![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setciso | Structured version Visualization version GIF version |
Description: An isomorphism in the category of sets is a bijection. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
setcmon.c | ⊢ 𝐶 = (SetCat‘𝑈) |
setcmon.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
setcmon.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
setcmon.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
setciso.n | ⊢ 𝐼 = (Iso‘𝐶) |
Ref | Expression |
---|---|
setciso | ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹:𝑋–1-1-onto→𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2795 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
2 | eqid 2795 | . . . 4 ⊢ (Inv‘𝐶) = (Inv‘𝐶) | |
3 | setcmon.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
4 | setcmon.c | . . . . . 6 ⊢ 𝐶 = (SetCat‘𝑈) | |
5 | 4 | setccat 17174 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
7 | setcmon.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
8 | 4, 3 | setcbas 17167 | . . . . 5 ⊢ (𝜑 → 𝑈 = (Base‘𝐶)) |
9 | 7, 8 | eleqtrd 2885 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
10 | setcmon.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
11 | 10, 8 | eleqtrd 2885 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
12 | setciso.n | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
13 | 1, 2, 6, 9, 11, 12 | isoval 16864 | . . 3 ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌)) |
14 | 13 | eleq2d 2868 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
15 | 1, 2, 6, 9, 11 | invfun 16863 | . . . . 5 ⊢ (𝜑 → Fun (𝑋(Inv‘𝐶)𝑌)) |
16 | funfvbrb 6686 | . . . . 5 ⊢ (Fun (𝑋(Inv‘𝐶)𝑌) → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) |
18 | 4, 3, 7, 10, 2 | setcinv 17179 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) ↔ (𝐹:𝑋–1-1-onto→𝑌 ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = ◡𝐹))) |
19 | simpl 483 | . . . . 5 ⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = ◡𝐹) → 𝐹:𝑋–1-1-onto→𝑌) | |
20 | 18, 19 | syl6bi 254 | . . . 4 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) → 𝐹:𝑋–1-1-onto→𝑌)) |
21 | 17, 20 | sylbid 241 | . . 3 ⊢ (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) → 𝐹:𝑋–1-1-onto→𝑌)) |
22 | eqid 2795 | . . . 4 ⊢ ◡𝐹 = ◡𝐹 | |
23 | 4, 3, 7, 10, 2 | setcinv 17179 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹 ↔ (𝐹:𝑋–1-1-onto→𝑌 ∧ ◡𝐹 = ◡𝐹))) |
24 | funrel 6242 | . . . . . . 7 ⊢ (Fun (𝑋(Inv‘𝐶)𝑌) → Rel (𝑋(Inv‘𝐶)𝑌)) | |
25 | 15, 24 | syl 17 | . . . . . 6 ⊢ (𝜑 → Rel (𝑋(Inv‘𝐶)𝑌)) |
26 | releldm 5696 | . . . . . . 7 ⊢ ((Rel (𝑋(Inv‘𝐶)𝑌) ∧ 𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)) | |
27 | 26 | ex 413 | . . . . . 6 ⊢ (Rel (𝑋(Inv‘𝐶)𝑌) → (𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹 → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
28 | 25, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹 → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
29 | 23, 28 | sylbird 261 | . . . 4 ⊢ (𝜑 → ((𝐹:𝑋–1-1-onto→𝑌 ∧ ◡𝐹 = ◡𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
30 | 22, 29 | mpan2i 693 | . . 3 ⊢ (𝜑 → (𝐹:𝑋–1-1-onto→𝑌 → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
31 | 21, 30 | impbid 213 | . 2 ⊢ (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹:𝑋–1-1-onto→𝑌)) |
32 | 14, 31 | bitrd 280 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹:𝑋–1-1-onto→𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 ∈ wcel 2081 class class class wbr 4962 ◡ccnv 5442 dom cdm 5443 Rel wrel 5448 Fun wfun 6219 –1-1-onto→wf1o 6224 ‘cfv 6225 (class class class)co 7016 Basecbs 16312 Catccat 16764 Invcinv 16844 Isociso 16845 SetCatcsetc 17164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-oadd 7957 df-er 8139 df-map 8258 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-2 11548 df-3 11549 df-4 11550 df-5 11551 df-6 11552 df-7 11553 df-8 11554 df-9 11555 df-n0 11746 df-z 11830 df-dec 11948 df-uz 12094 df-fz 12743 df-struct 16314 df-ndx 16315 df-slot 16316 df-base 16318 df-hom 16418 df-cco 16419 df-cat 16768 df-cid 16769 df-sect 16846 df-inv 16847 df-iso 16848 df-setc 17165 |
This theorem is referenced by: yonffthlem 17361 |
Copyright terms: Public domain | W3C validator |