![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mul13d | Structured version Visualization version GIF version |
Description: Commutative/associative law that swaps the first and the third factor in a triple product. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
mul13d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
mul13d.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
mul13d.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
mul13d | ⊢ (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐶 · (𝐵 · 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul13d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mul13d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | mul13d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | 1, 2, 3 | mul12d 11499 | . 2 ⊢ (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))) |
5 | 2, 1, 3 | mulassd 11313 | . 2 ⊢ (𝜑 → ((𝐵 · 𝐴) · 𝐶) = (𝐵 · (𝐴 · 𝐶))) |
6 | 2, 1 | mulcld 11310 | . . 3 ⊢ (𝜑 → (𝐵 · 𝐴) ∈ ℂ) |
7 | 6, 3 | mulcomd 11311 | . 2 ⊢ (𝜑 → ((𝐵 · 𝐴) · 𝐶) = (𝐶 · (𝐵 · 𝐴))) |
8 | 4, 5, 7 | 3eqtr2d 2786 | 1 ⊢ (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐶 · (𝐵 · 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 · cmul 11189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-mulcl 11246 ax-mulcom 11248 ax-mulass 11250 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: dirkertrigeqlem3 46021 fourierdlem83 46110 |
Copyright terms: Public domain | W3C validator |