Proof of Theorem tan2h
Step | Hyp | Ref
| Expression |
1 | | 0re 10986 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
2 | | pire 25624 |
. . . . . . . . 9
⊢ π
∈ ℝ |
3 | 2 | rexri 11042 |
. . . . . . . 8
⊢ π
∈ ℝ* |
4 | | icossre 13169 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ π ∈ ℝ*) → (0[,)π) ⊆
ℝ) |
5 | 1, 3, 4 | mp2an 689 |
. . . . . . 7
⊢
(0[,)π) ⊆ ℝ |
6 | 5 | sseli 3918 |
. . . . . 6
⊢ (𝐴 ∈ (0[,)π) → 𝐴 ∈
ℝ) |
7 | 6 | recnd 11012 |
. . . . 5
⊢ (𝐴 ∈ (0[,)π) → 𝐴 ∈
ℂ) |
8 | 7 | halfcld 12227 |
. . . 4
⊢ (𝐴 ∈ (0[,)π) → (𝐴 / 2) ∈
ℂ) |
9 | 6 | rehalfcld 12229 |
. . . . . . 7
⊢ (𝐴 ∈ (0[,)π) → (𝐴 / 2) ∈
ℝ) |
10 | 9 | rered 14944 |
. . . . . 6
⊢ (𝐴 ∈ (0[,)π) →
(ℜ‘(𝐴 / 2)) =
(𝐴 / 2)) |
11 | | elico2 13152 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ π ∈ ℝ*) → (𝐴 ∈ (0[,)π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < π))) |
12 | 1, 3, 11 | mp2an 689 |
. . . . . . 7
⊢ (𝐴 ∈ (0[,)π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤
𝐴 ∧ 𝐴 < π)) |
13 | | pipos 25626 |
. . . . . . . . . . . . 13
⊢ 0 <
π |
14 | | lt0neg2 11491 |
. . . . . . . . . . . . . 14
⊢ (π
∈ ℝ → (0 < π ↔ -π < 0)) |
15 | 2, 14 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (0 <
π ↔ -π < 0) |
16 | 13, 15 | mpbi 229 |
. . . . . . . . . . . 12
⊢ -π
< 0 |
17 | 2 | renegcli 11291 |
. . . . . . . . . . . . 13
⊢ -π
∈ ℝ |
18 | | ltletr 11076 |
. . . . . . . . . . . . 13
⊢ ((-π
∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((-π < 0 ∧
0 ≤ 𝐴) → -π <
𝐴)) |
19 | 17, 1, 18 | mp3an12 1450 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℝ → ((-π
< 0 ∧ 0 ≤ 𝐴)
→ -π < 𝐴)) |
20 | 16, 19 | mpani 693 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ → (0 ≤
𝐴 → -π < 𝐴)) |
21 | | 2re 12056 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℝ |
22 | | 2pos 12085 |
. . . . . . . . . . . . . 14
⊢ 0 <
2 |
23 | 21, 22 | pm3.2i 471 |
. . . . . . . . . . . . 13
⊢ (2 ∈
ℝ ∧ 0 < 2) |
24 | | ltdiv1 11848 |
. . . . . . . . . . . . 13
⊢ ((-π
∈ ℝ ∧ 𝐴
∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (-π <
𝐴 ↔ (-π / 2) <
(𝐴 / 2))) |
25 | 17, 23, 24 | mp3an13 1451 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℝ → (-π
< 𝐴 ↔ (-π / 2)
< (𝐴 /
2))) |
26 | | picn 25625 |
. . . . . . . . . . . . . 14
⊢ π
∈ ℂ |
27 | | 2cn 12057 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℂ |
28 | | 2ne0 12086 |
. . . . . . . . . . . . . 14
⊢ 2 ≠
0 |
29 | | divneg 11676 |
. . . . . . . . . . . . . 14
⊢ ((π
∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) =
(-π / 2)) |
30 | 26, 27, 28, 29 | mp3an 1460 |
. . . . . . . . . . . . 13
⊢ -(π /
2) = (-π / 2) |
31 | 30 | breq1i 5082 |
. . . . . . . . . . . 12
⊢ (-(π /
2) < (𝐴 / 2) ↔
(-π / 2) < (𝐴 /
2)) |
32 | 25, 31 | bitr4di 289 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ → (-π
< 𝐴 ↔ -(π / 2)
< (𝐴 /
2))) |
33 | 20, 32 | sylibd 238 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ → (0 ≤
𝐴 → -(π / 2) <
(𝐴 / 2))) |
34 | | ltdiv1 11848 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ π
∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 < π ↔ (𝐴 / 2) < (π /
2))) |
35 | 2, 23, 34 | mp3an23 1452 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ → (𝐴 < π ↔ (𝐴 / 2) < (π /
2))) |
36 | 35 | biimpd 228 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ → (𝐴 < π → (𝐴 / 2) < (π /
2))) |
37 | 33, 36 | anim12d 609 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ → ((0 ≤
𝐴 ∧ 𝐴 < π) → (-(π / 2) < (𝐴 / 2) ∧ (𝐴 / 2) < (π / 2)))) |
38 | | rehalfcl 12208 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ → (𝐴 / 2) ∈
ℝ) |
39 | 38 | rexrd 11034 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ → (𝐴 / 2) ∈
ℝ*) |
40 | | halfpire 25630 |
. . . . . . . . . . . . 13
⊢ (π /
2) ∈ ℝ |
41 | 40 | renegcli 11291 |
. . . . . . . . . . . 12
⊢ -(π /
2) ∈ ℝ |
42 | 41 | rexri 11042 |
. . . . . . . . . . 11
⊢ -(π /
2) ∈ ℝ* |
43 | 40 | rexri 11042 |
. . . . . . . . . . 11
⊢ (π /
2) ∈ ℝ* |
44 | | elioo5 13145 |
. . . . . . . . . . 11
⊢ ((-(π
/ 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*
∧ (𝐴 / 2) ∈
ℝ*) → ((𝐴 / 2) ∈ (-(π / 2)(,)(π / 2))
↔ (-(π / 2) < (𝐴
/ 2) ∧ (𝐴 / 2) <
(π / 2)))) |
45 | 42, 43, 44 | mp3an12 1450 |
. . . . . . . . . 10
⊢ ((𝐴 / 2) ∈ ℝ*
→ ((𝐴 / 2) ∈
(-(π / 2)(,)(π / 2)) ↔ (-(π / 2) < (𝐴 / 2) ∧ (𝐴 / 2) < (π / 2)))) |
46 | 39, 45 | syl 17 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ → ((𝐴 / 2) ∈ (-(π /
2)(,)(π / 2)) ↔ (-(π / 2) < (𝐴 / 2) ∧ (𝐴 / 2) < (π / 2)))) |
47 | 37, 46 | sylibrd 258 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → ((0 ≤
𝐴 ∧ 𝐴 < π) → (𝐴 / 2) ∈ (-(π / 2)(,)(π /
2)))) |
48 | 47 | 3impib 1115 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤
𝐴 ∧ 𝐴 < π) → (𝐴 / 2) ∈ (-(π / 2)(,)(π /
2))) |
49 | 12, 48 | sylbi 216 |
. . . . . 6
⊢ (𝐴 ∈ (0[,)π) → (𝐴 / 2) ∈ (-(π /
2)(,)(π / 2))) |
50 | 10, 49 | eqeltrd 2840 |
. . . . 5
⊢ (𝐴 ∈ (0[,)π) →
(ℜ‘(𝐴 / 2))
∈ (-(π / 2)(,)(π / 2))) |
51 | | cosne0 25694 |
. . . . 5
⊢ (((𝐴 / 2) ∈ ℂ ∧
(ℜ‘(𝐴 / 2))
∈ (-(π / 2)(,)(π / 2))) → (cos‘(𝐴 / 2)) ≠ 0) |
52 | 8, 50, 51 | syl2anc 584 |
. . . 4
⊢ (𝐴 ∈ (0[,)π) →
(cos‘(𝐴 / 2)) ≠
0) |
53 | | tanval 15846 |
. . . 4
⊢ (((𝐴 / 2) ∈ ℂ ∧
(cos‘(𝐴 / 2)) ≠ 0)
→ (tan‘(𝐴 / 2))
= ((sin‘(𝐴 / 2)) /
(cos‘(𝐴 /
2)))) |
54 | 8, 52, 53 | syl2anc 584 |
. . 3
⊢ (𝐴 ∈ (0[,)π) →
(tan‘(𝐴 / 2)) =
((sin‘(𝐴 / 2)) /
(cos‘(𝐴 /
2)))) |
55 | | 0xr 11031 |
. . . . . . 7
⊢ 0 ∈
ℝ* |
56 | | elico1 13131 |
. . . . . . 7
⊢ ((0
∈ ℝ* ∧ π ∈ ℝ*) → (𝐴 ∈ (0[,)π) ↔ (𝐴 ∈ ℝ*
∧ 0 ≤ 𝐴 ∧ 𝐴 < π))) |
57 | 55, 3, 56 | mp2an 689 |
. . . . . 6
⊢ (𝐴 ∈ (0[,)π) ↔ (𝐴 ∈ ℝ*
∧ 0 ≤ 𝐴 ∧ 𝐴 < π)) |
58 | 21, 2 | remulcli 11000 |
. . . . . . . . . . 11
⊢ (2
· π) ∈ ℝ |
59 | 58 | rexri 11042 |
. . . . . . . . . 10
⊢ (2
· π) ∈ ℝ* |
60 | | 1lt2 12153 |
. . . . . . . . . . . . 13
⊢ 1 <
2 |
61 | | ltmulgt12 11845 |
. . . . . . . . . . . . . 14
⊢ ((π
∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < π) → (1 < 2
↔ π < (2 · π))) |
62 | 2, 21, 13, 61 | mp3an 1460 |
. . . . . . . . . . . . 13
⊢ (1 < 2
↔ π < (2 · π)) |
63 | 60, 62 | mpbi 229 |
. . . . . . . . . . . 12
⊢ π <
(2 · π) |
64 | | xrlttr 12883 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ*
∧ π ∈ ℝ* ∧ (2 · π) ∈
ℝ*) → ((𝐴 < π ∧ π < (2 ·
π)) → 𝐴 < (2
· π))) |
65 | 3, 64 | mp3an2 1448 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ*
∧ (2 · π) ∈ ℝ*) → ((𝐴 < π ∧ π < (2 ·
π)) → 𝐴 < (2
· π))) |
66 | 63, 65 | mpan2i 694 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ (2 · π) ∈ ℝ*) → (𝐴 < π → 𝐴 < (2 · π))) |
67 | | xrltle 12892 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ (2 · π) ∈ ℝ*) → (𝐴 < (2 · π) → 𝐴 ≤ (2 ·
π))) |
68 | 66, 67 | syld 47 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ*
∧ (2 · π) ∈ ℝ*) → (𝐴 < π → 𝐴 ≤ (2 · π))) |
69 | 59, 68 | mpan2 688 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ*
→ (𝐴 < π →
𝐴 ≤ (2 ·
π))) |
70 | 69 | anim2d 612 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ*
→ ((0 ≤ 𝐴 ∧
𝐴 < π) → (0 ≤
𝐴 ∧ 𝐴 ≤ (2 · π)))) |
71 | | elicc4 13155 |
. . . . . . . . 9
⊢ ((0
∈ ℝ* ∧ (2 · π) ∈ ℝ*
∧ 𝐴 ∈
ℝ*) → (𝐴 ∈ (0[,](2 · π)) ↔ (0
≤ 𝐴 ∧ 𝐴 ≤ (2 ·
π)))) |
72 | 55, 59, 71 | mp3an12 1450 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ*
→ (𝐴 ∈ (0[,](2
· π)) ↔ (0 ≤ 𝐴 ∧ 𝐴 ≤ (2 · π)))) |
73 | 70, 72 | sylibrd 258 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ*
→ ((0 ≤ 𝐴 ∧
𝐴 < π) → 𝐴 ∈ (0[,](2 ·
π)))) |
74 | 73 | 3impib 1115 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 0 ≤ 𝐴 ∧ 𝐴 < π) → 𝐴 ∈ (0[,](2 ·
π))) |
75 | 57, 74 | sylbi 216 |
. . . . 5
⊢ (𝐴 ∈ (0[,)π) → 𝐴 ∈ (0[,](2 ·
π))) |
76 | | sin2h 35776 |
. . . . 5
⊢ (𝐴 ∈ (0[,](2 · π))
→ (sin‘(𝐴 / 2))
= (√‘((1 − (cos‘𝐴)) / 2))) |
77 | 75, 76 | syl 17 |
. . . 4
⊢ (𝐴 ∈ (0[,)π) →
(sin‘(𝐴 / 2)) =
(√‘((1 − (cos‘𝐴)) / 2))) |
78 | 1, 2, 13 | ltleii 11107 |
. . . . . . . . . . 11
⊢ 0 ≤
π |
79 | | le0neg2 11493 |
. . . . . . . . . . . 12
⊢ (π
∈ ℝ → (0 ≤ π ↔ -π ≤ 0)) |
80 | 2, 79 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (0 ≤
π ↔ -π ≤ 0) |
81 | 78, 80 | mpbi 229 |
. . . . . . . . . 10
⊢ -π
≤ 0 |
82 | 17 | rexri 11042 |
. . . . . . . . . . 11
⊢ -π
∈ ℝ* |
83 | | xrletr 12901 |
. . . . . . . . . . 11
⊢ ((-π
∈ ℝ* ∧ 0 ∈ ℝ* ∧ 𝐴 ∈ ℝ*)
→ ((-π ≤ 0 ∧ 0 ≤ 𝐴) → -π ≤ 𝐴)) |
84 | 82, 55, 83 | mp3an12 1450 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ*
→ ((-π ≤ 0 ∧ 0 ≤ 𝐴) → -π ≤ 𝐴)) |
85 | 81, 84 | mpani 693 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ*
→ (0 ≤ 𝐴 →
-π ≤ 𝐴)) |
86 | | xrltle 12892 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ*
∧ π ∈ ℝ*) → (𝐴 < π → 𝐴 ≤ π)) |
87 | 3, 86 | mpan2 688 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ*
→ (𝐴 < π →
𝐴 ≤
π)) |
88 | 85, 87 | anim12d 609 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ*
→ ((0 ≤ 𝐴 ∧
𝐴 < π) → (-π
≤ 𝐴 ∧ 𝐴 ≤ π))) |
89 | | elicc4 13155 |
. . . . . . . . 9
⊢ ((-π
∈ ℝ* ∧ π ∈ ℝ* ∧ 𝐴 ∈ ℝ*)
→ (𝐴 ∈
(-π[,]π) ↔ (-π ≤ 𝐴 ∧ 𝐴 ≤ π))) |
90 | 82, 3, 89 | mp3an12 1450 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ*
→ (𝐴 ∈
(-π[,]π) ↔ (-π ≤ 𝐴 ∧ 𝐴 ≤ π))) |
91 | 88, 90 | sylibrd 258 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ*
→ ((0 ≤ 𝐴 ∧
𝐴 < π) → 𝐴 ∈
(-π[,]π))) |
92 | 91 | 3impib 1115 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 0 ≤ 𝐴 ∧ 𝐴 < π) → 𝐴 ∈
(-π[,]π)) |
93 | 57, 92 | sylbi 216 |
. . . . 5
⊢ (𝐴 ∈ (0[,)π) → 𝐴 ∈
(-π[,]π)) |
94 | | cos2h 35777 |
. . . . 5
⊢ (𝐴 ∈ (-π[,]π) →
(cos‘(𝐴 / 2)) =
(√‘((1 + (cos‘𝐴)) / 2))) |
95 | 93, 94 | syl 17 |
. . . 4
⊢ (𝐴 ∈ (0[,)π) →
(cos‘(𝐴 / 2)) =
(√‘((1 + (cos‘𝐴)) / 2))) |
96 | 77, 95 | oveq12d 7302 |
. . 3
⊢ (𝐴 ∈ (0[,)π) →
((sin‘(𝐴 / 2)) /
(cos‘(𝐴 / 2))) =
((√‘((1 − (cos‘𝐴)) / 2)) / (√‘((1 +
(cos‘𝐴)) /
2)))) |
97 | 54, 96 | eqtrd 2779 |
. 2
⊢ (𝐴 ∈ (0[,)π) →
(tan‘(𝐴 / 2)) =
((√‘((1 − (cos‘𝐴)) / 2)) / (√‘((1 +
(cos‘𝐴)) /
2)))) |
98 | | 1re 10984 |
. . . . 5
⊢ 1 ∈
ℝ |
99 | 6 | recoscld 15862 |
. . . . 5
⊢ (𝐴 ∈ (0[,)π) →
(cos‘𝐴) ∈
ℝ) |
100 | | resubcl 11294 |
. . . . 5
⊢ ((1
∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (1 −
(cos‘𝐴)) ∈
ℝ) |
101 | 98, 99, 100 | sylancr 587 |
. . . 4
⊢ (𝐴 ∈ (0[,)π) → (1
− (cos‘𝐴))
∈ ℝ) |
102 | 101 | rehalfcld 12229 |
. . 3
⊢ (𝐴 ∈ (0[,)π) → ((1
− (cos‘𝐴)) / 2)
∈ ℝ) |
103 | | cosbnd 15899 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → (-1 ≤
(cos‘𝐴) ∧
(cos‘𝐴) ≤
1)) |
104 | 103 | simprd 496 |
. . . . 5
⊢ (𝐴 ∈ ℝ →
(cos‘𝐴) ≤
1) |
105 | | recoscl 15859 |
. . . . . 6
⊢ (𝐴 ∈ ℝ →
(cos‘𝐴) ∈
ℝ) |
106 | | subge0 11497 |
. . . . . . 7
⊢ ((1
∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (0 ≤ (1 −
(cos‘𝐴)) ↔
(cos‘𝐴) ≤
1)) |
107 | | halfnneg2 12213 |
. . . . . . . 8
⊢ ((1
− (cos‘𝐴))
∈ ℝ → (0 ≤ (1 − (cos‘𝐴)) ↔ 0 ≤ ((1 −
(cos‘𝐴)) /
2))) |
108 | 100, 107 | syl 17 |
. . . . . . 7
⊢ ((1
∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (0 ≤ (1 −
(cos‘𝐴)) ↔ 0
≤ ((1 − (cos‘𝐴)) / 2))) |
109 | 106, 108 | bitr3d 280 |
. . . . . 6
⊢ ((1
∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → ((cos‘𝐴) ≤ 1 ↔ 0 ≤ ((1
− (cos‘𝐴)) /
2))) |
110 | 98, 105, 109 | sylancr 587 |
. . . . 5
⊢ (𝐴 ∈ ℝ →
((cos‘𝐴) ≤ 1
↔ 0 ≤ ((1 − (cos‘𝐴)) / 2))) |
111 | 104, 110 | mpbid 231 |
. . . 4
⊢ (𝐴 ∈ ℝ → 0 ≤
((1 − (cos‘𝐴))
/ 2)) |
112 | 6, 111 | syl 17 |
. . 3
⊢ (𝐴 ∈ (0[,)π) → 0 ≤
((1 − (cos‘𝐴))
/ 2)) |
113 | | readdcl 10963 |
. . . . . 6
⊢ ((1
∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (1 +
(cos‘𝐴)) ∈
ℝ) |
114 | 98, 99, 113 | sylancr 587 |
. . . . 5
⊢ (𝐴 ∈ (0[,)π) → (1 +
(cos‘𝐴)) ∈
ℝ) |
115 | 103 | simpld 495 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → -1 ≤
(cos‘𝐴)) |
116 | 98 | renegcli 11291 |
. . . . . . . . . 10
⊢ -1 ∈
ℝ |
117 | | subge0 11497 |
. . . . . . . . . 10
⊢
(((cos‘𝐴)
∈ ℝ ∧ -1 ∈ ℝ) → (0 ≤ ((cos‘𝐴) − -1) ↔ -1 ≤
(cos‘𝐴))) |
118 | 105, 116,
117 | sylancl 586 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ → (0 ≤
((cos‘𝐴) − -1)
↔ -1 ≤ (cos‘𝐴))) |
119 | | recn 10970 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℂ) |
120 | 119 | coscld 15849 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ →
(cos‘𝐴) ∈
ℂ) |
121 | | ax-1cn 10938 |
. . . . . . . . . . 11
⊢ 1 ∈
ℂ |
122 | | subneg 11279 |
. . . . . . . . . . . 12
⊢
(((cos‘𝐴)
∈ ℂ ∧ 1 ∈ ℂ) → ((cos‘𝐴) − -1) = ((cos‘𝐴) + 1)) |
123 | | addcom 11170 |
. . . . . . . . . . . 12
⊢
(((cos‘𝐴)
∈ ℂ ∧ 1 ∈ ℂ) → ((cos‘𝐴) + 1) = (1 + (cos‘𝐴))) |
124 | 122, 123 | eqtrd 2779 |
. . . . . . . . . . 11
⊢
(((cos‘𝐴)
∈ ℂ ∧ 1 ∈ ℂ) → ((cos‘𝐴) − -1) = (1 + (cos‘𝐴))) |
125 | 120, 121,
124 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ →
((cos‘𝐴) − -1)
= (1 + (cos‘𝐴))) |
126 | 125 | breq2d 5087 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ → (0 ≤
((cos‘𝐴) − -1)
↔ 0 ≤ (1 + (cos‘𝐴)))) |
127 | 118, 126 | bitr3d 280 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → (-1 ≤
(cos‘𝐴) ↔ 0 ≤
(1 + (cos‘𝐴)))) |
128 | 115, 127 | mpbid 231 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ → 0 ≤ (1
+ (cos‘𝐴))) |
129 | 6, 128 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ (0[,)π) → 0 ≤
(1 + (cos‘𝐴))) |
130 | | snunioo 13219 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ* ∧ π ∈ ℝ* ∧ 0 <
π) → ({0} ∪ (0(,)π)) = (0[,)π)) |
131 | 55, 3, 13, 130 | mp3an 1460 |
. . . . . . . . 9
⊢ ({0}
∪ (0(,)π)) = (0[,)π) |
132 | 131 | eleq2i 2831 |
. . . . . . . 8
⊢ (𝐴 ∈ ({0} ∪ (0(,)π))
↔ 𝐴 ∈
(0[,)π)) |
133 | | elun 4084 |
. . . . . . . 8
⊢ (𝐴 ∈ ({0} ∪ (0(,)π))
↔ (𝐴 ∈ {0} ∨
𝐴 ∈
(0(,)π))) |
134 | 132, 133 | bitr3i 276 |
. . . . . . 7
⊢ (𝐴 ∈ (0[,)π) ↔ (𝐴 ∈ {0} ∨ 𝐴 ∈
(0(,)π))) |
135 | | elsni 4579 |
. . . . . . . . 9
⊢ (𝐴 ∈ {0} → 𝐴 = 0) |
136 | | fveq2 6783 |
. . . . . . . . . . . . 13
⊢ (𝐴 = 0 → (cos‘𝐴) =
(cos‘0)) |
137 | | cos0 15868 |
. . . . . . . . . . . . 13
⊢
(cos‘0) = 1 |
138 | 136, 137 | eqtrdi 2795 |
. . . . . . . . . . . 12
⊢ (𝐴 = 0 → (cos‘𝐴) = 1) |
139 | 138 | oveq2d 7300 |
. . . . . . . . . . 11
⊢ (𝐴 = 0 → (1 +
(cos‘𝐴)) = (1 +
1)) |
140 | | df-2 12045 |
. . . . . . . . . . 11
⊢ 2 = (1 +
1) |
141 | 139, 140 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ (𝐴 = 0 → (1 +
(cos‘𝐴)) =
2) |
142 | 28 | a1i 11 |
. . . . . . . . . 10
⊢ (𝐴 = 0 → 2 ≠
0) |
143 | 141, 142 | eqnetrd 3012 |
. . . . . . . . 9
⊢ (𝐴 = 0 → (1 +
(cos‘𝐴)) ≠
0) |
144 | 135, 143 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈ {0} → (1 +
(cos‘𝐴)) ≠
0) |
145 | | sinq12gt0 25673 |
. . . . . . . . 9
⊢ (𝐴 ∈ (0(,)π) → 0 <
(sin‘𝐴)) |
146 | | ltne 11081 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ ∧ 0 < (sin‘𝐴)) → (sin‘𝐴) ≠ 0) |
147 | 1, 146 | mpan 687 |
. . . . . . . . . 10
⊢ (0 <
(sin‘𝐴) →
(sin‘𝐴) ≠
0) |
148 | | elioore 13118 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ (0(,)π) → 𝐴 ∈
ℝ) |
149 | 148 | recnd 11012 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ (0(,)π) → 𝐴 ∈
ℂ) |
150 | | oveq1 7291 |
. . . . . . . . . . . . . 14
⊢ (-1 =
(cos‘𝐴) →
(-1↑2) = ((cos‘𝐴)↑2)) |
151 | 150 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℂ → (-1 =
(cos‘𝐴) →
(-1↑2) = ((cos‘𝐴)↑2))) |
152 | | df-neg 11217 |
. . . . . . . . . . . . . . 15
⊢ -1 = (0
− 1) |
153 | 152 | eqeq1i 2744 |
. . . . . . . . . . . . . 14
⊢ (-1 =
(cos‘𝐴) ↔ (0
− 1) = (cos‘𝐴)) |
154 | | coscl 15845 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℂ →
(cos‘𝐴) ∈
ℂ) |
155 | | 0cn 10976 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℂ |
156 | | subadd 11233 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ ℂ ∧ 1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → ((0 − 1) =
(cos‘𝐴) ↔ (1 +
(cos‘𝐴)) =
0)) |
157 | 155, 121,
156 | mp3an12 1450 |
. . . . . . . . . . . . . . 15
⊢
((cos‘𝐴)
∈ ℂ → ((0 − 1) = (cos‘𝐴) ↔ (1 + (cos‘𝐴)) = 0)) |
158 | 154, 157 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ → ((0
− 1) = (cos‘𝐴)
↔ (1 + (cos‘𝐴))
= 0)) |
159 | 153, 158 | syl5bb 283 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℂ → (-1 =
(cos‘𝐴) ↔ (1 +
(cos‘𝐴)) =
0)) |
160 | | sincl 15844 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℂ →
(sin‘𝐴) ∈
ℂ) |
161 | 160 | sqcld 13871 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℂ →
((sin‘𝐴)↑2)
∈ ℂ) |
162 | | 0cnd 10977 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℂ → 0 ∈
ℂ) |
163 | 154 | sqcld 13871 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℂ →
((cos‘𝐴)↑2)
∈ ℂ) |
164 | 161, 162,
163 | addcan2d 11188 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ →
((((sin‘𝐴)↑2) +
((cos‘𝐴)↑2)) =
(0 + ((cos‘𝐴)↑2)) ↔ ((sin‘𝐴)↑2) = 0)) |
165 | | sincossq 15894 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℂ →
(((sin‘𝐴)↑2) +
((cos‘𝐴)↑2)) =
1) |
166 | | neg1sqe1 13922 |
. . . . . . . . . . . . . . . 16
⊢
(-1↑2) = 1 |
167 | 165, 166 | eqtr4di 2797 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℂ →
(((sin‘𝐴)↑2) +
((cos‘𝐴)↑2)) =
(-1↑2)) |
168 | 163 | addid2d 11185 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℂ → (0 +
((cos‘𝐴)↑2)) =
((cos‘𝐴)↑2)) |
169 | 167, 168 | eqeq12d 2755 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ →
((((sin‘𝐴)↑2) +
((cos‘𝐴)↑2)) =
(0 + ((cos‘𝐴)↑2)) ↔ (-1↑2) =
((cos‘𝐴)↑2))) |
170 | | sqeq0 13849 |
. . . . . . . . . . . . . . 15
⊢
((sin‘𝐴)
∈ ℂ → (((sin‘𝐴)↑2) = 0 ↔ (sin‘𝐴) = 0)) |
171 | 160, 170 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ →
(((sin‘𝐴)↑2) = 0
↔ (sin‘𝐴) =
0)) |
172 | 164, 169,
171 | 3bitr3d 309 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℂ →
((-1↑2) = ((cos‘𝐴)↑2) ↔ (sin‘𝐴) = 0)) |
173 | 151, 159,
172 | 3imtr3d 293 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ → ((1 +
(cos‘𝐴)) = 0 →
(sin‘𝐴) =
0)) |
174 | 149, 173 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (0(,)π) → ((1 +
(cos‘𝐴)) = 0 →
(sin‘𝐴) =
0)) |
175 | 174 | necon3d 2965 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (0(,)π) →
((sin‘𝐴) ≠ 0
→ (1 + (cos‘𝐴))
≠ 0)) |
176 | 147, 175 | syl5 34 |
. . . . . . . . 9
⊢ (𝐴 ∈ (0(,)π) → (0
< (sin‘𝐴) →
(1 + (cos‘𝐴)) ≠
0)) |
177 | 145, 176 | mpd 15 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,)π) → (1 +
(cos‘𝐴)) ≠
0) |
178 | 144, 177 | jaoi 854 |
. . . . . . 7
⊢ ((𝐴 ∈ {0} ∨ 𝐴 ∈ (0(,)π)) → (1 +
(cos‘𝐴)) ≠
0) |
179 | 134, 178 | sylbi 216 |
. . . . . 6
⊢ (𝐴 ∈ (0[,)π) → (1 +
(cos‘𝐴)) ≠
0) |
180 | 114, 129,
179 | ne0gt0d 11121 |
. . . . 5
⊢ (𝐴 ∈ (0[,)π) → 0 <
(1 + (cos‘𝐴))) |
181 | 114, 180 | elrpd 12778 |
. . . 4
⊢ (𝐴 ∈ (0[,)π) → (1 +
(cos‘𝐴)) ∈
ℝ+) |
182 | 181 | rphalfcld 12793 |
. . 3
⊢ (𝐴 ∈ (0[,)π) → ((1 +
(cos‘𝐴)) / 2) ∈
ℝ+) |
183 | 102, 112,
182 | sqrtdivd 15144 |
. 2
⊢ (𝐴 ∈ (0[,)π) →
(√‘(((1 − (cos‘𝐴)) / 2) / ((1 + (cos‘𝐴)) / 2))) = ((√‘((1 −
(cos‘𝐴)) / 2)) /
(√‘((1 + (cos‘𝐴)) / 2)))) |
184 | 7 | coscld 15849 |
. . . . 5
⊢ (𝐴 ∈ (0[,)π) →
(cos‘𝐴) ∈
ℂ) |
185 | | subcl 11229 |
. . . . 5
⊢ ((1
∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → (1 −
(cos‘𝐴)) ∈
ℂ) |
186 | 121, 184,
185 | sylancr 587 |
. . . 4
⊢ (𝐴 ∈ (0[,)π) → (1
− (cos‘𝐴))
∈ ℂ) |
187 | | addcl 10962 |
. . . . 5
⊢ ((1
∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → (1 +
(cos‘𝐴)) ∈
ℂ) |
188 | 121, 184,
187 | sylancr 587 |
. . . 4
⊢ (𝐴 ∈ (0[,)π) → (1 +
(cos‘𝐴)) ∈
ℂ) |
189 | | 2cnne0 12192 |
. . . . 5
⊢ (2 ∈
ℂ ∧ 2 ≠ 0) |
190 | | divcan7 11693 |
. . . . 5
⊢ (((1
− (cos‘𝐴))
∈ ℂ ∧ ((1 + (cos‘𝐴)) ∈ ℂ ∧ (1 +
(cos‘𝐴)) ≠ 0)
∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((1 − (cos‘𝐴)) / 2) / ((1 + (cos‘𝐴)) / 2)) = ((1 −
(cos‘𝐴)) / (1 +
(cos‘𝐴)))) |
191 | 189, 190 | mp3an3 1449 |
. . . 4
⊢ (((1
− (cos‘𝐴))
∈ ℂ ∧ ((1 + (cos‘𝐴)) ∈ ℂ ∧ (1 +
(cos‘𝐴)) ≠ 0))
→ (((1 − (cos‘𝐴)) / 2) / ((1 + (cos‘𝐴)) / 2)) = ((1 − (cos‘𝐴)) / (1 + (cos‘𝐴)))) |
192 | 186, 188,
179, 191 | syl12anc 834 |
. . 3
⊢ (𝐴 ∈ (0[,)π) → (((1
− (cos‘𝐴)) / 2)
/ ((1 + (cos‘𝐴)) /
2)) = ((1 − (cos‘𝐴)) / (1 + (cos‘𝐴)))) |
193 | 192 | fveq2d 6787 |
. 2
⊢ (𝐴 ∈ (0[,)π) →
(√‘(((1 − (cos‘𝐴)) / 2) / ((1 + (cos‘𝐴)) / 2))) = (√‘((1 −
(cos‘𝐴)) / (1 +
(cos‘𝐴))))) |
194 | 97, 183, 193 | 3eqtr2d 2785 |
1
⊢ (𝐴 ∈ (0[,)π) →
(tan‘(𝐴 / 2)) =
(√‘((1 − (cos‘𝐴)) / (1 + (cos‘𝐴))))) |