Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tan2h Structured version   Visualization version   GIF version

Theorem tan2h 37599
Description: Half-angle rule for tangent. (Contributed by Brendan Leahy, 4-Aug-2018.)
Assertion
Ref Expression
tan2h (𝐴 ∈ (0[,)π) → (tan‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / (1 + (cos‘𝐴)))))

Proof of Theorem tan2h
StepHypRef Expression
1 0re 11261 . . . . . . . 8 0 ∈ ℝ
2 pire 26515 . . . . . . . . 9 π ∈ ℝ
32rexri 11317 . . . . . . . 8 π ∈ ℝ*
4 icossre 13465 . . . . . . . 8 ((0 ∈ ℝ ∧ π ∈ ℝ*) → (0[,)π) ⊆ ℝ)
51, 3, 4mp2an 692 . . . . . . 7 (0[,)π) ⊆ ℝ
65sseli 3991 . . . . . 6 (𝐴 ∈ (0[,)π) → 𝐴 ∈ ℝ)
76recnd 11287 . . . . 5 (𝐴 ∈ (0[,)π) → 𝐴 ∈ ℂ)
87halfcld 12509 . . . 4 (𝐴 ∈ (0[,)π) → (𝐴 / 2) ∈ ℂ)
96rehalfcld 12511 . . . . . . 7 (𝐴 ∈ (0[,)π) → (𝐴 / 2) ∈ ℝ)
109rered 15260 . . . . . 6 (𝐴 ∈ (0[,)π) → (ℜ‘(𝐴 / 2)) = (𝐴 / 2))
11 elico2 13448 . . . . . . . 8 ((0 ∈ ℝ ∧ π ∈ ℝ*) → (𝐴 ∈ (0[,)π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < π)))
121, 3, 11mp2an 692 . . . . . . 7 (𝐴 ∈ (0[,)π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < π))
13 pipos 26517 . . . . . . . . . . . . 13 0 < π
14 lt0neg2 11768 . . . . . . . . . . . . . 14 (π ∈ ℝ → (0 < π ↔ -π < 0))
152, 14ax-mp 5 . . . . . . . . . . . . 13 (0 < π ↔ -π < 0)
1613, 15mpbi 230 . . . . . . . . . . . 12 -π < 0
172renegcli 11568 . . . . . . . . . . . . 13 -π ∈ ℝ
18 ltletr 11351 . . . . . . . . . . . . 13 ((-π ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((-π < 0 ∧ 0 ≤ 𝐴) → -π < 𝐴))
1917, 1, 18mp3an12 1450 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → ((-π < 0 ∧ 0 ≤ 𝐴) → -π < 𝐴))
2016, 19mpani 696 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (0 ≤ 𝐴 → -π < 𝐴))
21 2re 12338 . . . . . . . . . . . . . 14 2 ∈ ℝ
22 2pos 12367 . . . . . . . . . . . . . 14 0 < 2
2321, 22pm3.2i 470 . . . . . . . . . . . . 13 (2 ∈ ℝ ∧ 0 < 2)
24 ltdiv1 12130 . . . . . . . . . . . . 13 ((-π ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (-π < 𝐴 ↔ (-π / 2) < (𝐴 / 2)))
2517, 23, 24mp3an13 1451 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (-π < 𝐴 ↔ (-π / 2) < (𝐴 / 2)))
26 picn 26516 . . . . . . . . . . . . . 14 π ∈ ℂ
27 2cn 12339 . . . . . . . . . . . . . 14 2 ∈ ℂ
28 2ne0 12368 . . . . . . . . . . . . . 14 2 ≠ 0
29 divneg 11957 . . . . . . . . . . . . . 14 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
3026, 27, 28, 29mp3an 1460 . . . . . . . . . . . . 13 -(π / 2) = (-π / 2)
3130breq1i 5155 . . . . . . . . . . . 12 (-(π / 2) < (𝐴 / 2) ↔ (-π / 2) < (𝐴 / 2))
3225, 31bitr4di 289 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (-π < 𝐴 ↔ -(π / 2) < (𝐴 / 2)))
3320, 32sylibd 239 . . . . . . . . . 10 (𝐴 ∈ ℝ → (0 ≤ 𝐴 → -(π / 2) < (𝐴 / 2)))
34 ltdiv1 12130 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 < π ↔ (𝐴 / 2) < (π / 2)))
352, 23, 34mp3an23 1452 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 < π ↔ (𝐴 / 2) < (π / 2)))
3635biimpd 229 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 < π → (𝐴 / 2) < (π / 2)))
3733, 36anim12d 609 . . . . . . . . 9 (𝐴 ∈ ℝ → ((0 ≤ 𝐴𝐴 < π) → (-(π / 2) < (𝐴 / 2) ∧ (𝐴 / 2) < (π / 2))))
38 rehalfcl 12490 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
3938rexrd 11309 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ*)
40 halfpire 26521 . . . . . . . . . . . . 13 (π / 2) ∈ ℝ
4140renegcli 11568 . . . . . . . . . . . 12 -(π / 2) ∈ ℝ
4241rexri 11317 . . . . . . . . . . 11 -(π / 2) ∈ ℝ*
4340rexri 11317 . . . . . . . . . . 11 (π / 2) ∈ ℝ*
44 elioo5 13441 . . . . . . . . . . 11 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ (𝐴 / 2) ∈ ℝ*) → ((𝐴 / 2) ∈ (-(π / 2)(,)(π / 2)) ↔ (-(π / 2) < (𝐴 / 2) ∧ (𝐴 / 2) < (π / 2))))
4542, 43, 44mp3an12 1450 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℝ* → ((𝐴 / 2) ∈ (-(π / 2)(,)(π / 2)) ↔ (-(π / 2) < (𝐴 / 2) ∧ (𝐴 / 2) < (π / 2))))
4639, 45syl 17 . . . . . . . . 9 (𝐴 ∈ ℝ → ((𝐴 / 2) ∈ (-(π / 2)(,)(π / 2)) ↔ (-(π / 2) < (𝐴 / 2) ∧ (𝐴 / 2) < (π / 2))))
4737, 46sylibrd 259 . . . . . . . 8 (𝐴 ∈ ℝ → ((0 ≤ 𝐴𝐴 < π) → (𝐴 / 2) ∈ (-(π / 2)(,)(π / 2))))
48473impib 1115 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < π) → (𝐴 / 2) ∈ (-(π / 2)(,)(π / 2)))
4912, 48sylbi 217 . . . . . 6 (𝐴 ∈ (0[,)π) → (𝐴 / 2) ∈ (-(π / 2)(,)(π / 2)))
5010, 49eqeltrd 2839 . . . . 5 (𝐴 ∈ (0[,)π) → (ℜ‘(𝐴 / 2)) ∈ (-(π / 2)(,)(π / 2)))
51 cosne0 26586 . . . . 5 (((𝐴 / 2) ∈ ℂ ∧ (ℜ‘(𝐴 / 2)) ∈ (-(π / 2)(,)(π / 2))) → (cos‘(𝐴 / 2)) ≠ 0)
528, 50, 51syl2anc 584 . . . 4 (𝐴 ∈ (0[,)π) → (cos‘(𝐴 / 2)) ≠ 0)
53 tanval 16161 . . . 4 (((𝐴 / 2) ∈ ℂ ∧ (cos‘(𝐴 / 2)) ≠ 0) → (tan‘(𝐴 / 2)) = ((sin‘(𝐴 / 2)) / (cos‘(𝐴 / 2))))
548, 52, 53syl2anc 584 . . 3 (𝐴 ∈ (0[,)π) → (tan‘(𝐴 / 2)) = ((sin‘(𝐴 / 2)) / (cos‘(𝐴 / 2))))
55 0xr 11306 . . . . . . 7 0 ∈ ℝ*
56 elico1 13427 . . . . . . 7 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → (𝐴 ∈ (0[,)π) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴𝐴 < π)))
5755, 3, 56mp2an 692 . . . . . 6 (𝐴 ∈ (0[,)π) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴𝐴 < π))
5821, 2remulcli 11275 . . . . . . . . . . 11 (2 · π) ∈ ℝ
5958rexri 11317 . . . . . . . . . 10 (2 · π) ∈ ℝ*
60 1lt2 12435 . . . . . . . . . . . . 13 1 < 2
61 ltmulgt12 12126 . . . . . . . . . . . . . 14 ((π ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < π) → (1 < 2 ↔ π < (2 · π)))
622, 21, 13, 61mp3an 1460 . . . . . . . . . . . . 13 (1 < 2 ↔ π < (2 · π))
6360, 62mpbi 230 . . . . . . . . . . . 12 π < (2 · π)
64 xrlttr 13179 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ* ∧ π ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → ((𝐴 < π ∧ π < (2 · π)) → 𝐴 < (2 · π)))
653, 64mp3an2 1448 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → ((𝐴 < π ∧ π < (2 · π)) → 𝐴 < (2 · π)))
6663, 65mpan2i 697 . . . . . . . . . . 11 ((𝐴 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝐴 < π → 𝐴 < (2 · π)))
67 xrltle 13188 . . . . . . . . . . 11 ((𝐴 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝐴 < (2 · π) → 𝐴 ≤ (2 · π)))
6866, 67syld 47 . . . . . . . . . 10 ((𝐴 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝐴 < π → 𝐴 ≤ (2 · π)))
6959, 68mpan2 691 . . . . . . . . 9 (𝐴 ∈ ℝ* → (𝐴 < π → 𝐴 ≤ (2 · π)))
7069anim2d 612 . . . . . . . 8 (𝐴 ∈ ℝ* → ((0 ≤ 𝐴𝐴 < π) → (0 ≤ 𝐴𝐴 ≤ (2 · π))))
71 elicc4 13451 . . . . . . . . 9 ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ*𝐴 ∈ ℝ*) → (𝐴 ∈ (0[,](2 · π)) ↔ (0 ≤ 𝐴𝐴 ≤ (2 · π))))
7255, 59, 71mp3an12 1450 . . . . . . . 8 (𝐴 ∈ ℝ* → (𝐴 ∈ (0[,](2 · π)) ↔ (0 ≤ 𝐴𝐴 ≤ (2 · π))))
7370, 72sylibrd 259 . . . . . . 7 (𝐴 ∈ ℝ* → ((0 ≤ 𝐴𝐴 < π) → 𝐴 ∈ (0[,](2 · π))))
74733impib 1115 . . . . . 6 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴𝐴 < π) → 𝐴 ∈ (0[,](2 · π)))
7557, 74sylbi 217 . . . . 5 (𝐴 ∈ (0[,)π) → 𝐴 ∈ (0[,](2 · π)))
76 sin2h 37597 . . . . 5 (𝐴 ∈ (0[,](2 · π)) → (sin‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / 2)))
7775, 76syl 17 . . . 4 (𝐴 ∈ (0[,)π) → (sin‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / 2)))
781, 2, 13ltleii 11382 . . . . . . . . . . 11 0 ≤ π
79 le0neg2 11770 . . . . . . . . . . . 12 (π ∈ ℝ → (0 ≤ π ↔ -π ≤ 0))
802, 79ax-mp 5 . . . . . . . . . . 11 (0 ≤ π ↔ -π ≤ 0)
8178, 80mpbi 230 . . . . . . . . . 10 -π ≤ 0
8217rexri 11317 . . . . . . . . . . 11 -π ∈ ℝ*
83 xrletr 13197 . . . . . . . . . . 11 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝐴 ∈ ℝ*) → ((-π ≤ 0 ∧ 0 ≤ 𝐴) → -π ≤ 𝐴))
8482, 55, 83mp3an12 1450 . . . . . . . . . 10 (𝐴 ∈ ℝ* → ((-π ≤ 0 ∧ 0 ≤ 𝐴) → -π ≤ 𝐴))
8581, 84mpani 696 . . . . . . . . 9 (𝐴 ∈ ℝ* → (0 ≤ 𝐴 → -π ≤ 𝐴))
86 xrltle 13188 . . . . . . . . . 10 ((𝐴 ∈ ℝ* ∧ π ∈ ℝ*) → (𝐴 < π → 𝐴 ≤ π))
873, 86mpan2 691 . . . . . . . . 9 (𝐴 ∈ ℝ* → (𝐴 < π → 𝐴 ≤ π))
8885, 87anim12d 609 . . . . . . . 8 (𝐴 ∈ ℝ* → ((0 ≤ 𝐴𝐴 < π) → (-π ≤ 𝐴𝐴 ≤ π)))
89 elicc4 13451 . . . . . . . . 9 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝐴 ∈ ℝ*) → (𝐴 ∈ (-π[,]π) ↔ (-π ≤ 𝐴𝐴 ≤ π)))
9082, 3, 89mp3an12 1450 . . . . . . . 8 (𝐴 ∈ ℝ* → (𝐴 ∈ (-π[,]π) ↔ (-π ≤ 𝐴𝐴 ≤ π)))
9188, 90sylibrd 259 . . . . . . 7 (𝐴 ∈ ℝ* → ((0 ≤ 𝐴𝐴 < π) → 𝐴 ∈ (-π[,]π)))
92913impib 1115 . . . . . 6 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴𝐴 < π) → 𝐴 ∈ (-π[,]π))
9357, 92sylbi 217 . . . . 5 (𝐴 ∈ (0[,)π) → 𝐴 ∈ (-π[,]π))
94 cos2h 37598 . . . . 5 (𝐴 ∈ (-π[,]π) → (cos‘(𝐴 / 2)) = (√‘((1 + (cos‘𝐴)) / 2)))
9593, 94syl 17 . . . 4 (𝐴 ∈ (0[,)π) → (cos‘(𝐴 / 2)) = (√‘((1 + (cos‘𝐴)) / 2)))
9677, 95oveq12d 7449 . . 3 (𝐴 ∈ (0[,)π) → ((sin‘(𝐴 / 2)) / (cos‘(𝐴 / 2))) = ((√‘((1 − (cos‘𝐴)) / 2)) / (√‘((1 + (cos‘𝐴)) / 2))))
9754, 96eqtrd 2775 . 2 (𝐴 ∈ (0[,)π) → (tan‘(𝐴 / 2)) = ((√‘((1 − (cos‘𝐴)) / 2)) / (√‘((1 + (cos‘𝐴)) / 2))))
98 1re 11259 . . . . 5 1 ∈ ℝ
996recoscld 16177 . . . . 5 (𝐴 ∈ (0[,)π) → (cos‘𝐴) ∈ ℝ)
100 resubcl 11571 . . . . 5 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (1 − (cos‘𝐴)) ∈ ℝ)
10198, 99, 100sylancr 587 . . . 4 (𝐴 ∈ (0[,)π) → (1 − (cos‘𝐴)) ∈ ℝ)
102101rehalfcld 12511 . . 3 (𝐴 ∈ (0[,)π) → ((1 − (cos‘𝐴)) / 2) ∈ ℝ)
103 cosbnd 16214 . . . . . 6 (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1))
104103simprd 495 . . . . 5 (𝐴 ∈ ℝ → (cos‘𝐴) ≤ 1)
105 recoscl 16174 . . . . . 6 (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ)
106 subge0 11774 . . . . . . 7 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (0 ≤ (1 − (cos‘𝐴)) ↔ (cos‘𝐴) ≤ 1))
107 halfnneg2 12495 . . . . . . . 8 ((1 − (cos‘𝐴)) ∈ ℝ → (0 ≤ (1 − (cos‘𝐴)) ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
108100, 107syl 17 . . . . . . 7 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (0 ≤ (1 − (cos‘𝐴)) ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
109106, 108bitr3d 281 . . . . . 6 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → ((cos‘𝐴) ≤ 1 ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
11098, 105, 109sylancr 587 . . . . 5 (𝐴 ∈ ℝ → ((cos‘𝐴) ≤ 1 ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
111104, 110mpbid 232 . . . 4 (𝐴 ∈ ℝ → 0 ≤ ((1 − (cos‘𝐴)) / 2))
1126, 111syl 17 . . 3 (𝐴 ∈ (0[,)π) → 0 ≤ ((1 − (cos‘𝐴)) / 2))
113 readdcl 11236 . . . . . 6 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (1 + (cos‘𝐴)) ∈ ℝ)
11498, 99, 113sylancr 587 . . . . 5 (𝐴 ∈ (0[,)π) → (1 + (cos‘𝐴)) ∈ ℝ)
115103simpld 494 . . . . . . . 8 (𝐴 ∈ ℝ → -1 ≤ (cos‘𝐴))
11698renegcli 11568 . . . . . . . . . 10 -1 ∈ ℝ
117 subge0 11774 . . . . . . . . . 10 (((cos‘𝐴) ∈ ℝ ∧ -1 ∈ ℝ) → (0 ≤ ((cos‘𝐴) − -1) ↔ -1 ≤ (cos‘𝐴)))
118105, 116, 117sylancl 586 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 ≤ ((cos‘𝐴) − -1) ↔ -1 ≤ (cos‘𝐴)))
119 recn 11243 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
120119coscld 16164 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℂ)
121 ax-1cn 11211 . . . . . . . . . . 11 1 ∈ ℂ
122 subneg 11556 . . . . . . . . . . . 12 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((cos‘𝐴) − -1) = ((cos‘𝐴) + 1))
123 addcom 11445 . . . . . . . . . . . 12 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((cos‘𝐴) + 1) = (1 + (cos‘𝐴)))
124122, 123eqtrd 2775 . . . . . . . . . . 11 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((cos‘𝐴) − -1) = (1 + (cos‘𝐴)))
125120, 121, 124sylancl 586 . . . . . . . . . 10 (𝐴 ∈ ℝ → ((cos‘𝐴) − -1) = (1 + (cos‘𝐴)))
126125breq2d 5160 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 ≤ ((cos‘𝐴) − -1) ↔ 0 ≤ (1 + (cos‘𝐴))))
127118, 126bitr3d 281 . . . . . . . 8 (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ↔ 0 ≤ (1 + (cos‘𝐴))))
128115, 127mpbid 232 . . . . . . 7 (𝐴 ∈ ℝ → 0 ≤ (1 + (cos‘𝐴)))
1296, 128syl 17 . . . . . 6 (𝐴 ∈ (0[,)π) → 0 ≤ (1 + (cos‘𝐴)))
130 snunioo 13515 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 < π) → ({0} ∪ (0(,)π)) = (0[,)π))
13155, 3, 13, 130mp3an 1460 . . . . . . . . 9 ({0} ∪ (0(,)π)) = (0[,)π)
132131eleq2i 2831 . . . . . . . 8 (𝐴 ∈ ({0} ∪ (0(,)π)) ↔ 𝐴 ∈ (0[,)π))
133 elun 4163 . . . . . . . 8 (𝐴 ∈ ({0} ∪ (0(,)π)) ↔ (𝐴 ∈ {0} ∨ 𝐴 ∈ (0(,)π)))
134132, 133bitr3i 277 . . . . . . 7 (𝐴 ∈ (0[,)π) ↔ (𝐴 ∈ {0} ∨ 𝐴 ∈ (0(,)π)))
135 elsni 4648 . . . . . . . . 9 (𝐴 ∈ {0} → 𝐴 = 0)
136 fveq2 6907 . . . . . . . . . . . . 13 (𝐴 = 0 → (cos‘𝐴) = (cos‘0))
137 cos0 16183 . . . . . . . . . . . . 13 (cos‘0) = 1
138136, 137eqtrdi 2791 . . . . . . . . . . . 12 (𝐴 = 0 → (cos‘𝐴) = 1)
139138oveq2d 7447 . . . . . . . . . . 11 (𝐴 = 0 → (1 + (cos‘𝐴)) = (1 + 1))
140 df-2 12327 . . . . . . . . . . 11 2 = (1 + 1)
141139, 140eqtr4di 2793 . . . . . . . . . 10 (𝐴 = 0 → (1 + (cos‘𝐴)) = 2)
14228a1i 11 . . . . . . . . . 10 (𝐴 = 0 → 2 ≠ 0)
143141, 142eqnetrd 3006 . . . . . . . . 9 (𝐴 = 0 → (1 + (cos‘𝐴)) ≠ 0)
144135, 143syl 17 . . . . . . . 8 (𝐴 ∈ {0} → (1 + (cos‘𝐴)) ≠ 0)
145 sinq12gt0 26564 . . . . . . . . 9 (𝐴 ∈ (0(,)π) → 0 < (sin‘𝐴))
146 ltne 11356 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 0 < (sin‘𝐴)) → (sin‘𝐴) ≠ 0)
1471, 146mpan 690 . . . . . . . . . 10 (0 < (sin‘𝐴) → (sin‘𝐴) ≠ 0)
148 elioore 13414 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)π) → 𝐴 ∈ ℝ)
149148recnd 11287 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)π) → 𝐴 ∈ ℂ)
150 oveq1 7438 . . . . . . . . . . . . . 14 (-1 = (cos‘𝐴) → (-1↑2) = ((cos‘𝐴)↑2))
151150a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (-1 = (cos‘𝐴) → (-1↑2) = ((cos‘𝐴)↑2)))
152 df-neg 11493 . . . . . . . . . . . . . . 15 -1 = (0 − 1)
153152eqeq1i 2740 . . . . . . . . . . . . . 14 (-1 = (cos‘𝐴) ↔ (0 − 1) = (cos‘𝐴))
154 coscl 16160 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
155 0cn 11251 . . . . . . . . . . . . . . . 16 0 ∈ ℂ
156 subadd 11509 . . . . . . . . . . . . . . . 16 ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → ((0 − 1) = (cos‘𝐴) ↔ (1 + (cos‘𝐴)) = 0))
157155, 121, 156mp3an12 1450 . . . . . . . . . . . . . . 15 ((cos‘𝐴) ∈ ℂ → ((0 − 1) = (cos‘𝐴) ↔ (1 + (cos‘𝐴)) = 0))
158154, 157syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((0 − 1) = (cos‘𝐴) ↔ (1 + (cos‘𝐴)) = 0))
159153, 158bitrid 283 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (-1 = (cos‘𝐴) ↔ (1 + (cos‘𝐴)) = 0))
160 sincl 16159 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
161160sqcld 14181 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) ∈ ℂ)
162 0cnd 11252 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 0 ∈ ℂ)
163154sqcld 14181 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) ∈ ℂ)
164161, 162, 163addcan2d 11463 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (0 + ((cos‘𝐴)↑2)) ↔ ((sin‘𝐴)↑2) = 0))
165 sincossq 16209 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
166 neg1sqe1 14232 . . . . . . . . . . . . . . . 16 (-1↑2) = 1
167165, 166eqtr4di 2793 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (-1↑2))
168163addlidd 11460 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (0 + ((cos‘𝐴)↑2)) = ((cos‘𝐴)↑2))
169167, 168eqeq12d 2751 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (0 + ((cos‘𝐴)↑2)) ↔ (-1↑2) = ((cos‘𝐴)↑2)))
170 sqeq0 14157 . . . . . . . . . . . . . . 15 ((sin‘𝐴) ∈ ℂ → (((sin‘𝐴)↑2) = 0 ↔ (sin‘𝐴) = 0))
171160, 170syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) = 0 ↔ (sin‘𝐴) = 0))
172164, 169, 1713bitr3d 309 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((-1↑2) = ((cos‘𝐴)↑2) ↔ (sin‘𝐴) = 0))
173151, 159, 1723imtr3d 293 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((1 + (cos‘𝐴)) = 0 → (sin‘𝐴) = 0))
174149, 173syl 17 . . . . . . . . . . 11 (𝐴 ∈ (0(,)π) → ((1 + (cos‘𝐴)) = 0 → (sin‘𝐴) = 0))
175174necon3d 2959 . . . . . . . . . 10 (𝐴 ∈ (0(,)π) → ((sin‘𝐴) ≠ 0 → (1 + (cos‘𝐴)) ≠ 0))
176147, 175syl5 34 . . . . . . . . 9 (𝐴 ∈ (0(,)π) → (0 < (sin‘𝐴) → (1 + (cos‘𝐴)) ≠ 0))
177145, 176mpd 15 . . . . . . . 8 (𝐴 ∈ (0(,)π) → (1 + (cos‘𝐴)) ≠ 0)
178144, 177jaoi 857 . . . . . . 7 ((𝐴 ∈ {0} ∨ 𝐴 ∈ (0(,)π)) → (1 + (cos‘𝐴)) ≠ 0)
179134, 178sylbi 217 . . . . . 6 (𝐴 ∈ (0[,)π) → (1 + (cos‘𝐴)) ≠ 0)
180114, 129, 179ne0gt0d 11396 . . . . 5 (𝐴 ∈ (0[,)π) → 0 < (1 + (cos‘𝐴)))
181114, 180elrpd 13072 . . . 4 (𝐴 ∈ (0[,)π) → (1 + (cos‘𝐴)) ∈ ℝ+)
182181rphalfcld 13087 . . 3 (𝐴 ∈ (0[,)π) → ((1 + (cos‘𝐴)) / 2) ∈ ℝ+)
183102, 112, 182sqrtdivd 15459 . 2 (𝐴 ∈ (0[,)π) → (√‘(((1 − (cos‘𝐴)) / 2) / ((1 + (cos‘𝐴)) / 2))) = ((√‘((1 − (cos‘𝐴)) / 2)) / (√‘((1 + (cos‘𝐴)) / 2))))
1847coscld 16164 . . . . 5 (𝐴 ∈ (0[,)π) → (cos‘𝐴) ∈ ℂ)
185 subcl 11505 . . . . 5 ((1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → (1 − (cos‘𝐴)) ∈ ℂ)
186121, 184, 185sylancr 587 . . . 4 (𝐴 ∈ (0[,)π) → (1 − (cos‘𝐴)) ∈ ℂ)
187 addcl 11235 . . . . 5 ((1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → (1 + (cos‘𝐴)) ∈ ℂ)
188121, 184, 187sylancr 587 . . . 4 (𝐴 ∈ (0[,)π) → (1 + (cos‘𝐴)) ∈ ℂ)
189 2cnne0 12474 . . . . 5 (2 ∈ ℂ ∧ 2 ≠ 0)
190 divcan7 11974 . . . . 5 (((1 − (cos‘𝐴)) ∈ ℂ ∧ ((1 + (cos‘𝐴)) ∈ ℂ ∧ (1 + (cos‘𝐴)) ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((1 − (cos‘𝐴)) / 2) / ((1 + (cos‘𝐴)) / 2)) = ((1 − (cos‘𝐴)) / (1 + (cos‘𝐴))))
191189, 190mp3an3 1449 . . . 4 (((1 − (cos‘𝐴)) ∈ ℂ ∧ ((1 + (cos‘𝐴)) ∈ ℂ ∧ (1 + (cos‘𝐴)) ≠ 0)) → (((1 − (cos‘𝐴)) / 2) / ((1 + (cos‘𝐴)) / 2)) = ((1 − (cos‘𝐴)) / (1 + (cos‘𝐴))))
192186, 188, 179, 191syl12anc 837 . . 3 (𝐴 ∈ (0[,)π) → (((1 − (cos‘𝐴)) / 2) / ((1 + (cos‘𝐴)) / 2)) = ((1 − (cos‘𝐴)) / (1 + (cos‘𝐴))))
193192fveq2d 6911 . 2 (𝐴 ∈ (0[,)π) → (√‘(((1 − (cos‘𝐴)) / 2) / ((1 + (cos‘𝐴)) / 2))) = (√‘((1 − (cos‘𝐴)) / (1 + (cos‘𝐴)))))
19497, 183, 1933eqtr2d 2781 1 (𝐴 ∈ (0[,)π) → (tan‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / (1 + (cos‘𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wne 2938  cun 3961  wss 3963  {csn 4631   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  *cxr 11292   < clt 11293  cle 11294  cmin 11490  -cneg 11491   / cdiv 11918  2c2 12319  (,)cioo 13384  [,)cico 13386  [,]cicc 13387  cexp 14099  cre 15133  csqrt 15269  sincsin 16096  cosccos 16097  tanctan 16098  πcpi 16099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-tan 16104  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator