Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mul13d Structured version   Visualization version   GIF version

Theorem mul13d 44448
Description: Commutative/associative law that swaps the first and the third factor in a triple product. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
mul13d.1 (𝜑𝐴 ∈ ℂ)
mul13d.2 (𝜑𝐵 ∈ ℂ)
mul13d.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
mul13d (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐶 · (𝐵 · 𝐴)))

Proof of Theorem mul13d
StepHypRef Expression
1 mul13d.1 . . 3 (𝜑𝐴 ∈ ℂ)
2 mul13d.2 . . 3 (𝜑𝐵 ∈ ℂ)
3 mul13d.3 . . 3 (𝜑𝐶 ∈ ℂ)
41, 2, 3mul12d 11430 . 2 (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)))
52, 1, 3mulassd 11244 . 2 (𝜑 → ((𝐵 · 𝐴) · 𝐶) = (𝐵 · (𝐴 · 𝐶)))
62, 1mulcld 11241 . . 3 (𝜑 → (𝐵 · 𝐴) ∈ ℂ)
76, 3mulcomd 11242 . 2 (𝜑 → ((𝐵 · 𝐴) · 𝐶) = (𝐶 · (𝐵 · 𝐴)))
84, 5, 73eqtr2d 2777 1 (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐶 · (𝐵 · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  (class class class)co 7412  cc 11114   · cmul 11121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-mulcl 11178  ax-mulcom 11180  ax-mulass 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7415
This theorem is referenced by:  dirkertrigeqlem3  45275  fourierdlem83  45364
  Copyright terms: Public domain W3C validator