MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setciso Structured version   Visualization version   GIF version

Theorem setciso 17806
Description: An isomorphism in the category of sets is a bijection. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcmon.c 𝐶 = (SetCat‘𝑈)
setcmon.u (𝜑𝑈𝑉)
setcmon.x (𝜑𝑋𝑈)
setcmon.y (𝜑𝑌𝑈)
setciso.n 𝐼 = (Iso‘𝐶)
Assertion
Ref Expression
setciso (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹:𝑋1-1-onto𝑌))

Proof of Theorem setciso
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2738 . . . 4 (Inv‘𝐶) = (Inv‘𝐶)
3 setcmon.u . . . . 5 (𝜑𝑈𝑉)
4 setcmon.c . . . . . 6 𝐶 = (SetCat‘𝑈)
54setccat 17800 . . . . 5 (𝑈𝑉𝐶 ∈ Cat)
63, 5syl 17 . . . 4 (𝜑𝐶 ∈ Cat)
7 setcmon.x . . . . 5 (𝜑𝑋𝑈)
84, 3setcbas 17793 . . . . 5 (𝜑𝑈 = (Base‘𝐶))
97, 8eleqtrd 2841 . . . 4 (𝜑𝑋 ∈ (Base‘𝐶))
10 setcmon.y . . . . 5 (𝜑𝑌𝑈)
1110, 8eleqtrd 2841 . . . 4 (𝜑𝑌 ∈ (Base‘𝐶))
12 setciso.n . . . 4 𝐼 = (Iso‘𝐶)
131, 2, 6, 9, 11, 12isoval 17477 . . 3 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌))
1413eleq2d 2824 . 2 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
151, 2, 6, 9, 11invfun 17476 . . . . 5 (𝜑 → Fun (𝑋(Inv‘𝐶)𝑌))
16 funfvbrb 6928 . . . . 5 (Fun (𝑋(Inv‘𝐶)𝑌) → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
1715, 16syl 17 . . . 4 (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
184, 3, 7, 10, 2setcinv 17805 . . . . 5 (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = 𝐹)))
19 simpl 483 . . . . 5 ((𝐹:𝑋1-1-onto𝑌 ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = 𝐹) → 𝐹:𝑋1-1-onto𝑌)
2018, 19syl6bi 252 . . . 4 (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) → 𝐹:𝑋1-1-onto𝑌))
2117, 20sylbid 239 . . 3 (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) → 𝐹:𝑋1-1-onto𝑌))
22 eqid 2738 . . . 4 𝐹 = 𝐹
234, 3, 7, 10, 2setcinv 17805 . . . . 5 (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)𝐹 ↔ (𝐹:𝑋1-1-onto𝑌𝐹 = 𝐹)))
24 funrel 6451 . . . . . . 7 (Fun (𝑋(Inv‘𝐶)𝑌) → Rel (𝑋(Inv‘𝐶)𝑌))
2515, 24syl 17 . . . . . 6 (𝜑 → Rel (𝑋(Inv‘𝐶)𝑌))
26 releldm 5853 . . . . . . 7 ((Rel (𝑋(Inv‘𝐶)𝑌) ∧ 𝐹(𝑋(Inv‘𝐶)𝑌)𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))
2726ex 413 . . . . . 6 (Rel (𝑋(Inv‘𝐶)𝑌) → (𝐹(𝑋(Inv‘𝐶)𝑌)𝐹𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
2825, 27syl 17 . . . . 5 (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)𝐹𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
2923, 28sylbird 259 . . . 4 (𝜑 → ((𝐹:𝑋1-1-onto𝑌𝐹 = 𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
3022, 29mpan2i 694 . . 3 (𝜑 → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
3121, 30impbid 211 . 2 (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹:𝑋1-1-onto𝑌))
3214, 31bitrd 278 1 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹:𝑋1-1-onto𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  ccnv 5588  dom cdm 5589  Rel wrel 5594  Fun wfun 6427  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  Basecbs 16912  Catccat 17373  Invcinv 17457  Isociso 17458  SetCatcsetc 17790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-hom 16986  df-cco 16987  df-cat 17377  df-cid 17378  df-sect 17459  df-inv 17460  df-iso 17461  df-setc 17791
This theorem is referenced by:  yonffthlem  18000
  Copyright terms: Public domain W3C validator