![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mptssid | Structured version Visualization version GIF version |
Description: The mapping operation expressed with its actual domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
mptssid.1 | ⊢ Ⅎ𝑥𝐴 |
mptssid.2 | ⊢ 𝐶 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
Ref | Expression |
---|---|
mptssid | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvisset 3454 | . . . . . . . 8 ⊢ (𝑦 = 𝐵 → 𝐵 ∈ V) | |
2 | 1 | anim2i 616 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V)) |
3 | rabid 3337 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V)) | |
4 | 2, 3 | sylibr 235 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V}) |
5 | mptssid.2 | . . . . . 6 ⊢ 𝐶 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} | |
6 | 4, 5 | syl6eleqr 2894 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 ∈ 𝐶) |
7 | simpr 485 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) | |
8 | 6, 7 | jca 512 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵)) |
9 | mptssid.1 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
10 | 9 | ssrab2f 40942 | . . . . . . 7 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ⊆ 𝐴 |
11 | 5, 10 | eqsstri 3922 | . . . . . 6 ⊢ 𝐶 ⊆ 𝐴 |
12 | 11 | sseli 3885 | . . . . 5 ⊢ (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴) |
13 | 12 | anim1i 614 | . . . 4 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) |
14 | 8, 13 | impbii 210 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵)) |
15 | 14 | opabbii 5029 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵)} |
16 | df-mpt 5042 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
17 | df-mpt 5042 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵)} | |
18 | 15, 16, 17 | 3eqtr4i 2829 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1522 ∈ wcel 2081 Ⅎwnfc 2933 {crab 3109 Vcvv 3437 {copab 5024 ↦ cmpt 5041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rab 3114 df-v 3439 df-in 3866 df-ss 3874 df-opab 5025 df-mpt 5042 |
This theorem is referenced by: limsupequzmpt2 41560 liminfequzmpt2 41633 |
Copyright terms: Public domain | W3C validator |