Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mul13d Structured version   Visualization version   GIF version

Theorem mul13d 42771
Description: Commutative/associative law that swaps the first and the third factor in a triple product. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
mul13d.1 (𝜑𝐴 ∈ ℂ)
mul13d.2 (𝜑𝐵 ∈ ℂ)
mul13d.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
mul13d (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐶 · (𝐵 · 𝐴)))

Proof of Theorem mul13d
StepHypRef Expression
1 mul13d.1 . . 3 (𝜑𝐴 ∈ ℂ)
2 mul13d.2 . . 3 (𝜑𝐵 ∈ ℂ)
3 mul13d.3 . . 3 (𝜑𝐶 ∈ ℂ)
41, 2, 3mul12d 11167 . 2 (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)))
52, 1, 3mulassd 10982 . 2 (𝜑 → ((𝐵 · 𝐴) · 𝐶) = (𝐵 · (𝐴 · 𝐶)))
62, 1mulcld 10979 . . 3 (𝜑 → (𝐵 · 𝐴) ∈ ℂ)
76, 3mulcomd 10980 . 2 (𝜑 → ((𝐵 · 𝐴) · 𝐶) = (𝐶 · (𝐵 · 𝐴)))
84, 5, 73eqtr2d 2785 1 (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐶 · (𝐵 · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  (class class class)co 7268  cc 10853   · cmul 10860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-mulcl 10917  ax-mulcom 10919  ax-mulass 10921
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-iota 6388  df-fv 6438  df-ov 7271
This theorem is referenced by:  dirkertrigeqlem3  43595  fourierdlem83  43684
  Copyright terms: Public domain W3C validator