Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mul13d | Structured version Visualization version GIF version |
Description: Commutative/associative law that swaps the first and the third factor in a triple product. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
mul13d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
mul13d.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
mul13d.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
mul13d | ⊢ (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐶 · (𝐵 · 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul13d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mul13d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | mul13d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | 1, 2, 3 | mul12d 11167 | . 2 ⊢ (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))) |
5 | 2, 1, 3 | mulassd 10982 | . 2 ⊢ (𝜑 → ((𝐵 · 𝐴) · 𝐶) = (𝐵 · (𝐴 · 𝐶))) |
6 | 2, 1 | mulcld 10979 | . . 3 ⊢ (𝜑 → (𝐵 · 𝐴) ∈ ℂ) |
7 | 6, 3 | mulcomd 10980 | . 2 ⊢ (𝜑 → ((𝐵 · 𝐴) · 𝐶) = (𝐶 · (𝐵 · 𝐴))) |
8 | 4, 5, 7 | 3eqtr2d 2785 | 1 ⊢ (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐶 · (𝐵 · 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 (class class class)co 7268 ℂcc 10853 · cmul 10860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-mulcl 10917 ax-mulcom 10919 ax-mulass 10921 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-ov 7271 |
This theorem is referenced by: dirkertrigeqlem3 43595 fourierdlem83 43684 |
Copyright terms: Public domain | W3C validator |