![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mptssid | Structured version Visualization version GIF version |
Description: The mapping operation expressed with its actual domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
mptssid.1 | ⊢ Ⅎ𝑥𝐴 |
mptssid.2 | ⊢ 𝐶 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
Ref | Expression |
---|---|
mptssid | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvisset 3498 | . . . . . . . 8 ⊢ (𝑦 = 𝐵 → 𝐵 ∈ V) | |
2 | 1 | anim2i 617 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V)) |
3 | rabid 3455 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V)) | |
4 | 2, 3 | sylibr 234 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V}) |
5 | mptssid.2 | . . . . . 6 ⊢ 𝐶 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} | |
6 | 4, 5 | eleqtrrdi 2850 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 ∈ 𝐶) |
7 | simpr 484 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) | |
8 | 6, 7 | jca 511 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵)) |
9 | mptssid.1 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
10 | 9 | ssrab2f 45057 | . . . . . . 7 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ⊆ 𝐴 |
11 | 5, 10 | eqsstri 4030 | . . . . . 6 ⊢ 𝐶 ⊆ 𝐴 |
12 | 11 | sseli 3991 | . . . . 5 ⊢ (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴) |
13 | 12 | anim1i 615 | . . . 4 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) |
14 | 8, 13 | impbii 209 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵)) |
15 | 14 | opabbii 5215 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵)} |
16 | df-mpt 5232 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
17 | df-mpt 5232 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵)} | |
18 | 15, 16, 17 | 3eqtr4i 2773 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2106 Ⅎwnfc 2888 {crab 3433 Vcvv 3478 {copab 5210 ↦ cmpt 5231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rab 3434 df-v 3480 df-ss 3980 df-opab 5211 df-mpt 5232 |
This theorem is referenced by: limsupequzmpt2 45674 liminfequzmpt2 45747 |
Copyright terms: Public domain | W3C validator |