Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resimass Structured version   Visualization version   GIF version

Theorem resimass 45207
Description: The image of a restriction is a subset of the original image. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
resimass ((𝐴𝐵) “ 𝐶) ⊆ (𝐴𝐶)

Proof of Theorem resimass
StepHypRef Expression
1 resss 5961 . 2 (𝐴𝐵) ⊆ 𝐴
2 imass1 6061 . 2 ((𝐴𝐵) ⊆ 𝐴 → ((𝐴𝐵) “ 𝐶) ⊆ (𝐴𝐶))
31, 2ax-mp 5 1 ((𝐴𝐵) “ 𝐶) ⊆ (𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wss 3911  cres 5633  cima 5634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644
This theorem is referenced by:  limsupres  45676  limsupresxr  45737  liminfresxr  45738
  Copyright terms: Public domain W3C validator