![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mul13d | Structured version Visualization version GIF version |
Description: Commutative/associative law that swaps the first and the third factor in a triple product. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
mul13d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
mul13d.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
mul13d.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
mul13d | ⊢ (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐶 · (𝐵 · 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul13d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mul13d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | mul13d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | 1, 2, 3 | mul12d 11468 | . 2 ⊢ (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))) |
5 | 2, 1, 3 | mulassd 11282 | . 2 ⊢ (𝜑 → ((𝐵 · 𝐴) · 𝐶) = (𝐵 · (𝐴 · 𝐶))) |
6 | 2, 1 | mulcld 11279 | . . 3 ⊢ (𝜑 → (𝐵 · 𝐴) ∈ ℂ) |
7 | 6, 3 | mulcomd 11280 | . 2 ⊢ (𝜑 → ((𝐵 · 𝐴) · 𝐶) = (𝐶 · (𝐵 · 𝐴))) |
8 | 4, 5, 7 | 3eqtr2d 2781 | 1 ⊢ (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐶 · (𝐵 · 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 (class class class)co 7431 ℂcc 11151 · cmul 11158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-mulcl 11215 ax-mulcom 11217 ax-mulass 11219 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 |
This theorem is referenced by: dirkertrigeqlem3 46056 fourierdlem83 46145 |
Copyright terms: Public domain | W3C validator |