Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mul13d Structured version   Visualization version   GIF version

Theorem mul13d 45230
Description: Commutative/associative law that swaps the first and the third factor in a triple product. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
mul13d.1 (𝜑𝐴 ∈ ℂ)
mul13d.2 (𝜑𝐵 ∈ ℂ)
mul13d.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
mul13d (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐶 · (𝐵 · 𝐴)))

Proof of Theorem mul13d
StepHypRef Expression
1 mul13d.1 . . 3 (𝜑𝐴 ∈ ℂ)
2 mul13d.2 . . 3 (𝜑𝐵 ∈ ℂ)
3 mul13d.3 . . 3 (𝜑𝐶 ∈ ℂ)
41, 2, 3mul12d 11468 . 2 (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)))
52, 1, 3mulassd 11282 . 2 (𝜑 → ((𝐵 · 𝐴) · 𝐶) = (𝐵 · (𝐴 · 𝐶)))
62, 1mulcld 11279 . . 3 (𝜑 → (𝐵 · 𝐴) ∈ ℂ)
76, 3mulcomd 11280 . 2 (𝜑 → ((𝐵 · 𝐴) · 𝐶) = (𝐶 · (𝐵 · 𝐴)))
84, 5, 73eqtr2d 2781 1 (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐶 · (𝐵 · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  (class class class)co 7431  cc 11151   · cmul 11158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-mulcl 11215  ax-mulcom 11217  ax-mulass 11219
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434
This theorem is referenced by:  dirkertrigeqlem3  46056  fourierdlem83  46145
  Copyright terms: Public domain W3C validator