (𝐴 ∈ (0(,)π) → (1 + (cos‘𝐴)) ≠ 0)
178144, 177jaoi 856 . . . . . . 7 ((𝐴 ∈ {0} ∨ 𝐴 ∈ (0(,)π)) → (1 + (cos‘𝐴)) ≠ 0)
179134, 178sylbi 217 . . . . . 6 (𝐴 ∈ (0[,)π) → (1 + (cos‘𝐴)) ≠ 0)
180114, 129, 179ne0gt0d 11427 . . . . 5 (𝐴 ∈ (0[,)π) → 0 < (1 + (cos‘𝐴)))
181114, 180elrpd 13096 . . . 4 (𝐴 ∈ (0[,)π) → (1 + (cos‘𝐴)) ∈ ℝ+)
182181rphalfcld 13111 . . 3 (𝐴 ∈ (0[,)π) → ((1 + (cos‘𝐴)) / 2) ∈ ℝ+)
183102, 112, 182sqrtdivd 15472 . 2 (𝐴 ∈ (0[,)π) → (√‘(((1 − (cos‘𝐴)) / 2) / ((1 + (cos‘𝐴)) / 2))) = ((√‘((1 − (cos‘𝐴)) / 2)) / (√‘((1 + (cos‘𝐴)) / 2))))
1847coscld 16179 . . . . 5 (𝐴 ∈ (0[,)π) → (cos‘𝐴) ∈ ℂ)
185 subcl 11535 . . . . 5 ((1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → (1 − (cos‘𝐴)) ∈ ℂ)
186121, 184, 185sylancr 586 . . . 4 (𝐴 ∈ (0[,)π) → (1 − (cos‘𝐴)) ∈ ℂ)
187 addcl 11266 . . . . 5 ((1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → (1 + (cos‘𝐴)) ∈ ℂ)
188121, 184, 187sylancr 586 . . . 4 (𝐴 ∈ (0[,)π) → (1 + (cos‘𝐴)) ∈ ℂ)
189 2cnne0 12503 . . . . 5 (2 ∈ ℂ ∧ 2 ≠ 0)
190 divcan7 12003 . . . . 5 (((1 − (cos‘𝐴)) ∈ ℂ ∧ ((1 + (cos‘𝐴)) ∈ ℂ ∧ (1 + (cos‘𝐴)) ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((1 − (cos‘𝐴)) / 2) / ((1 + (cos‘𝐴)) / 2)) = ((1 − (cos‘𝐴)) / (1 + (cos‘𝐴))))
191189, 190mp3an3 1450 . . . 4 (((1 − (cos‘𝐴)) ∈ ℂ ∧ ((1 + (cos‘𝐴)) ∈ ℂ ∧ (1 + (cos‘𝐴)) ≠ 0)) → (((1 − (cos‘𝐴)) / 2) / ((1 + (cos‘𝐴)) / 2)) = ((1 − (cos‘𝐴)) / (1 + (cos‘𝐴))))
192186, 188, 179, 191syl12anc 836 . . 3 (𝐴 ∈ (0[,)π) → (((1 − (cos‘𝐴)) / 2) / ((1 + (cos‘𝐴)) / 2)) = ((1 − (cos‘𝐴)) / (1 + (cos‘𝐴))))
193192fveq2d 6924 . 2 (𝐴 ∈ (0[,)π) → (√‘(((1 − (cos‘𝐴)) / 2) / ((1 + (cos‘𝐴)) / 2))) = (√‘((1 − (cos‘𝐴)) / (1 + (cos‘𝐴)))))
19497, 183, 1933eqtr2d 2786 1 (𝐴 ∈ (0[,)π) → (tan‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / (1 + (cos‘𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cun 3974  wss 3976  {csn 4648   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  *cxr 11323   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  2c2 12348  (,)cioo 13407  [,)cico 13409  [,]cicc 13410  cexp 14112  cre 15146  csqrt 15282  sincsin 16111  cosccos 16112  tanctan 16113  πcpi 16114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-tan 16119  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator