| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mptssid | Structured version Visualization version GIF version | ||
| Description: The mapping operation expressed with its actual domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| mptssid.1 | ⊢ Ⅎ𝑥𝐴 |
| mptssid.2 | ⊢ 𝐶 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| Ref | Expression |
|---|---|
| mptssid | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvisset 3456 | . . . . . . . 8 ⊢ (𝑦 = 𝐵 → 𝐵 ∈ V) | |
| 2 | 1 | anim2i 617 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V)) |
| 3 | rabid 3416 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V)) | |
| 4 | 2, 3 | sylibr 234 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V}) |
| 5 | mptssid.2 | . . . . . 6 ⊢ 𝐶 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} | |
| 6 | 4, 5 | eleqtrrdi 2842 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 ∈ 𝐶) |
| 7 | simpr 484 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) | |
| 8 | 6, 7 | jca 511 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵)) |
| 9 | mptssid.1 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
| 10 | 9 | ssrab2f 45153 | . . . . . . 7 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ⊆ 𝐴 |
| 11 | 5, 10 | eqsstri 3981 | . . . . . 6 ⊢ 𝐶 ⊆ 𝐴 |
| 12 | 11 | sseli 3930 | . . . . 5 ⊢ (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴) |
| 13 | 12 | anim1i 615 | . . . 4 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) |
| 14 | 8, 13 | impbii 209 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵)) |
| 15 | 14 | opabbii 5158 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵)} |
| 16 | df-mpt 5173 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 17 | df-mpt 5173 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵)} | |
| 18 | 15, 16, 17 | 3eqtr4i 2764 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 Ⅎwnfc 2879 {crab 3395 Vcvv 3436 {copab 5153 ↦ cmpt 5172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rab 3396 df-v 3438 df-ss 3919 df-opab 5154 df-mpt 5173 |
| This theorem is referenced by: limsupequzmpt2 45755 liminfequzmpt2 45828 |
| Copyright terms: Public domain | W3C validator |