Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tan2h Structured version   Visualization version   GIF version

Theorem tan2h 37725
Description: Half-angle rule for tangent. (Contributed by Brendan Leahy, 4-Aug-2018.)
Assertion
Ref Expression
tan2h (𝐴 ∈ (0[,)π) → (tan‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / (1 + (cos‘𝐴)))))

Proof of Theorem tan2h
StepHypRef Expression
1 0re 11125 . . . . . . . 8 0 ∈ ℝ
2 pire 26413 . . . . . . . . 9 π ∈ ℝ
32rexri 11181 . . . . . . . 8 π ∈ ℝ*
4 icossre 13335 . . . . . . . 8 ((0 ∈ ℝ ∧ π ∈ ℝ*) → (0[,)π) ⊆ ℝ)
51, 3, 4mp2an 692 . . . . . . 7 (0[,)π) ⊆ ℝ
65sseli 3926 . . . . . 6 (𝐴 ∈ (0[,)π) → 𝐴 ∈ ℝ)
76recnd 11151 . . . . 5 (𝐴 ∈ (0[,)π) → 𝐴 ∈ ℂ)
87halfcld 12377 . . . 4 (𝐴 ∈ (0[,)π) → (𝐴 / 2) ∈ ℂ)
96rehalfcld 12379 . . . . . . 7 (𝐴 ∈ (0[,)π) → (𝐴 / 2) ∈ ℝ)
109rered 15138 . . . . . 6 (𝐴 ∈ (0[,)π) → (ℜ‘(𝐴 / 2)) = (𝐴 / 2))
11 elico2 13317 . . . . . . . 8 ((0 ∈ ℝ ∧ π ∈ ℝ*) → (𝐴 ∈ (0[,)π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < π)))
121, 3, 11mp2an 692 . . . . . . 7 (𝐴 ∈ (0[,)π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < π))
13 pipos 26415 . . . . . . . . . . . . 13 0 < π
14 lt0neg2 11635 . . . . . . . . . . . . . 14 (π ∈ ℝ → (0 < π ↔ -π < 0))
152, 14ax-mp 5 . . . . . . . . . . . . 13 (0 < π ↔ -π < 0)
1613, 15mpbi 230 . . . . . . . . . . . 12 -π < 0
172renegcli 11433 . . . . . . . . . . . . 13 -π ∈ ℝ
18 ltletr 11216 . . . . . . . . . . . . 13 ((-π ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((-π < 0 ∧ 0 ≤ 𝐴) → -π < 𝐴))
1917, 1, 18mp3an12 1453 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → ((-π < 0 ∧ 0 ≤ 𝐴) → -π < 𝐴))
2016, 19mpani 696 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (0 ≤ 𝐴 → -π < 𝐴))
21 2re 12210 . . . . . . . . . . . . . 14 2 ∈ ℝ
22 2pos 12239 . . . . . . . . . . . . . 14 0 < 2
2321, 22pm3.2i 470 . . . . . . . . . . . . 13 (2 ∈ ℝ ∧ 0 < 2)
24 ltdiv1 11997 . . . . . . . . . . . . 13 ((-π ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (-π < 𝐴 ↔ (-π / 2) < (𝐴 / 2)))
2517, 23, 24mp3an13 1454 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (-π < 𝐴 ↔ (-π / 2) < (𝐴 / 2)))
26 picn 26414 . . . . . . . . . . . . . 14 π ∈ ℂ
27 2cn 12211 . . . . . . . . . . . . . 14 2 ∈ ℂ
28 2ne0 12240 . . . . . . . . . . . . . 14 2 ≠ 0
29 divneg 11824 . . . . . . . . . . . . . 14 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
3026, 27, 28, 29mp3an 1463 . . . . . . . . . . . . 13 -(π / 2) = (-π / 2)
3130breq1i 5102 . . . . . . . . . . . 12 (-(π / 2) < (𝐴 / 2) ↔ (-π / 2) < (𝐴 / 2))
3225, 31bitr4di 289 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (-π < 𝐴 ↔ -(π / 2) < (𝐴 / 2)))
3320, 32sylibd 239 . . . . . . . . . 10 (𝐴 ∈ ℝ → (0 ≤ 𝐴 → -(π / 2) < (𝐴 / 2)))
34 ltdiv1 11997 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 < π ↔ (𝐴 / 2) < (π / 2)))
352, 23, 34mp3an23 1455 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 < π ↔ (𝐴 / 2) < (π / 2)))
3635biimpd 229 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 < π → (𝐴 / 2) < (π / 2)))
3733, 36anim12d 609 . . . . . . . . 9 (𝐴 ∈ ℝ → ((0 ≤ 𝐴𝐴 < π) → (-(π / 2) < (𝐴 / 2) ∧ (𝐴 / 2) < (π / 2))))
38 rehalfcl 12359 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
3938rexrd 11173 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ*)
40 halfpire 26420 . . . . . . . . . . . . 13 (π / 2) ∈ ℝ
4140renegcli 11433 . . . . . . . . . . . 12 -(π / 2) ∈ ℝ
4241rexri 11181 . . . . . . . . . . 11 -(π / 2) ∈ ℝ*
4340rexri 11181 . . . . . . . . . . 11 (π / 2) ∈ ℝ*
44 elioo5 13310 . . . . . . . . . . 11 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ (𝐴 / 2) ∈ ℝ*) → ((𝐴 / 2) ∈ (-(π / 2)(,)(π / 2)) ↔ (-(π / 2) < (𝐴 / 2) ∧ (𝐴 / 2) < (π / 2))))
4542, 43, 44mp3an12 1453 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℝ* → ((𝐴 / 2) ∈ (-(π / 2)(,)(π / 2)) ↔ (-(π / 2) < (𝐴 / 2) ∧ (𝐴 / 2) < (π / 2))))
4639, 45syl 17 . . . . . . . . 9 (𝐴 ∈ ℝ → ((𝐴 / 2) ∈ (-(π / 2)(,)(π / 2)) ↔ (-(π / 2) < (𝐴 / 2) ∧ (𝐴 / 2) < (π / 2))))
4737, 46sylibrd 259 . . . . . . . 8 (𝐴 ∈ ℝ → ((0 ≤ 𝐴𝐴 < π) → (𝐴 / 2) ∈ (-(π / 2)(,)(π / 2))))
48473impib 1116 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < π) → (𝐴 / 2) ∈ (-(π / 2)(,)(π / 2)))
4912, 48sylbi 217 . . . . . 6 (𝐴 ∈ (0[,)π) → (𝐴 / 2) ∈ (-(π / 2)(,)(π / 2)))
5010, 49eqeltrd 2833 . . . . 5 (𝐴 ∈ (0[,)π) → (ℜ‘(𝐴 / 2)) ∈ (-(π / 2)(,)(π / 2)))
51 cosne0 26485 . . . . 5 (((𝐴 / 2) ∈ ℂ ∧ (ℜ‘(𝐴 / 2)) ∈ (-(π / 2)(,)(π / 2))) → (cos‘(𝐴 / 2)) ≠ 0)
528, 50, 51syl2anc 584 . . . 4 (𝐴 ∈ (0[,)π) → (cos‘(𝐴 / 2)) ≠ 0)
53 tanval 16044 . . . 4 (((𝐴 / 2) ∈ ℂ ∧ (cos‘(𝐴 / 2)) ≠ 0) → (tan‘(𝐴 / 2)) = ((sin‘(𝐴 / 2)) / (cos‘(𝐴 / 2))))
548, 52, 53syl2anc 584 . . 3 (𝐴 ∈ (0[,)π) → (tan‘(𝐴 / 2)) = ((sin‘(𝐴 / 2)) / (cos‘(𝐴 / 2))))
55 0xr 11170 . . . . . . 7 0 ∈ ℝ*
56 elico1 13295 . . . . . . 7 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → (𝐴 ∈ (0[,)π) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴𝐴 < π)))
5755, 3, 56mp2an 692 . . . . . 6 (𝐴 ∈ (0[,)π) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴𝐴 < π))
5821, 2remulcli 11139 . . . . . . . . . . 11 (2 · π) ∈ ℝ
5958rexri 11181 . . . . . . . . . 10 (2 · π) ∈ ℝ*
60 1lt2 12302 . . . . . . . . . . . . 13 1 < 2
61 ltmulgt12 11993 . . . . . . . . . . . . . 14 ((π ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < π) → (1 < 2 ↔ π < (2 · π)))
622, 21, 13, 61mp3an 1463 . . . . . . . . . . . . 13 (1 < 2 ↔ π < (2 · π))
6360, 62mpbi 230 . . . . . . . . . . . 12 π < (2 · π)
64 xrlttr 13045 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ* ∧ π ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → ((𝐴 < π ∧ π < (2 · π)) → 𝐴 < (2 · π)))
653, 64mp3an2 1451 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → ((𝐴 < π ∧ π < (2 · π)) → 𝐴 < (2 · π)))
6663, 65mpan2i 697 . . . . . . . . . . 11 ((𝐴 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝐴 < π → 𝐴 < (2 · π)))
67 xrltle 13054 . . . . . . . . . . 11 ((𝐴 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝐴 < (2 · π) → 𝐴 ≤ (2 · π)))
6866, 67syld 47 . . . . . . . . . 10 ((𝐴 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝐴 < π → 𝐴 ≤ (2 · π)))
6959, 68mpan2 691 . . . . . . . . 9 (𝐴 ∈ ℝ* → (𝐴 < π → 𝐴 ≤ (2 · π)))
7069anim2d 612 . . . . . . . 8 (𝐴 ∈ ℝ* → ((0 ≤ 𝐴𝐴 < π) → (0 ≤ 𝐴𝐴 ≤ (2 · π))))
71 elicc4 13320 . . . . . . . . 9 ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ*𝐴 ∈ ℝ*) → (𝐴 ∈ (0[,](2 · π)) ↔ (0 ≤ 𝐴𝐴 ≤ (2 · π))))
7255, 59, 71mp3an12 1453 . . . . . . . 8 (𝐴 ∈ ℝ* → (𝐴 ∈ (0[,](2 · π)) ↔ (0 ≤ 𝐴𝐴 ≤ (2 · π))))
7370, 72sylibrd 259 . . . . . . 7 (𝐴 ∈ ℝ* → ((0 ≤ 𝐴𝐴 < π) → 𝐴 ∈ (0[,](2 · π))))
74733impib 1116 . . . . . 6 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴𝐴 < π) → 𝐴 ∈ (0[,](2 · π)))
7557, 74sylbi 217 . . . . 5 (𝐴 ∈ (0[,)π) → 𝐴 ∈ (0[,](2 · π)))
76 sin2h 37723 . . . . 5 (𝐴 ∈ (0[,](2 · π)) → (sin‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / 2)))
7775, 76syl 17 . . . 4 (𝐴 ∈ (0[,)π) → (sin‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / 2)))
781, 2, 13ltleii 11247 . . . . . . . . . . 11 0 ≤ π
79 le0neg2 11637 . . . . . . . . . . . 12 (π ∈ ℝ → (0 ≤ π ↔ -π ≤ 0))
802, 79ax-mp 5 . . . . . . . . . . 11 (0 ≤ π ↔ -π ≤ 0)
8178, 80mpbi 230 . . . . . . . . . 10 -π ≤ 0
8217rexri 11181 . . . . . . . . . . 11 -π ∈ ℝ*
83 xrletr 13063 . . . . . . . . . . 11 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝐴 ∈ ℝ*) → ((-π ≤ 0 ∧ 0 ≤ 𝐴) → -π ≤ 𝐴))
8482, 55, 83mp3an12 1453 . . . . . . . . . 10 (𝐴 ∈ ℝ* → ((-π ≤ 0 ∧ 0 ≤ 𝐴) → -π ≤ 𝐴))
8581, 84mpani 696 . . . . . . . . 9 (𝐴 ∈ ℝ* → (0 ≤ 𝐴 → -π ≤ 𝐴))
86 xrltle 13054 . . . . . . . . . 10 ((𝐴 ∈ ℝ* ∧ π ∈ ℝ*) → (𝐴 < π → 𝐴 ≤ π))
873, 86mpan2 691 . . . . . . . . 9 (𝐴 ∈ ℝ* → (𝐴 < π → 𝐴 ≤ π))
8885, 87anim12d 609 . . . . . . . 8 (𝐴 ∈ ℝ* → ((0 ≤ 𝐴𝐴 < π) → (-π ≤ 𝐴𝐴 ≤ π)))
89 elicc4 13320 . . . . . . . . 9 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝐴 ∈ ℝ*) → (𝐴 ∈ (-π[,]π) ↔ (-π ≤ 𝐴𝐴 ≤ π)))
9082, 3, 89mp3an12 1453 . . . . . . . 8 (𝐴 ∈ ℝ* → (𝐴 ∈ (-π[,]π) ↔ (-π ≤ 𝐴𝐴 ≤ π)))
9188, 90sylibrd 259 . . . . . . 7 (𝐴 ∈ ℝ* → ((0 ≤ 𝐴𝐴 < π) → 𝐴 ∈ (-π[,]π)))
92913impib 1116 . . . . . 6 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴𝐴 < π) → 𝐴 ∈ (-π[,]π))
9357, 92sylbi 217 . . . . 5 (𝐴 ∈ (0[,)π) → 𝐴 ∈ (-π[,]π))
94 cos2h 37724 . . . . 5 (𝐴 ∈ (-π[,]π) → (cos‘(𝐴 / 2)) = (√‘((1 + (cos‘𝐴)) / 2)))
9593, 94syl 17 . . . 4 (𝐴 ∈ (0[,)π) → (cos‘(𝐴 / 2)) = (√‘((1 + (cos‘𝐴)) / 2)))
9677, 95oveq12d 7373 . . 3 (𝐴 ∈ (0[,)π) → ((sin‘(𝐴 / 2)) / (cos‘(𝐴 / 2))) = ((√‘((1 − (cos‘𝐴)) / 2)) / (√‘((1 + (cos‘𝐴)) / 2))))
9754, 96eqtrd 2768 . 2 (𝐴 ∈ (0[,)π) → (tan‘(𝐴 / 2)) = ((√‘((1 − (cos‘𝐴)) / 2)) / (√‘((1 + (cos‘𝐴)) / 2))))
98 1re 11123 . . . . 5 1 ∈ ℝ
996recoscld 16060 . . . . 5 (𝐴 ∈ (0[,)π) → (cos‘𝐴) ∈ ℝ)
100 resubcl 11436 . . . . 5 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (1 − (cos‘𝐴)) ∈ ℝ)
10198, 99, 100sylancr 587 . . . 4 (𝐴 ∈ (0[,)π) → (1 − (cos‘𝐴)) ∈ ℝ)
102101rehalfcld 12379 . . 3 (𝐴 ∈ (0[,)π) → ((1 − (cos‘𝐴)) / 2) ∈ ℝ)
103 cosbnd 16097 . . . . . 6 (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1))
104103simprd 495 . . . . 5 (𝐴 ∈ ℝ → (cos‘𝐴) ≤ 1)
105 recoscl 16057 . . . . . 6 (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ)
106 subge0 11641 . . . . . . 7 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (0 ≤ (1 − (cos‘𝐴)) ↔ (cos‘𝐴) ≤ 1))
107 halfnneg2 12363 . . . . . . . 8 ((1 − (cos‘𝐴)) ∈ ℝ → (0 ≤ (1 − (cos‘𝐴)) ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
108100, 107syl 17 . . . . . . 7 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (0 ≤ (1 − (cos‘𝐴)) ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
109106, 108bitr3d 281 . . . . . 6 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → ((cos‘𝐴) ≤ 1 ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
11098, 105, 109sylancr 587 . . . . 5 (𝐴 ∈ ℝ → ((cos‘𝐴) ≤ 1 ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
111104, 110mpbid 232 . . . 4 (𝐴 ∈ ℝ → 0 ≤ ((1 − (cos‘𝐴)) / 2))
1126, 111syl 17 . . 3 (𝐴 ∈ (0[,)π) → 0 ≤ ((1 − (cos‘𝐴)) / 2))
113 readdcl 11100 . . . . . 6 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (1 + (cos‘𝐴)) ∈ ℝ)
11498, 99, 113sylancr 587 . . . . 5 (𝐴 ∈ (0[,)π) → (1 + (cos‘𝐴)) ∈ ℝ)
115103simpld 494 . . . . . . . 8 (𝐴 ∈ ℝ → -1 ≤ (cos‘𝐴))
11698renegcli 11433 . . . . . . . . . 10 -1 ∈ ℝ
117 subge0 11641 . . . . . . . . . 10 (((cos‘𝐴) ∈ ℝ ∧ -1 ∈ ℝ) → (0 ≤ ((cos‘𝐴) − -1) ↔ -1 ≤ (cos‘𝐴)))
118105, 116, 117sylancl 586 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 ≤ ((cos‘𝐴) − -1) ↔ -1 ≤ (cos‘𝐴)))
119 recn 11107 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
120119coscld 16047 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℂ)
121 ax-1cn 11075 . . . . . . . . . . 11 1 ∈ ℂ
122 subneg 11421 . . . . . . . . . . . 12 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((cos‘𝐴) − -1) = ((cos‘𝐴) + 1))
123 addcom 11310 . . . . . . . . . . . 12 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((cos‘𝐴) + 1) = (1 + (cos‘𝐴)))
124122, 123eqtrd 2768 . . . . . . . . . . 11 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((cos‘𝐴) − -1) = (1 + (cos‘𝐴)))
125120, 121, 124sylancl 586 . . . . . . . . . 10 (𝐴 ∈ ℝ → ((cos‘𝐴) − -1) = (1 + (cos‘𝐴)))
126125breq2d 5107 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 ≤ ((cos‘𝐴) − -1) ↔ 0 ≤ (1 + (cos‘𝐴))))
127118, 126bitr3d 281 . . . . . . . 8 (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ↔ 0 ≤ (1 + (cos‘𝐴))))
128115, 127mpbid 232 . . . . . . 7 (𝐴 ∈ ℝ → 0 ≤ (1 + (cos‘𝐴)))
1296, 128syl 17 . . . . . 6 (𝐴 ∈ (0[,)π) → 0 ≤ (1 + (cos‘𝐴)))
130 snunioo 13385 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 < π) → ({0} ∪ (0(,)π)) = (0[,)π))
13155, 3, 13, 130mp3an 1463 . . . . . . . . 9 ({0} ∪ (0(,)π)) = (0[,)π)
132131eleq2i 2825 . . . . . . . 8 (𝐴 ∈ ({0} ∪ (0(,)π)) ↔ 𝐴 ∈ (0[,)π))
133 elun 4102 . . . . . . . 8 (𝐴 ∈ ({0} ∪ (0(,)π)) ↔ (𝐴 ∈ {0} ∨ 𝐴 ∈ (0(,)π)))
134132, 133bitr3i 277 . . . . . . 7 (𝐴 ∈ (0[,)π) ↔ (𝐴 ∈ {0} ∨ 𝐴 ∈ (0(,)π)))
135 elsni 4594 . . . . . . . . 9 (𝐴 ∈ {0} → 𝐴 = 0)
136 fveq2 6831 . . . . . . . . . . . . 13 (𝐴 = 0 → (cos‘𝐴) = (cos‘0))
137 cos0 16066 . . . . . . . . . . . . 13 (cos‘0) = 1
138136, 137eqtrdi 2784 . . . . . . . . . . . 12 (𝐴 = 0 → (cos‘𝐴) = 1)
139138oveq2d 7371 . . . . . . . . . . 11 (𝐴 = 0 → (1 + (cos‘𝐴)) = (1 + 1))
140 df-2 12199 . . . . . . . . . . 11 2 = (1 + 1)
141139, 140eqtr4di 2786 . . . . . . . . . 10 (𝐴 = 0 → (1 + (cos‘𝐴)) = 2)
14228a1i 11 . . . . . . . . . 10 (𝐴 = 0 → 2 ≠ 0)
143141, 142eqnetrd 2996 . . . . . . . . 9 (𝐴 = 0 → (1 + (cos‘𝐴)) ≠ 0)
144135, 143syl 17 . . . . . . . 8 (𝐴 ∈ {0} → (1 + (cos‘𝐴)) ≠ 0)
145 sinq12gt0 26463 . . . . . . . . 9 (𝐴 ∈ (0(,)π) → 0 < (sin‘𝐴))
146 ltne 11221 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 0 < (sin‘𝐴)) → (sin‘𝐴) ≠ 0)
1471, 146mpan 690 . . . . . . . . . 10 (0 < (sin‘𝐴) → (sin‘𝐴) ≠ 0)
148 elioore 13282 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)π) → 𝐴 ∈ ℝ)
149148recnd 11151 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)π) → 𝐴 ∈ ℂ)
150 oveq1 7362 . . . . . . . . . . . . . 14 (-1 = (cos‘𝐴) → (-1↑2) = ((cos‘𝐴)↑2))
151150a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (-1 = (cos‘𝐴) → (-1↑2) = ((cos‘𝐴)↑2)))
152 df-neg 11358 . . . . . . . . . . . . . . 15 -1 = (0 − 1)
153152eqeq1i 2738 . . . . . . . . . . . . . 14 (-1 = (cos‘𝐴) ↔ (0 − 1) = (cos‘𝐴))
154 coscl 16043 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
155 0cn 11115 . . . . . . . . . . . . . . . 16 0 ∈ ℂ
156 subadd 11374 . . . . . . . . . . . . . . . 16 ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → ((0 − 1) = (cos‘𝐴) ↔ (1 + (cos‘𝐴)) = 0))
157155, 121, 156mp3an12 1453 . . . . . . . . . . . . . . 15 ((cos‘𝐴) ∈ ℂ → ((0 − 1) = (cos‘𝐴) ↔ (1 + (cos‘𝐴)) = 0))
158154, 157syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((0 − 1) = (cos‘𝐴) ↔ (1 + (cos‘𝐴)) = 0))
159153, 158bitrid 283 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (-1 = (cos‘𝐴) ↔ (1 + (cos‘𝐴)) = 0))
160 sincl 16042 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
161160sqcld 14058 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) ∈ ℂ)
162 0cnd 11116 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 0 ∈ ℂ)
163154sqcld 14058 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) ∈ ℂ)
164161, 162, 163addcan2d 11328 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (0 + ((cos‘𝐴)↑2)) ↔ ((sin‘𝐴)↑2) = 0))
165 sincossq 16092 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
166 neg1sqe1 14110 . . . . . . . . . . . . . . . 16 (-1↑2) = 1
167165, 166eqtr4di 2786 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (-1↑2))
168163addlidd 11325 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (0 + ((cos‘𝐴)↑2)) = ((cos‘𝐴)↑2))
169167, 168eqeq12d 2749 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (0 + ((cos‘𝐴)↑2)) ↔ (-1↑2) = ((cos‘𝐴)↑2)))
170 sqeq0 14034 . . . . . . . . . . . . . . 15 ((sin‘𝐴) ∈ ℂ → (((sin‘𝐴)↑2) = 0 ↔ (sin‘𝐴) = 0))
171160, 170syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) = 0 ↔ (sin‘𝐴) = 0))
172164, 169, 1713bitr3d 309 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((-1↑2) = ((cos‘𝐴)↑2) ↔ (sin‘𝐴) = 0))
173151, 159, 1723imtr3d 293 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((1 + (cos‘𝐴)) = 0 → (sin‘𝐴) = 0))
174149, 173syl 17 . . . . . . . . . . 11 (𝐴 ∈ (0(,)π) → ((1 + (cos‘𝐴)) = 0 → (sin‘𝐴) = 0))
175174necon3d 2950 . . . . . . . . . 10 (𝐴 ∈ (0(,)π) → ((sin‘𝐴) ≠ 0 → (1 + (cos‘𝐴)) ≠ 0))
176147, 175syl5 34 . . . . . . . . 9 (𝐴 ∈ (0(,)π) → (0 < (sin‘𝐴) → (1 + (cos‘𝐴)) ≠ 0))
177145, 176mpd 15 . . . . . . . 8 (𝐴 ∈ (0(,)π) → (1 + (cos‘𝐴)) ≠ 0)
178144, 177jaoi 857 . . . . . . 7 ((𝐴 ∈ {0} ∨ 𝐴 ∈ (0(,)π)) → (1 + (cos‘𝐴)) ≠ 0)
179134, 178sylbi 217 . . . . . 6 (𝐴 ∈ (0[,)π) → (1 + (cos‘𝐴)) ≠ 0)
180114, 129, 179ne0gt0d 11261 . . . . 5 (𝐴 ∈ (0[,)π) → 0 < (1 + (cos‘𝐴)))
181114, 180elrpd 12937 . . . 4 (𝐴 ∈ (0[,)π) → (1 + (cos‘𝐴)) ∈ ℝ+)
182181rphalfcld 12952 . . 3 (𝐴 ∈ (0[,)π) → ((1 + (cos‘𝐴)) / 2) ∈ ℝ+)
183102, 112, 182sqrtdivd 15338 . 2 (𝐴 ∈ (0[,)π) → (√‘(((1 − (cos‘𝐴)) / 2) / ((1 + (cos‘𝐴)) / 2))) = ((√‘((1 − (cos‘𝐴)) / 2)) / (√‘((1 + (cos‘𝐴)) / 2))))
1847coscld 16047 . . . . 5 (𝐴 ∈ (0[,)π) → (cos‘𝐴) ∈ ℂ)
185 subcl 11370 . . . . 5 ((1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → (1 − (cos‘𝐴)) ∈ ℂ)
186121, 184, 185sylancr 587 . . . 4 (𝐴 ∈ (0[,)π) → (1 − (cos‘𝐴)) ∈ ℂ)
187 addcl 11099 . . . . 5 ((1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → (1 + (cos‘𝐴)) ∈ ℂ)
188121, 184, 187sylancr 587 . . . 4 (𝐴 ∈ (0[,)π) → (1 + (cos‘𝐴)) ∈ ℂ)
189 2cnne0 12341 . . . . 5 (2 ∈ ℂ ∧ 2 ≠ 0)
190 divcan7 11841 . . . . 5 (((1 − (cos‘𝐴)) ∈ ℂ ∧ ((1 + (cos‘𝐴)) ∈ ℂ ∧ (1 + (cos‘𝐴)) ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((1 − (cos‘𝐴)) / 2) / ((1 + (cos‘𝐴)) / 2)) = ((1 − (cos‘𝐴)) / (1 + (cos‘𝐴))))
191189, 190mp3an3 1452 . . . 4 (((1 − (cos‘𝐴)) ∈ ℂ ∧ ((1 + (cos‘𝐴)) ∈ ℂ ∧ (1 + (cos‘𝐴)) ≠ 0)) → (((1 − (cos‘𝐴)) / 2) / ((1 + (cos‘𝐴)) / 2)) = ((1 − (cos‘𝐴)) / (1 + (cos‘𝐴))))
192186, 188, 179, 191syl12anc 836 . . 3 (𝐴 ∈ (0[,)π) → (((1 − (cos‘𝐴)) / 2) / ((1 + (cos‘𝐴)) / 2)) = ((1 − (cos‘𝐴)) / (1 + (cos‘𝐴))))
193192fveq2d 6835 . 2 (𝐴 ∈ (0[,)π) → (√‘(((1 − (cos‘𝐴)) / 2) / ((1 + (cos‘𝐴)) / 2))) = (√‘((1 − (cos‘𝐴)) / (1 + (cos‘𝐴)))))
19497, 183, 1933eqtr2d 2774 1 (𝐴 ∈ (0[,)π) → (tan‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / (1 + (cos‘𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2929  cun 3896  wss 3898  {csn 4577   class class class wbr 5095  cfv 6489  (class class class)co 7355  cc 11015  cr 11016  0cc0 11017  1c1 11018   + caddc 11020   · cmul 11022  *cxr 11156   < clt 11157  cle 11158  cmin 11355  -cneg 11356   / cdiv 11785  2c2 12191  (,)cioo 13252  [,)cico 13254  [,]cicc 13255  cexp 13975  cre 15011  csqrt 15147  sincsin 15977  cosccos 15978  tanctan 15979  πcpi 15980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-fi 9306  df-sup 9337  df-inf 9338  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13256  df-ioc 13257  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-fac 14188  df-bc 14217  df-hash 14245  df-shft 14981  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-limsup 15385  df-clim 15402  df-rlim 15403  df-sum 15601  df-ef 15981  df-sin 15983  df-cos 15984  df-tan 15985  df-pi 15986  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-hom 17192  df-cco 17193  df-rest 17333  df-topn 17334  df-0g 17352  df-gsum 17353  df-topgen 17354  df-pt 17355  df-prds 17358  df-xrs 17414  df-qtop 17419  df-imas 17420  df-xps 17422  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-mulg 18989  df-cntz 19237  df-cmn 19702  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-fbas 21297  df-fg 21298  df-cnfld 21301  df-top 22829  df-topon 22846  df-topsp 22868  df-bases 22881  df-cld 22954  df-ntr 22955  df-cls 22956  df-nei 23033  df-lp 23071  df-perf 23072  df-cn 23162  df-cnp 23163  df-haus 23250  df-tx 23497  df-hmeo 23690  df-fil 23781  df-fm 23873  df-flim 23874  df-flf 23875  df-xms 24255  df-ms 24256  df-tms 24257  df-cncf 24818  df-limc 25814  df-dv 25815
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator