| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ringcisoALTV | Structured version Visualization version GIF version | ||
| Description: An isomorphism in the category of rings is a bijection. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ringcsectALTV.c | ⊢ 𝐶 = (RingCatALTV‘𝑈) |
| ringcsectALTV.b | ⊢ 𝐵 = (Base‘𝐶) |
| ringcsectALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| ringcsectALTV.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ringcsectALTV.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ringcisoALTV.n | ⊢ 𝐼 = (Iso‘𝐶) |
| Ref | Expression |
|---|---|
| ringcisoALTV | ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RingIso 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcsectALTV.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | eqid 2730 | . . . 4 ⊢ (Inv‘𝐶) = (Inv‘𝐶) | |
| 3 | ringcsectALTV.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 4 | ringcsectALTV.c | . . . . . 6 ⊢ 𝐶 = (RingCatALTV‘𝑈) | |
| 5 | 4 | ringccatALTV 48285 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
| 6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 7 | ringcsectALTV.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | ringcsectALTV.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | ringcisoALTV.n | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
| 10 | 1, 2, 6, 7, 8, 9 | isoval 17733 | . . 3 ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌)) |
| 11 | 10 | eleq2d 2815 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
| 12 | 1, 2, 6, 7, 8 | invfun 17732 | . . . . 5 ⊢ (𝜑 → Fun (𝑋(Inv‘𝐶)𝑌)) |
| 13 | funfvbrb 7025 | . . . . 5 ⊢ (Fun (𝑋(Inv‘𝐶)𝑌) → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) |
| 15 | 4, 1, 3, 7, 8, 2 | ringcinvALTV 48288 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) ↔ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = ◡𝐹))) |
| 16 | simpl 482 | . . . . 5 ⊢ ((𝐹 ∈ (𝑋 RingIso 𝑌) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = ◡𝐹) → 𝐹 ∈ (𝑋 RingIso 𝑌)) | |
| 17 | 15, 16 | biimtrdi 253 | . . . 4 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) → 𝐹 ∈ (𝑋 RingIso 𝑌))) |
| 18 | 14, 17 | sylbid 240 | . . 3 ⊢ (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) → 𝐹 ∈ (𝑋 RingIso 𝑌))) |
| 19 | eqid 2730 | . . . 4 ⊢ ◡𝐹 = ◡𝐹 | |
| 20 | 4, 1, 3, 7, 8, 2 | ringcinvALTV 48288 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹 ↔ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ ◡𝐹 = ◡𝐹))) |
| 21 | funrel 6535 | . . . . . . 7 ⊢ (Fun (𝑋(Inv‘𝐶)𝑌) → Rel (𝑋(Inv‘𝐶)𝑌)) | |
| 22 | 12, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → Rel (𝑋(Inv‘𝐶)𝑌)) |
| 23 | releldm 5910 | . . . . . . 7 ⊢ ((Rel (𝑋(Inv‘𝐶)𝑌) ∧ 𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)) | |
| 24 | 23 | ex 412 | . . . . . 6 ⊢ (Rel (𝑋(Inv‘𝐶)𝑌) → (𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹 → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
| 25 | 22, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹 → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
| 26 | 20, 25 | sylbird 260 | . . . 4 ⊢ (𝜑 → ((𝐹 ∈ (𝑋 RingIso 𝑌) ∧ ◡𝐹 = ◡𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
| 27 | 19, 26 | mpan2i 697 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝑋 RingIso 𝑌) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
| 28 | 18, 27 | impbid 212 | . 2 ⊢ (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹 ∈ (𝑋 RingIso 𝑌))) |
| 29 | 11, 28 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RingIso 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5109 ◡ccnv 5639 dom cdm 5640 Rel wrel 5645 Fun wfun 6507 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 Catccat 17631 Invcinv 17713 Isociso 17714 RingIso crs 20385 RingCatALTVcringcALTV 48265 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-plusg 17239 df-hom 17250 df-cco 17251 df-0g 17410 df-cat 17635 df-cid 17636 df-sect 17715 df-inv 17716 df-iso 17717 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-grp 18874 df-ghm 19151 df-mgp 20056 df-ur 20097 df-ring 20150 df-rhm 20387 df-rim 20388 df-ringcALTV 48266 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |