Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringcisoALTV | Structured version Visualization version GIF version |
Description: An isomorphism in the category of rings is a bijection. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ringcsectALTV.c | ⊢ 𝐶 = (RingCatALTV‘𝑈) |
ringcsectALTV.b | ⊢ 𝐵 = (Base‘𝐶) |
ringcsectALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
ringcsectALTV.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ringcsectALTV.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ringcisoALTV.n | ⊢ 𝐼 = (Iso‘𝐶) |
Ref | Expression |
---|---|
ringcisoALTV | ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RingIso 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcsectALTV.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | eqid 2736 | . . . 4 ⊢ (Inv‘𝐶) = (Inv‘𝐶) | |
3 | ringcsectALTV.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
4 | ringcsectALTV.c | . . . . . 6 ⊢ 𝐶 = (RingCatALTV‘𝑈) | |
5 | 4 | ringccatALTV 45970 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
7 | ringcsectALTV.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | ringcsectALTV.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | ringcisoALTV.n | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
10 | 1, 2, 6, 7, 8, 9 | isoval 17574 | . . 3 ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌)) |
11 | 10 | eleq2d 2822 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
12 | 1, 2, 6, 7, 8 | invfun 17573 | . . . . 5 ⊢ (𝜑 → Fun (𝑋(Inv‘𝐶)𝑌)) |
13 | funfvbrb 6984 | . . . . 5 ⊢ (Fun (𝑋(Inv‘𝐶)𝑌) → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) |
15 | 4, 1, 3, 7, 8, 2 | ringcinvALTV 45973 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) ↔ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = ◡𝐹))) |
16 | simpl 483 | . . . . 5 ⊢ ((𝐹 ∈ (𝑋 RingIso 𝑌) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = ◡𝐹) → 𝐹 ∈ (𝑋 RingIso 𝑌)) | |
17 | 15, 16 | syl6bi 252 | . . . 4 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) → 𝐹 ∈ (𝑋 RingIso 𝑌))) |
18 | 14, 17 | sylbid 239 | . . 3 ⊢ (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) → 𝐹 ∈ (𝑋 RingIso 𝑌))) |
19 | eqid 2736 | . . . 4 ⊢ ◡𝐹 = ◡𝐹 | |
20 | 4, 1, 3, 7, 8, 2 | ringcinvALTV 45973 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹 ↔ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ ◡𝐹 = ◡𝐹))) |
21 | funrel 6501 | . . . . . . 7 ⊢ (Fun (𝑋(Inv‘𝐶)𝑌) → Rel (𝑋(Inv‘𝐶)𝑌)) | |
22 | 12, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → Rel (𝑋(Inv‘𝐶)𝑌)) |
23 | releldm 5885 | . . . . . . 7 ⊢ ((Rel (𝑋(Inv‘𝐶)𝑌) ∧ 𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)) | |
24 | 23 | ex 413 | . . . . . 6 ⊢ (Rel (𝑋(Inv‘𝐶)𝑌) → (𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹 → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
25 | 22, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹 → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
26 | 20, 25 | sylbird 259 | . . . 4 ⊢ (𝜑 → ((𝐹 ∈ (𝑋 RingIso 𝑌) ∧ ◡𝐹 = ◡𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
27 | 19, 26 | mpan2i 694 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝑋 RingIso 𝑌) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
28 | 18, 27 | impbid 211 | . 2 ⊢ (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹 ∈ (𝑋 RingIso 𝑌))) |
29 | 11, 28 | bitrd 278 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RingIso 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 class class class wbr 5092 ◡ccnv 5619 dom cdm 5620 Rel wrel 5625 Fun wfun 6473 ‘cfv 6479 (class class class)co 7337 Basecbs 17009 Catccat 17470 Invcinv 17554 Isociso 17555 RingIso crs 20052 RingCatALTVcringcALTV 45921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-map 8688 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-z 12421 df-dec 12539 df-uz 12684 df-fz 13341 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-plusg 17072 df-hom 17083 df-cco 17084 df-0g 17249 df-cat 17474 df-cid 17475 df-sect 17556 df-inv 17557 df-iso 17558 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-mhm 18527 df-grp 18676 df-ghm 18928 df-mgp 19816 df-ur 19833 df-ring 19880 df-rnghom 20054 df-rngiso 20055 df-ringcALTV 45923 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |