MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setciso Structured version   Visualization version   GIF version

Theorem setciso 18145
Description: An isomorphism in the category of sets is a bijection. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcmon.c 𝐶 = (SetCat‘𝑈)
setcmon.u (𝜑𝑈𝑉)
setcmon.x (𝜑𝑋𝑈)
setcmon.y (𝜑𝑌𝑈)
setciso.n 𝐼 = (Iso‘𝐶)
Assertion
Ref Expression
setciso (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹:𝑋1-1-onto𝑌))

Proof of Theorem setciso
StepHypRef Expression
1 eqid 2735 . . . 4 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2735 . . . 4 (Inv‘𝐶) = (Inv‘𝐶)
3 setcmon.u . . . . 5 (𝜑𝑈𝑉)
4 setcmon.c . . . . . 6 𝐶 = (SetCat‘𝑈)
54setccat 18139 . . . . 5 (𝑈𝑉𝐶 ∈ Cat)
63, 5syl 17 . . . 4 (𝜑𝐶 ∈ Cat)
7 setcmon.x . . . . 5 (𝜑𝑋𝑈)
84, 3setcbas 18132 . . . . 5 (𝜑𝑈 = (Base‘𝐶))
97, 8eleqtrd 2841 . . . 4 (𝜑𝑋 ∈ (Base‘𝐶))
10 setcmon.y . . . . 5 (𝜑𝑌𝑈)
1110, 8eleqtrd 2841 . . . 4 (𝜑𝑌 ∈ (Base‘𝐶))
12 setciso.n . . . 4 𝐼 = (Iso‘𝐶)
131, 2, 6, 9, 11, 12isoval 17813 . . 3 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌))
1413eleq2d 2825 . 2 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
151, 2, 6, 9, 11invfun 17812 . . . . 5 (𝜑 → Fun (𝑋(Inv‘𝐶)𝑌))
16 funfvbrb 7071 . . . . 5 (Fun (𝑋(Inv‘𝐶)𝑌) → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
1715, 16syl 17 . . . 4 (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
184, 3, 7, 10, 2setcinv 18144 . . . . 5 (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = 𝐹)))
19 simpl 482 . . . . 5 ((𝐹:𝑋1-1-onto𝑌 ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = 𝐹) → 𝐹:𝑋1-1-onto𝑌)
2018, 19biimtrdi 253 . . . 4 (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) → 𝐹:𝑋1-1-onto𝑌))
2117, 20sylbid 240 . . 3 (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) → 𝐹:𝑋1-1-onto𝑌))
22 eqid 2735 . . . 4 𝐹 = 𝐹
234, 3, 7, 10, 2setcinv 18144 . . . . 5 (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)𝐹 ↔ (𝐹:𝑋1-1-onto𝑌𝐹 = 𝐹)))
24 funrel 6585 . . . . . . 7 (Fun (𝑋(Inv‘𝐶)𝑌) → Rel (𝑋(Inv‘𝐶)𝑌))
2515, 24syl 17 . . . . . 6 (𝜑 → Rel (𝑋(Inv‘𝐶)𝑌))
26 releldm 5958 . . . . . . 7 ((Rel (𝑋(Inv‘𝐶)𝑌) ∧ 𝐹(𝑋(Inv‘𝐶)𝑌)𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))
2726ex 412 . . . . . 6 (Rel (𝑋(Inv‘𝐶)𝑌) → (𝐹(𝑋(Inv‘𝐶)𝑌)𝐹𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
2825, 27syl 17 . . . . 5 (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)𝐹𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
2923, 28sylbird 260 . . . 4 (𝜑 → ((𝐹:𝑋1-1-onto𝑌𝐹 = 𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
3022, 29mpan2i 697 . . 3 (𝜑 → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
3121, 30impbid 212 . 2 (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹:𝑋1-1-onto𝑌))
3214, 31bitrd 279 1 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹:𝑋1-1-onto𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106   class class class wbr 5148  ccnv 5688  dom cdm 5689  Rel wrel 5694  Fun wfun 6557  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  Basecbs 17245  Catccat 17709  Invcinv 17793  Isociso 17794  SetCatcsetc 18129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-hom 17322  df-cco 17323  df-cat 17713  df-cid 17714  df-sect 17795  df-inv 17796  df-iso 17797  df-setc 18130
This theorem is referenced by:  yonffthlem  18339
  Copyright terms: Public domain W3C validator