Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem83 Structured version   Visualization version   GIF version

Theorem fourierdlem83 46160
Description: The fourier partial sum for 𝐹 rewritten as an integral. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem83.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem83.c 𝐶 = (-π(,)π)
fourierdlem83.fl1 (𝜑 → (𝐹𝐶) ∈ 𝐿1)
fourierdlem83.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem83.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem83.x (𝜑𝑋 ∈ ℝ)
fourierdlem83.s 𝑆 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
fourierdlem83.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
fourierdlem83.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
fourierdlem83 (𝜑 → (𝑆𝑁) = ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥)
Distinct variable groups:   𝐴,𝑚,𝑛   𝐵,𝑚   𝑥,𝐶,𝑛,𝑠   𝑥,𝐷,𝑠   𝑛,𝐹,𝑥   𝑥,𝑁   𝑚,𝑁,𝑛   𝑁,𝑠   𝑥,𝑋   𝑚,𝑋,𝑛   𝑋,𝑠   𝜑,𝑥,𝑛   𝜑,𝑚   𝜑,𝑠
Allowed substitution hints:   𝐴(𝑥,𝑠)   𝐵(𝑥,𝑛,𝑠)   𝐶(𝑚)   𝐷(𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛,𝑠)   𝐹(𝑚,𝑠)

Proof of Theorem fourierdlem83
Dummy variables 𝑏 𝑐 𝑦 𝑘 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem83.s . . . 4 𝑆 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
21a1i 11 . . 3 (𝜑𝑆 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))))
3 oveq2 7377 . . . . . 6 (𝑚 = 𝑁 → (1...𝑚) = (1...𝑁))
43sumeq1d 15642 . . . . 5 (𝑚 = 𝑁 → Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
54oveq2d 7385 . . . 4 (𝑚 = 𝑁 → (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
65adantl 481 . . 3 ((𝜑𝑚 = 𝑁) → (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
7 fourierdlem83.n . . 3 (𝜑𝑁 ∈ ℕ)
8 id 22 . . . . . 6 (𝜑𝜑)
9 0nn0 12433 . . . . . . 7 0 ∈ ℕ0
109a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℕ0)
119elexi 3467 . . . . . . 7 0 ∈ V
12 eleq1 2816 . . . . . . . . 9 (𝑛 = 0 → (𝑛 ∈ ℕ0 ↔ 0 ∈ ℕ0))
1312anbi2d 630 . . . . . . . 8 (𝑛 = 0 → ((𝜑𝑛 ∈ ℕ0) ↔ (𝜑 ∧ 0 ∈ ℕ0)))
14 fveq2 6840 . . . . . . . . 9 (𝑛 = 0 → (𝐴𝑛) = (𝐴‘0))
1514eleq1d 2813 . . . . . . . 8 (𝑛 = 0 → ((𝐴𝑛) ∈ ℝ ↔ (𝐴‘0) ∈ ℝ))
1613, 15imbi12d 344 . . . . . . 7 (𝑛 = 0 → (((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℝ) ↔ ((𝜑 ∧ 0 ∈ ℕ0) → (𝐴‘0) ∈ ℝ)))
17 fourierdlem83.f . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
18 fourierdlem83.c . . . . . . . . . 10 𝐶 = (-π(,)π)
19 fourierdlem83.fl1 . . . . . . . . . 10 (𝜑 → (𝐹𝐶) ∈ 𝐿1)
20 fourierdlem83.a . . . . . . . . . 10 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
21 fourierdlem83.b . . . . . . . . . 10 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
2217, 18, 19, 20, 21fourierdlem22 46100 . . . . . . . . 9 (𝜑 → ((𝑛 ∈ ℕ0 → (𝐴𝑛) ∈ ℝ) ∧ (𝑛 ∈ ℕ → (𝐵𝑛) ∈ ℝ)))
2322simpld 494 . . . . . . . 8 (𝜑 → (𝑛 ∈ ℕ0 → (𝐴𝑛) ∈ ℝ))
2423imp 406 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℝ)
2511, 16, 24vtocl 3521 . . . . . 6 ((𝜑 ∧ 0 ∈ ℕ0) → (𝐴‘0) ∈ ℝ)
268, 10, 25syl2anc 584 . . . . 5 (𝜑 → (𝐴‘0) ∈ ℝ)
2726rehalfcld 12405 . . . 4 (𝜑 → ((𝐴‘0) / 2) ∈ ℝ)
28 fzfid 13914 . . . . 5 (𝜑 → (1...𝑁) ∈ Fin)
29 eleq1 2816 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝑘 ∈ ℕ0𝑛 ∈ ℕ0))
3029anbi2d 630 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((𝜑𝑘 ∈ ℕ0) ↔ (𝜑𝑛 ∈ ℕ0)))
31 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑘 = 𝑛𝑥𝐶) → 𝑘 = 𝑛)
3231oveq1d 7384 . . . . . . . . . . . . . . . . 17 ((𝑘 = 𝑛𝑥𝐶) → (𝑘 · 𝑥) = (𝑛 · 𝑥))
3332fveq2d 6844 . . . . . . . . . . . . . . . 16 ((𝑘 = 𝑛𝑥𝐶) → (cos‘(𝑘 · 𝑥)) = (cos‘(𝑛 · 𝑥)))
3433oveq2d 7385 . . . . . . . . . . . . . . 15 ((𝑘 = 𝑛𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) = ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))))
3534itgeq2dv 25659 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ∫𝐶((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 = ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥)
3635eleq1d 2813 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (∫𝐶((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ ↔ ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ))
3730, 36imbi12d 344 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ) ↔ ((𝜑𝑛 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)))
3817adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → 𝐹:ℝ⟶ℝ)
3919adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝐶) ∈ 𝐿1)
40 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
4138, 18, 39, 20, 40fourierdlem16 46094 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (((𝐴𝑘) ∈ ℝ ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1) ∧ ∫𝐶((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ))
4241simprd 495 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ)
4337, 42chvarvv 1989 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
44 pire 26342 . . . . . . . . . . . 12 π ∈ ℝ
4544a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → π ∈ ℝ)
46 0re 11152 . . . . . . . . . . . . 13 0 ∈ ℝ
47 pipos 26344 . . . . . . . . . . . . 13 0 < π
4846, 47gtneii 11262 . . . . . . . . . . . 12 π ≠ 0
4948a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → π ≠ 0)
5043, 45, 49redivcld 11986 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
5150, 20fmptd 7068 . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℝ)
5251adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → 𝐴:ℕ0⟶ℝ)
53 elfznn 13490 . . . . . . . . . 10 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ)
5453nnnn0d 12479 . . . . . . . . 9 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ0)
5554adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℕ0)
5652, 55ffvelcdmd 7039 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐴𝑛) ∈ ℝ)
5755nn0red 12480 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℝ)
58 fourierdlem83.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
5958adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑋 ∈ ℝ)
6057, 59remulcld 11180 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑛 · 𝑋) ∈ ℝ)
6160recoscld 16088 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (cos‘(𝑛 · 𝑋)) ∈ ℝ)
6256, 61remulcld 11180 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) ∈ ℝ)
63 eleq1 2816 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝑘 ∈ ℕ ↔ 𝑛 ∈ ℕ))
6463anbi2d 630 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((𝜑𝑘 ∈ ℕ) ↔ (𝜑𝑛 ∈ ℕ)))
65 oveq1 7376 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → (𝑘 · 𝑥) = (𝑛 · 𝑥))
6665fveq2d 6844 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (sin‘(𝑘 · 𝑥)) = (sin‘(𝑛 · 𝑥)))
6766oveq2d 7385 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))
6867adantr 480 . . . . . . . . . . . . . . 15 ((𝑘 = 𝑛𝑥𝐶) → ((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))
6968itgeq2dv 25659 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ∫𝐶((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 = ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥)
7069eleq1d 2813 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (∫𝐶((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ ↔ ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ))
7164, 70imbi12d 344 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ) ↔ ((𝜑𝑛 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)))
7217adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
7319adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐹𝐶) ∈ 𝐿1)
74 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
7572, 18, 73, 21, 74fourierdlem21 46099 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (((𝐵𝑘) ∈ ℝ ∧ (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑘 · 𝑥)))) ∈ 𝐿1) ∧ ∫𝐶((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ))
7675simprd 495 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ)
7771, 76chvarvv 1989 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
7844a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
7948a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → π ≠ 0)
8077, 78, 79redivcld 11986 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
8180, 21fmptd 7068 . . . . . . . . 9 (𝜑𝐵:ℕ⟶ℝ)
8281adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → 𝐵:ℕ⟶ℝ)
8353adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℕ)
8482, 83ffvelcdmd 7039 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐵𝑛) ∈ ℝ)
8560resincld 16087 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (sin‘(𝑛 · 𝑋)) ∈ ℝ)
8684, 85remulcld 11180 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) ∈ ℝ)
8762, 86readdcld 11179 . . . . 5 ((𝜑𝑛 ∈ (1...𝑁)) → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℝ)
8828, 87fsumrecl 15676 . . . 4 (𝜑 → Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℝ)
8927, 88readdcld 11179 . . 3 (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) ∈ ℝ)
902, 6, 7, 89fvmptd 6957 . 2 (𝜑 → (𝑆𝑁) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
9120a1i 11 . . . . . . 7 (𝜑𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)))
92 oveq1 7376 . . . . . . . . . . . . 13 (𝑛 = 0 → (𝑛 · 𝑥) = (0 · 𝑥))
9392fveq2d 6844 . . . . . . . . . . . 12 (𝑛 = 0 → (cos‘(𝑛 · 𝑥)) = (cos‘(0 · 𝑥)))
9493oveq2d 7385 . . . . . . . . . . 11 (𝑛 = 0 → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (cos‘(0 · 𝑥))))
9594adantr 480 . . . . . . . . . 10 ((𝑛 = 0 ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (cos‘(0 · 𝑥))))
9695itgeq2dv 25659 . . . . . . . . 9 (𝑛 = 0 → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 = ∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥)
9796adantl 481 . . . . . . . 8 ((𝜑𝑛 = 0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 = ∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥)
9897oveq1d 7384 . . . . . . 7 ((𝜑𝑛 = 0) → (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) = (∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 / π))
9917, 18, 19, 20, 10fourierdlem16 46094 . . . . . . . . 9 (𝜑 → (((𝐴‘0) ∈ ℝ ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1) ∧ ∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 ∈ ℝ))
10099simprd 495 . . . . . . . 8 (𝜑 → ∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 ∈ ℝ)
10144a1i 11 . . . . . . . 8 (𝜑 → π ∈ ℝ)
10248a1i 11 . . . . . . . 8 (𝜑 → π ≠ 0)
103100, 101, 102redivcld 11986 . . . . . . 7 (𝜑 → (∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 / π) ∈ ℝ)
10491, 98, 10, 103fvmptd 6957 . . . . . 6 (𝜑 → (𝐴‘0) = (∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 / π))
105 ioosscn 13345 . . . . . . . . . . . . . . 15 (-π(,)π) ⊆ ℂ
106 id 22 . . . . . . . . . . . . . . . 16 (𝑥𝐶𝑥𝐶)
107106, 18eleqtrdi 2838 . . . . . . . . . . . . . . 15 (𝑥𝐶𝑥 ∈ (-π(,)π))
108105, 107sselid 3941 . . . . . . . . . . . . . 14 (𝑥𝐶𝑥 ∈ ℂ)
109108mul02d 11348 . . . . . . . . . . . . 13 (𝑥𝐶 → (0 · 𝑥) = 0)
110109fveq2d 6844 . . . . . . . . . . . 12 (𝑥𝐶 → (cos‘(0 · 𝑥)) = (cos‘0))
111 cos0 16094 . . . . . . . . . . . 12 (cos‘0) = 1
112110, 111eqtrdi 2780 . . . . . . . . . . 11 (𝑥𝐶 → (cos‘(0 · 𝑥)) = 1)
113112oveq2d 7385 . . . . . . . . . 10 (𝑥𝐶 → ((𝐹𝑥) · (cos‘(0 · 𝑥))) = ((𝐹𝑥) · 1))
114113adantl 481 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((𝐹𝑥) · (cos‘(0 · 𝑥))) = ((𝐹𝑥) · 1))
11517adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → 𝐹:ℝ⟶ℝ)
116 ioossre 13344 . . . . . . . . . . . . . 14 (-π(,)π) ⊆ ℝ
117116, 107sselid 3941 . . . . . . . . . . . . 13 (𝑥𝐶𝑥 ∈ ℝ)
118117adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → 𝑥 ∈ ℝ)
119115, 118ffvelcdmd 7039 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
120119recnd 11178 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (𝐹𝑥) ∈ ℂ)
121120mulridd 11167 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((𝐹𝑥) · 1) = (𝐹𝑥))
122114, 121eqtrd 2764 . . . . . . . 8 ((𝜑𝑥𝐶) → ((𝐹𝑥) · (cos‘(0 · 𝑥))) = (𝐹𝑥))
123122itgeq2dv 25659 . . . . . . 7 (𝜑 → ∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 = ∫𝐶(𝐹𝑥) d𝑥)
124123oveq1d 7384 . . . . . 6 (𝜑 → (∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 / π) = (∫𝐶(𝐹𝑥) d𝑥 / π))
125104, 124eqtrd 2764 . . . . 5 (𝜑 → (𝐴‘0) = (∫𝐶(𝐹𝑥) d𝑥 / π))
126125oveq1d 7384 . . . 4 (𝜑 → ((𝐴‘0) / 2) = ((∫𝐶(𝐹𝑥) d𝑥 / π) / 2))
12717feqmptd 6911 . . . . . . . . 9 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
128127reseq1d 5938 . . . . . . . 8 (𝜑 → (𝐹𝐶) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶))
12944a1i 11 . . . . . . . . . . . 12 (𝑥𝐶 → π ∈ ℝ)
130129renegcld 11581 . . . . . . . . . . 11 (𝑥𝐶 → -π ∈ ℝ)
131 ioossicc 13370 . . . . . . . . . . . . 13 (-π(,)π) ⊆ (-π[,]π)
13218, 131eqsstri 3990 . . . . . . . . . . . 12 𝐶 ⊆ (-π[,]π)
133132sseli 3939 . . . . . . . . . . 11 (𝑥𝐶𝑥 ∈ (-π[,]π))
134 eliccre 45476 . . . . . . . . . . 11 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ 𝑥 ∈ (-π[,]π)) → 𝑥 ∈ ℝ)
135130, 129, 133, 134syl3anc 1373 . . . . . . . . . 10 (𝑥𝐶𝑥 ∈ ℝ)
136135ssriv 3947 . . . . . . . . 9 𝐶 ⊆ ℝ
137 resmpt 5997 . . . . . . . . 9 (𝐶 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
138136, 137mp1i 13 . . . . . . . 8 (𝜑 → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
139128, 138eqtr2d 2765 . . . . . . 7 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝐹𝐶))
140139, 19eqeltrd 2828 . . . . . 6 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
141119, 140itgcl 25661 . . . . 5 (𝜑 → ∫𝐶(𝐹𝑥) d𝑥 ∈ ℂ)
142101recnd 11178 . . . . 5 (𝜑 → π ∈ ℂ)
143 2cnd 12240 . . . . 5 (𝜑 → 2 ∈ ℂ)
144 2ne0 12266 . . . . . 6 2 ≠ 0
145144a1i 11 . . . . 5 (𝜑 → 2 ≠ 0)
146141, 142, 143, 102, 145divdiv32d 11959 . . . 4 (𝜑 → ((∫𝐶(𝐹𝑥) d𝑥 / π) / 2) = ((∫𝐶(𝐹𝑥) d𝑥 / 2) / π))
147141, 143, 145divrecd 11937 . . . . . 6 (𝜑 → (∫𝐶(𝐹𝑥) d𝑥 / 2) = (∫𝐶(𝐹𝑥) d𝑥 · (1 / 2)))
148143, 145reccld 11927 . . . . . . 7 (𝜑 → (1 / 2) ∈ ℂ)
149141, 148mulcomd 11171 . . . . . 6 (𝜑 → (∫𝐶(𝐹𝑥) d𝑥 · (1 / 2)) = ((1 / 2) · ∫𝐶(𝐹𝑥) d𝑥))
150148, 119, 140itgmulc2 25711 . . . . . 6 (𝜑 → ((1 / 2) · ∫𝐶(𝐹𝑥) d𝑥) = ∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥)
151147, 149, 1503eqtrd 2768 . . . . 5 (𝜑 → (∫𝐶(𝐹𝑥) d𝑥 / 2) = ∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥)
152151oveq1d 7384 . . . 4 (𝜑 → ((∫𝐶(𝐹𝑥) d𝑥 / 2) / π) = (∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 / π))
153126, 146, 1523eqtrd 2768 . . 3 (𝜑 → ((𝐴‘0) / 2) = (∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 / π))
15455, 50syldan 591 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
15520fvmpt2 6961 . . . . . . . . . 10 ((𝑛 ∈ ℕ0 ∧ (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ) → (𝐴𝑛) = (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
15655, 154, 155syl2anc 584 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐴𝑛) = (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
157156oveq1d 7384 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) = ((∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) · (cos‘(𝑛 · 𝑋))))
158154recnd 11178 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℂ)
15961recnd 11178 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (cos‘(𝑛 · 𝑋)) ∈ ℂ)
160158, 159mulcomd 11171 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) · (cos‘(𝑛 · 𝑋))) = ((cos‘(𝑛 · 𝑋)) · (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)))
16155, 43syldan 591 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
162161recnd 11178 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℂ)
163142adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → π ∈ ℂ)
16448a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → π ≠ 0)
165159, 162, 163, 164divassd 11969 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (((cos‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥) / π) = ((cos‘(𝑛 · 𝑋)) · (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)))
16617ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → 𝐹:ℝ⟶ℝ)
167117adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → 𝑥 ∈ ℝ)
168166, 167ffvelcdmd 7039 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
169 nn0re 12427 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
170169ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → 𝑛 ∈ ℝ)
171170, 167remulcld 11180 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝑛 · 𝑥) ∈ ℝ)
172171recoscld 16088 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℝ)
173168, 172remulcld 11180 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) ∈ ℝ)
17454, 173sylanl2 681 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) ∈ ℝ)
175 ioombl 25442 . . . . . . . . . . . . . . . . . . 19 (-π(,)π) ∈ dom vol
17618, 175eqeltri 2824 . . . . . . . . . . . . . . . . . 18 𝐶 ∈ dom vol
177176elexi 3467 . . . . . . . . . . . . . . . . 17 𝐶 ∈ V
178177a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → 𝐶 ∈ V)
179 eqidd 2730 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
180 eqidd 2730 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥)))
181178, 172, 168, 179, 180offval2 7653 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥))))
182172recnd 11178 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℂ)
183120adantlr 715 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℂ)
184182, 183mulcomd 11171 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))))
185184mpteq2dva 5195 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))))
186181, 185eqtr2d 2765 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) = ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))))
187 coscn 26331 . . . . . . . . . . . . . . . . . 18 cos ∈ (ℂ–cn→ℂ)
188187a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ0) → cos ∈ (ℂ–cn→ℂ))
189 ax-resscn 11101 . . . . . . . . . . . . . . . . . . . . 21 ℝ ⊆ ℂ
190136, 189sstri 3953 . . . . . . . . . . . . . . . . . . . 20 𝐶 ⊆ ℂ
191190a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ0) → 𝐶 ⊆ ℂ)
192169recnd 11178 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
193192adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
194 ssid 3966 . . . . . . . . . . . . . . . . . . . 20 ℂ ⊆ ℂ
195194a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ0) → ℂ ⊆ ℂ)
196191, 193, 195constcncfg 45843 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶𝑛) ∈ (𝐶cn→ℂ))
197191, 195idcncfg 45844 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ))
198196, 197mulcncf 25322 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶cn→ℂ))
199188, 198cncfmpt1f 24783 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ))
200 cnmbf 25536 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn)
201176, 199, 200sylancr 587 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn)
202140adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
203 1re 11150 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
204 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
205169adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ0𝑥𝐶) → 𝑛 ∈ ℝ)
206117adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ0𝑥𝐶) → 𝑥 ∈ ℝ)
207205, 206remulcld 11180 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ0𝑥𝐶) → (𝑛 · 𝑥) ∈ ℝ)
208207recoscld 16088 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ0𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℝ)
209208ralrimiva 3125 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ0 → ∀𝑥𝐶 (cos‘(𝑛 · 𝑥)) ∈ ℝ)
210209adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → ∀𝑥𝐶 (cos‘(𝑛 · 𝑥)) ∈ ℝ)
211 dmmptg 6203 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑥𝐶 (cos‘(𝑛 · 𝑥)) ∈ ℝ → dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = 𝐶)
212210, 211syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = 𝐶)
213204, 212eleqtrd 2830 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → 𝑦𝐶)
214 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
215 oveq2 7377 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑦 → (𝑛 · 𝑥) = (𝑛 · 𝑦))
216215fveq2d 6844 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑛 · 𝑦)))
217216adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0𝑦𝐶) ∧ 𝑥 = 𝑦) → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑛 · 𝑦)))
218 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑦𝐶)
219169adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑛 ∈ ℝ)
220136, 218sselid 3941 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑦 ∈ ℝ)
221219, 220remulcld 11180 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑛 · 𝑦) ∈ ℝ)
222221recoscld 16088 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ0𝑦𝐶) → (cos‘(𝑛 · 𝑦)) ∈ ℝ)
223214, 217, 218, 222fvmptd 6957 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ0𝑦𝐶) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦) = (cos‘(𝑛 · 𝑦)))
224223fveq2d 6844 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) = (abs‘(cos‘(𝑛 · 𝑦))))
225 abscosbd 45250 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 · 𝑦) ∈ ℝ → (abs‘(cos‘(𝑛 · 𝑦))) ≤ 1)
226221, 225syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘(cos‘(𝑛 · 𝑦))) ≤ 1)
227224, 226eqbrtrd 5124 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
228213, 227syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
229228ralrimiva 3125 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
230 breq2 5106 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 1 → ((abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
231230ralbidv 3156 . . . . . . . . . . . . . . . . . 18 (𝑏 = 1 → (∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
232231rspcev 3585 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
233203, 229, 232sylancr 587 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
234233adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
235 bddmulibl 25716 . . . . . . . . . . . . . . 15 (((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
236201, 202, 234, 235syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
237186, 236eqeltrd 2828 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) ∈ 𝐿1)
23855, 237syldan 591 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) ∈ 𝐿1)
239159, 174, 238itgmulc2 25711 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ((cos‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥) = ∫𝐶((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) d𝑥)
240159adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑋)) ∈ ℂ)
241120adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℂ)
24254, 182sylanl2 681 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℂ)
243240, 241, 242mul12d 11359 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) = ((𝐹𝑥) · ((cos‘(𝑛 · 𝑋)) · (cos‘(𝑛 · 𝑥)))))
244240, 242mulcomd 11171 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑋)) · (cos‘(𝑛 · 𝑥))) = ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))))
245244oveq2d 7385 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((cos‘(𝑛 · 𝑋)) · (cos‘(𝑛 · 𝑥)))) = ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))))
246243, 245eqtrd 2764 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) = ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))))
247246itgeq2dv 25659 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) d𝑥 = ∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥)
248239, 247eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → ((cos‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥) = ∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥)
249248oveq1d 7384 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (((cos‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥) / π) = (∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 / π))
250165, 249eqtr3d 2766 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((cos‘(𝑛 · 𝑋)) · (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) = (∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 / π))
251157, 160, 2503eqtrd 2768 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) = (∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 / π))
25283, 80syldan 591 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
25321fvmpt2 6961 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ) → (𝐵𝑛) = (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
25483, 252, 253syl2anc 584 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐵𝑛) = (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
255254oveq1d 7384 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) = ((∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) · (sin‘(𝑛 · 𝑋))))
256252recnd 11178 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℂ)
25785recnd 11178 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (sin‘(𝑛 · 𝑋)) ∈ ℂ)
258256, 257mulcomd 11171 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) · (sin‘(𝑛 · 𝑋))) = ((sin‘(𝑛 · 𝑋)) · (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)))
25983, 77syldan 591 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
260259recnd 11178 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℂ)
261257, 260, 163, 164divassd 11969 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (((sin‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥) / π) = ((sin‘(𝑛 · 𝑋)) · (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)))
262119adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
263 nnre 12169 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
264263adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ 𝑥𝐶) → 𝑛 ∈ ℝ)
265117adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ 𝑥𝐶) → 𝑥 ∈ ℝ)
266264, 265remulcld 11180 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ 𝑥𝐶) → (𝑛 · 𝑥) ∈ ℝ)
267266resincld 16087 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℝ)
268267adantll 714 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℝ)
269262, 268remulcld 11180 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝐶) → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) ∈ ℝ)
27053, 269sylanl2 681 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) ∈ ℝ)
271177a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ V)
272 eqidd 2730 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
273 eqidd 2730 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥)))
274271, 268, 262, 272, 273offval2 7653 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))))
275268recnd 11178 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℂ)
276120adantlr 715 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℂ)
277275, 276mulcomd 11171 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))
278277mpteq2dva 5195 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))))
279274, 278eqtr2d 2765 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) = ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))))
280 sincn 26330 . . . . . . . . . . . . . . . . . 18 sin ∈ (ℂ–cn→ℂ)
281280a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → sin ∈ (ℂ–cn→ℂ))
282190a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 𝐶 ⊆ ℂ)
283263recnd 11178 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
284194a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → ℂ ⊆ ℂ)
285282, 283, 284constcncfg 45843 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑥𝐶𝑛) ∈ (𝐶cn→ℂ))
286282, 284idcncfg 45844 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ))
287285, 286mulcncf 25322 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (𝑥𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶cn→ℂ))
288287adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶cn→ℂ))
289281, 288cncfmpt1f 24783 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ))
290 cnmbf 25536 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn)
291176, 289, 290sylancr 587 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn)
292140adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
293 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
294267ralrimiva 3125 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → ∀𝑥𝐶 (sin‘(𝑛 · 𝑥)) ∈ ℝ)
295 dmmptg 6203 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑥𝐶 (sin‘(𝑛 · 𝑥)) ∈ ℝ → dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = 𝐶)
296294, 295syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = 𝐶)
297296adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = 𝐶)
298293, 297eleqtrd 2830 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → 𝑦𝐶)
299 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
300215fveq2d 6844 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑛 · 𝑦)))
301300adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ ∧ 𝑦𝐶) ∧ 𝑥 = 𝑦) → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑛 · 𝑦)))
302 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → 𝑦𝐶)
303263adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → 𝑛 ∈ ℝ)
304136, 302sselid 3941 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → 𝑦 ∈ ℝ)
305303, 304remulcld 11180 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → (𝑛 · 𝑦) ∈ ℝ)
306305resincld 16087 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → (sin‘(𝑛 · 𝑦)) ∈ ℝ)
307299, 301, 302, 306fvmptd 6957 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦) = (sin‘(𝑛 · 𝑦)))
308307fveq2d 6844 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) = (abs‘(sin‘(𝑛 · 𝑦))))
309 abssinbd 45266 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 · 𝑦) ∈ ℝ → (abs‘(sin‘(𝑛 · 𝑦))) ≤ 1)
310305, 309syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → (abs‘(sin‘(𝑛 · 𝑦))) ≤ 1)
311308, 310eqbrtrd 5124 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
312298, 311syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
313312ralrimiva 3125 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
314 breq2 5106 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 1 → ((abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
315314ralbidv 3156 . . . . . . . . . . . . . . . . . 18 (𝑏 = 1 → (∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
316315rspcev 3585 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
317203, 313, 316sylancr 587 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
318317adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
319 bddmulibl 25716 . . . . . . . . . . . . . . 15 (((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
320291, 292, 318, 319syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
321279, 320eqeltrd 2828 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) ∈ 𝐿1)
32283, 321syldan 591 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) ∈ 𝐿1)
323257, 270, 322itgmulc2 25711 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ((sin‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥) = ∫𝐶((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) d𝑥)
324257adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑋)) ∈ ℂ)
32553, 275sylanl2 681 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℂ)
326324, 241, 325mul12d 11359 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) = ((𝐹𝑥) · ((sin‘(𝑛 · 𝑋)) · (sin‘(𝑛 · 𝑥)))))
327324, 325mulcomd 11171 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑋)) · (sin‘(𝑛 · 𝑥))) = ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))
328327oveq2d 7385 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((sin‘(𝑛 · 𝑋)) · (sin‘(𝑛 · 𝑥)))) = ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))))
329326, 328eqtrd 2764 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) = ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))))
330329itgeq2dv 25659 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) d𝑥 = ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥)
331323, 330eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → ((sin‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥) = ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥)
332331oveq1d 7384 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (((sin‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥) / π) = (∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥 / π))
333261, 332eqtr3d 2766 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((sin‘(𝑛 · 𝑋)) · (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) = (∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥 / π))
334255, 258, 3333eqtrd 2768 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) = (∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥 / π))
335251, 334oveq12d 7387 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = ((∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 / π) + (∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥 / π)))
33654, 168sylanl2 681 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
33755, 208sylan 580 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℝ)
33861adantr 480 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑋)) ∈ ℝ)
339337, 338remulcld 11180 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) ∈ ℝ)
340336, 339remulcld 11180 . . . . . . . 8 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) ∈ ℝ)
341241, 242, 240mul13d 45251 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) = ((cos‘(𝑛 · 𝑋)) · ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥))))
342242, 241mulcomd 11171 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))))
343342oveq2d 7385 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑋)) · ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥))) = ((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))))
344341, 343eqtrd 2764 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) = ((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))))
345344mpteq2dva 5195 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))))) = (𝑥𝐶 ↦ ((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))))))
346159, 174, 238iblmulc2 25708 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))))) ∈ 𝐿1)
347345, 346eqeltrd 2828 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))))) ∈ 𝐿1)
348340, 347itgcl 25661 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 ∈ ℂ)
34983, 267sylan 580 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℝ)
35085adantr 480 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑋)) ∈ ℝ)
351349, 350remulcld 11180 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))) ∈ ℝ)
352336, 351remulcld 11180 . . . . . . . 8 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) ∈ ℝ)
353241, 325, 324mul13d 45251 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) = ((sin‘(𝑛 · 𝑋)) · ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))))
354325, 241mulcomd 11171 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))
355354oveq2d 7385 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑋)) · ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))) = ((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))))
356353, 355eqtrd 2764 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) = ((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))))
357356mpteq2dva 5195 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))) = (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))))
358257, 270, 322iblmulc2 25708 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))) ∈ 𝐿1)
359357, 358eqeltrd 2828 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))) ∈ 𝐿1)
360352, 359itgcl 25661 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥 ∈ ℂ)
361348, 360, 163, 164divdird 11972 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → ((∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 + ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥) / π) = ((∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 / π) + (∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥 / π)))
36253nncnd 12178 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℂ)
363362ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → 𝑛 ∈ ℂ)
364108adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → 𝑥 ∈ ℂ)
36558recnd 11178 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℂ)
366365ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → 𝑋 ∈ ℂ)
367363, 364, 366subdid 11610 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝑛 · (𝑥𝑋)) = ((𝑛 · 𝑥) − (𝑛 · 𝑋)))
368367fveq2d 6844 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · (𝑥𝑋))) = (cos‘((𝑛 · 𝑥) − (𝑛 · 𝑋))))
369363, 364mulcld 11170 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝑛 · 𝑥) ∈ ℂ)
370363, 366mulcld 11170 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝑛 · 𝑋) ∈ ℂ)
371 cossub 16113 . . . . . . . . . . . . 13 (((𝑛 · 𝑥) ∈ ℂ ∧ (𝑛 · 𝑋) ∈ ℂ) → (cos‘((𝑛 · 𝑥) − (𝑛 · 𝑋))) = (((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) + ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))))
372369, 370, 371syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘((𝑛 · 𝑥) − (𝑛 · 𝑋))) = (((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) + ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))))
373368, 372eqtrd 2764 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · (𝑥𝑋))) = (((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) + ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))))
374373oveq2d 7385 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) = ((𝐹𝑥) · (((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) + ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))))
375339recnd 11178 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) ∈ ℂ)
376351recnd 11178 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))) ∈ ℂ)
377241, 375, 376adddid 11174 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · (((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) + ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))) = (((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) + ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))))
378374, 377eqtrd 2764 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) = (((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) + ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))))
379378itgeq2dv 25659 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 = ∫𝐶(((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) + ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))) d𝑥)
380340, 347, 352, 359itgadd 25702 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶(((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) + ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))) d𝑥 = (∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 + ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥))
381379, 380eqtr2d 2765 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 + ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥) = ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥)
382381oveq1d 7384 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → ((∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 + ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥) / π) = (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π))
383335, 361, 3823eqtr2d 2770 . . . . 5 ((𝜑𝑛 ∈ (1...𝑁)) → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π))
384383sumeq2dv 15644 . . . 4 (𝜑 → Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = Σ𝑛 ∈ (1...𝑁)(∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π))
38557adantr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → 𝑛 ∈ ℝ)
386117adantl 481 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → 𝑥 ∈ ℝ)
38758ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → 𝑋 ∈ ℝ)
388386, 387resubcld 11582 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝑥𝑋) ∈ ℝ)
389385, 388remulcld 11180 . . . . . . . 8 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝑛 · (𝑥𝑋)) ∈ ℝ)
390389recoscld 16088 . . . . . . 7 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · (𝑥𝑋))) ∈ ℝ)
391336, 390remulcld 11180 . . . . . 6 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) ∈ ℝ)
392177a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → 𝐶 ∈ V)
393 eqidd 2730 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) = (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))))
394 eqidd 2730 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥)))
395392, 390, 336, 393, 394offval2 7653 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ ((cos‘(𝑛 · (𝑥𝑋))) · (𝐹𝑥))))
396390recnd 11178 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · (𝑥𝑋))) ∈ ℂ)
397396, 241mulcomd 11171 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · (𝑥𝑋))) · (𝐹𝑥)) = ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))))
398397mpteq2dva 5195 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((cos‘(𝑛 · (𝑥𝑋))) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))))
399395, 398eqtr2d 2765 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) = ((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))))
400187a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → cos ∈ (ℂ–cn→ℂ))
40183, 285syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶𝑛) ∈ (𝐶cn→ℂ))
40283, 286syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ))
403190a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → 𝐶 ⊆ ℂ)
404365adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑋 ∈ ℂ)
405194a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → ℂ ⊆ ℂ)
406403, 404, 405constcncfg 45843 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶𝑋) ∈ (𝐶cn→ℂ))
407402, 406subcncf 25321 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (𝑥𝑋)) ∈ (𝐶cn→ℂ))
408401, 407mulcncf 25322 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (𝑛 · (𝑥𝑋))) ∈ (𝐶cn→ℂ))
409400, 408cncfmpt1f 24783 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∈ (𝐶cn→ℂ))
410 cnmbf 25536 . . . . . . . . 9 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∈ MblFn)
411176, 409, 410sylancr 587 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∈ MblFn)
412140adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
413 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))) → 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))))
414390ralrimiva 3125 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → ∀𝑥𝐶 (cos‘(𝑛 · (𝑥𝑋))) ∈ ℝ)
415 dmmptg 6203 . . . . . . . . . . . . . 14 (∀𝑥𝐶 (cos‘(𝑛 · (𝑥𝑋))) ∈ ℝ → dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) = 𝐶)
416414, 415syl 17 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) = 𝐶)
417416adantr 480 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))) → dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) = 𝐶)
418413, 417eleqtrd 2830 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))) → 𝑦𝐶)
419 eqidd 2730 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) = (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))))
420 oveq1 7376 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝑥𝑋) = (𝑦𝑋))
421420oveq2d 7385 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑛 · (𝑥𝑋)) = (𝑛 · (𝑦𝑋)))
422421fveq2d 6844 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (cos‘(𝑛 · (𝑥𝑋))) = (cos‘(𝑛 · (𝑦𝑋))))
423422adantl 481 . . . . . . . . . . . . . 14 ((((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) ∧ 𝑥 = 𝑦) → (cos‘(𝑛 · (𝑥𝑋))) = (cos‘(𝑛 · (𝑦𝑋))))
424 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → 𝑦𝐶)
42557adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → 𝑛 ∈ ℝ)
42655, 220sylan 580 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → 𝑦 ∈ ℝ)
42758ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → 𝑋 ∈ ℝ)
428426, 427resubcld 11582 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (𝑦𝑋) ∈ ℝ)
429425, 428remulcld 11180 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (𝑛 · (𝑦𝑋)) ∈ ℝ)
430429recoscld 16088 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (cos‘(𝑛 · (𝑦𝑋))) ∈ ℝ)
431419, 423, 424, 430fvmptd 6957 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → ((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦) = (cos‘(𝑛 · (𝑦𝑋))))
432431fveq2d 6844 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) = (abs‘(cos‘(𝑛 · (𝑦𝑋)))))
433 abscosbd 45250 . . . . . . . . . . . . 13 ((𝑛 · (𝑦𝑋)) ∈ ℝ → (abs‘(cos‘(𝑛 · (𝑦𝑋)))) ≤ 1)
434429, 433syl 17 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (abs‘(cos‘(𝑛 · (𝑦𝑋)))) ≤ 1)
435432, 434eqbrtrd 5124 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 1)
436418, 435syldan 591 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 1)
437436ralrimiva 3125 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 1)
438 breq2 5106 . . . . . . . . . . 11 (𝑏 = 1 → ((abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 1))
439438ralbidv 3156 . . . . . . . . . 10 (𝑏 = 1 → (∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 1))
440439rspcev 3585 . . . . . . . . 9 ((1 ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 1) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 𝑏)
441203, 437, 440sylancr 587 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 𝑏)
442 bddmulibl 25716 . . . . . . . 8 (((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
443411, 412, 441, 442syl3anc 1373 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
444399, 443eqeltrd 2828 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) ∈ 𝐿1)
445391, 444itgcl 25661 . . . . 5 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 ∈ ℂ)
44628, 142, 445, 102fsumdivc 15728 . . . 4 (𝜑 → (Σ𝑛 ∈ (1...𝑁)∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π) = Σ𝑛 ∈ (1...𝑁)(∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π))
447176a1i 11 . . . . . . . 8 (𝜑𝐶 ∈ dom vol)
448 anass 468 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) ↔ (𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑥𝐶)))
449 ancom 460 . . . . . . . . . . 11 ((𝑛 ∈ (1...𝑁) ∧ 𝑥𝐶) ↔ (𝑥𝐶𝑛 ∈ (1...𝑁)))
450449anbi2i 623 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑥𝐶)) ↔ (𝜑 ∧ (𝑥𝐶𝑛 ∈ (1...𝑁))))
451448, 450bitri 275 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) ↔ (𝜑 ∧ (𝑥𝐶𝑛 ∈ (1...𝑁))))
452451, 391sylbir 235 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑛 ∈ (1...𝑁))) → ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) ∈ ℝ)
453447, 28, 452, 444itgfsum 25704 . . . . . . 7 (𝜑 → ((𝑥𝐶 ↦ Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) ∈ 𝐿1 ∧ ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 = Σ𝑛 ∈ (1...𝑁)∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥))
454453simprd 495 . . . . . 6 (𝜑 → ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 = Σ𝑛 ∈ (1...𝑁)∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥)
455454eqcomd 2735 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...𝑁)∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 = ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥)
456455oveq1d 7384 . . . 4 (𝜑 → (Σ𝑛 ∈ (1...𝑁)∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π) = (∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π))
457384, 446, 4563eqtr2d 2770 . . 3 (𝜑 → Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π))
458153, 457oveq12d 7387 . 2 (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 / π) + (∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π)))
459 fourierdlem83.d . . . . . . . . . . 11 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
4607adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝑁 ∈ ℕ)
461 eqid 2729 . . . . . . . . . . 11 (𝐷𝑁) = (𝐷𝑁)
462 eqid 2729 . . . . . . . . . . 11 (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠))) / π)) = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠))) / π))
463459, 460, 461, 462dirkertrigeq 46072 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠))) / π)))
464 oveq2 7377 . . . . . . . . . . . . . . 15 (𝑠 = (𝑥𝑋) → (𝑛 · 𝑠) = (𝑛 · (𝑥𝑋)))
465464fveq2d 6844 . . . . . . . . . . . . . 14 (𝑠 = (𝑥𝑋) → (cos‘(𝑛 · 𝑠)) = (cos‘(𝑛 · (𝑥𝑋))))
466465sumeq2sdv 15645 . . . . . . . . . . . . 13 (𝑠 = (𝑥𝑋) → Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠)) = Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))))
467466oveq2d 7385 . . . . . . . . . . . 12 (𝑠 = (𝑥𝑋) → ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠))) = ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))))
468467oveq1d 7384 . . . . . . . . . . 11 (𝑠 = (𝑥𝑋) → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠))) / π) = (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) / π))
469468adantl 481 . . . . . . . . . 10 (((𝜑𝑥𝐶) ∧ 𝑠 = (𝑥𝑋)) → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠))) / π) = (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) / π))
47058adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝑋 ∈ ℝ)
471118, 470resubcld 11582 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (𝑥𝑋) ∈ ℝ)
472 halfre 12371 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ
473472a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → (1 / 2) ∈ ℝ)
474 fzfid 13914 . . . . . . . . . . . . 13 ((𝜑𝑥𝐶) → (1...𝑁) ∈ Fin)
475390an32s 652 . . . . . . . . . . . . 13 (((𝜑𝑥𝐶) ∧ 𝑛 ∈ (1...𝑁)) → (cos‘(𝑛 · (𝑥𝑋))) ∈ ℝ)
476474, 475fsumrecl 15676 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))) ∈ ℝ)
477473, 476readdcld 11179 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) ∈ ℝ)
47844a1i 11 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → π ∈ ℝ)
47948a1i 11 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → π ≠ 0)
480477, 478, 479redivcld 11986 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) / π) ∈ ℝ)
481463, 469, 471, 480fvmptd 6957 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((𝐷𝑁)‘(𝑥𝑋)) = (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) / π))
482481, 480eqeltrd 2828 . . . . . . . 8 ((𝜑𝑥𝐶) → ((𝐷𝑁)‘(𝑥𝑋)) ∈ ℝ)
483119, 482remulcld 11180 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) ∈ ℝ)
484177a1i 11 . . . . . . . . . 10 (𝜑𝐶 ∈ V)
485 eqidd 2730 . . . . . . . . . 10 (𝜑 → (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) = (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))))
486 eqidd 2730 . . . . . . . . . 10 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥)))
487484, 482, 119, 485, 486offval2 7653 . . . . . . . . 9 (𝜑 → ((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ (((𝐷𝑁)‘(𝑥𝑋)) · (𝐹𝑥))))
488482recnd 11178 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → ((𝐷𝑁)‘(𝑥𝑋)) ∈ ℂ)
489488, 120mulcomd 11171 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (((𝐷𝑁)‘(𝑥𝑋)) · (𝐹𝑥)) = ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))))
490489mpteq2dva 5195 . . . . . . . . 9 (𝜑 → (𝑥𝐶 ↦ (((𝐷𝑁)‘(𝑥𝑋)) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))))
491487, 490eqtr2d 2765 . . . . . . . 8 (𝜑 → (𝑥𝐶 ↦ ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))) = ((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))))
492 eqid 2729 . . . . . . . . . . 11 (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))) = (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))
493 eqid 2729 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ ((𝐷𝑁)‘(𝑥𝑋))) = (𝑥 ∈ ℝ ↦ ((𝐷𝑁)‘(𝑥𝑋)))
494194a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ℂ ⊆ ℂ)
495 cncfss 24768 . . . . . . . . . . . . . 14 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ))
496189, 494, 495sylancr 587 . . . . . . . . . . . . 13 (𝜑 → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ))
497 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
49858adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ) → 𝑋 ∈ ℝ)
499497, 498resubcld 11582 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → (𝑥𝑋) ∈ ℝ)
500 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ ↦ (𝑥𝑋)) = (𝑥 ∈ ℝ ↦ (𝑥𝑋))
501499, 500fmptd 7068 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥𝑋)):ℝ⟶ℝ)
502189a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → ℝ ⊆ ℂ)
503502, 494idcncfg 45844 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ ℝ ↦ 𝑥) ∈ (ℝ–cn→ℂ))
504502, 365, 494constcncfg 45843 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ ℝ ↦ 𝑋) ∈ (ℝ–cn→ℂ))
505503, 504subcncf 25321 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥𝑋)) ∈ (ℝ–cn→ℂ))
506 cncfcdm 24767 . . . . . . . . . . . . . . . 16 ((ℝ ⊆ ℂ ∧ (𝑥 ∈ ℝ ↦ (𝑥𝑋)) ∈ (ℝ–cn→ℂ)) → ((𝑥 ∈ ℝ ↦ (𝑥𝑋)) ∈ (ℝ–cn→ℝ) ↔ (𝑥 ∈ ℝ ↦ (𝑥𝑋)):ℝ⟶ℝ))
507189, 505, 506sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑥 ∈ ℝ ↦ (𝑥𝑋)) ∈ (ℝ–cn→ℝ) ↔ (𝑥 ∈ ℝ ↦ (𝑥𝑋)):ℝ⟶ℝ))
508501, 507mpbird 257 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥𝑋)) ∈ (ℝ–cn→ℝ))
509459dirkercncf 46078 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (𝐷𝑁) ∈ (ℝ–cn→ℝ))
5107, 509syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐷𝑁) ∈ (ℝ–cn→ℝ))
511508, 510cncfcompt 45854 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ (ℝ–cn→ℝ))
512496, 511sseldd 3944 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℝ ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ (ℝ–cn→ℂ))
51344renegcli 11459 . . . . . . . . . . . . . 14 -π ∈ ℝ
514 iccssre 13366 . . . . . . . . . . . . . 14 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
515513, 44, 514mp2an 692 . . . . . . . . . . . . 13 (-π[,]π) ⊆ ℝ
516515a1i 11 . . . . . . . . . . . 12 (𝜑 → (-π[,]π) ⊆ ℝ)
517459dirkerf 46068 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝐷𝑁):ℝ⟶ℝ)
5187, 517syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝑁):ℝ⟶ℝ)
519518adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (-π[,]π)) → (𝐷𝑁):ℝ⟶ℝ)
520516sselda 3943 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (-π[,]π)) → 𝑥 ∈ ℝ)
52158adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (-π[,]π)) → 𝑋 ∈ ℝ)
522520, 521resubcld 11582 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (-π[,]π)) → (𝑥𝑋) ∈ ℝ)
523519, 522ffvelcdmd 7039 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (-π[,]π)) → ((𝐷𝑁)‘(𝑥𝑋)) ∈ ℝ)
524523recnd 11178 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (-π[,]π)) → ((𝐷𝑁)‘(𝑥𝑋)) ∈ ℂ)
525493, 512, 516, 494, 524cncfmptssg 45842 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ ((-π[,]π)–cn→ℂ))
526132a1i 11 . . . . . . . . . . 11 (𝜑𝐶 ⊆ (-π[,]π))
527492, 525, 526, 494, 488cncfmptssg 45842 . . . . . . . . . 10 (𝜑 → (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ (𝐶cn→ℂ))
528 cnmbf 25536 . . . . . . . . . 10 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ MblFn)
529176, 527, 528sylancr 587 . . . . . . . . 9 (𝜑 → (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ MblFn)
530513a1i 11 . . . . . . . . . . . . 13 (𝜑 → -π ∈ ℝ)
531 0red 11153 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℝ)
532 negpilt0 45252 . . . . . . . . . . . . . . . 16 -π < 0
533532a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → -π < 0)
53447a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < π)
535530, 531, 101, 533, 534lttrd 11311 . . . . . . . . . . . . . 14 (𝜑 → -π < π)
536530, 101, 535ltled 11298 . . . . . . . . . . . . 13 (𝜑 → -π ≤ π)
537493, 512, 516, 502, 523cncfmptssg 45842 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ ((-π[,]π)–cn→ℝ))
538530, 101, 536, 537evthiccabs 45467 . . . . . . . . . . . 12 (𝜑 → (∃𝑐 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)) ∧ ∃𝑧 ∈ (-π[,]π)∀𝑤 ∈ (-π[,]π)(abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑧)) ≤ (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑤))))
539538simpld 494 . . . . . . . . . . 11 (𝜑 → ∃𝑐 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)))
540 eqidd 2730 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (-π[,]π)) → (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))) = (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))))
541420fveq2d 6844 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝐷𝑁)‘(𝑥𝑋)) = ((𝐷𝑁)‘(𝑦𝑋)))
542541adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (-π[,]π)) ∧ 𝑥 = 𝑦) → ((𝐷𝑁)‘(𝑥𝑋)) = ((𝐷𝑁)‘(𝑦𝑋)))
543 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (-π[,]π)) → 𝑦 ∈ (-π[,]π))
544518adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (-π[,]π)) → (𝐷𝑁):ℝ⟶ℝ)
545515, 543sselid 3941 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (-π[,]π)) → 𝑦 ∈ ℝ)
54658adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (-π[,]π)) → 𝑋 ∈ ℝ)
547545, 546resubcld 11582 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (-π[,]π)) → (𝑦𝑋) ∈ ℝ)
548544, 547ffvelcdmd 7039 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (-π[,]π)) → ((𝐷𝑁)‘(𝑦𝑋)) ∈ ℝ)
549540, 542, 543, 548fvmptd 6957 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (-π[,]π)) → ((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦) = ((𝐷𝑁)‘(𝑦𝑋)))
550549fveq2d 6844 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (-π[,]π)) → (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) = (abs‘((𝐷𝑁)‘(𝑦𝑋))))
551550adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (-π[,]π)) ∧ 𝑦 ∈ (-π[,]π)) → (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) = (abs‘((𝐷𝑁)‘(𝑦𝑋))))
552 eqidd 2730 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ (-π[,]π)) → (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))) = (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))))
553 oveq1 7376 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑐 → (𝑥𝑋) = (𝑐𝑋))
554553fveq2d 6844 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑐 → ((𝐷𝑁)‘(𝑥𝑋)) = ((𝐷𝑁)‘(𝑐𝑋)))
555554adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ (-π[,]π)) ∧ 𝑥 = 𝑐) → ((𝐷𝑁)‘(𝑥𝑋)) = ((𝐷𝑁)‘(𝑐𝑋)))
556 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ (-π[,]π)) → 𝑐 ∈ (-π[,]π))
557518adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ (-π[,]π)) → (𝐷𝑁):ℝ⟶ℝ)
558515, 556sselid 3941 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑐 ∈ (-π[,]π)) → 𝑐 ∈ ℝ)
55958adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑐 ∈ (-π[,]π)) → 𝑋 ∈ ℝ)
560558, 559resubcld 11582 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ (-π[,]π)) → (𝑐𝑋) ∈ ℝ)
561557, 560ffvelcdmd 7039 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ (-π[,]π)) → ((𝐷𝑁)‘(𝑐𝑋)) ∈ ℝ)
562552, 555, 556, 561fvmptd 6957 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ (-π[,]π)) → ((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐) = ((𝐷𝑁)‘(𝑐𝑋)))
563562fveq2d 6844 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (-π[,]π)) → (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)) = (abs‘((𝐷𝑁)‘(𝑐𝑋))))
564563adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (-π[,]π)) ∧ 𝑦 ∈ (-π[,]π)) → (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)) = (abs‘((𝐷𝑁)‘(𝑐𝑋))))
565551, 564breq12d 5115 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (-π[,]π)) ∧ 𝑦 ∈ (-π[,]π)) → ((abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)) ↔ (abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))))
566565ralbidva 3154 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (-π[,]π)) → (∀𝑦 ∈ (-π[,]π)(abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)) ↔ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))))
567566rexbidva 3155 . . . . . . . . . . 11 (𝜑 → (∃𝑐 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)) ↔ ∃𝑐 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))))
568539, 567mpbid 232 . . . . . . . . . 10 (𝜑 → ∃𝑐 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
569561recnd 11178 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (-π[,]π)) → ((𝐷𝑁)‘(𝑐𝑋)) ∈ ℂ)
570569abscld 15381 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (-π[,]π)) → (abs‘((𝐷𝑁)‘(𝑐𝑋))) ∈ ℝ)
5715703adant3 1132 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) → (abs‘((𝐷𝑁)‘(𝑐𝑋))) ∈ ℝ)
572 nfv 1914 . . . . . . . . . . . . . 14 𝑦𝜑
573 nfv 1914 . . . . . . . . . . . . . 14 𝑦 𝑐 ∈ (-π[,]π)
574 nfra1 3259 . . . . . . . . . . . . . 14 𝑦𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))
575572, 573, 574nf3an 1901 . . . . . . . . . . . . 13 𝑦(𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
576 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))) → 𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))))
577482ralrimiva 3125 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥𝐶 ((𝐷𝑁)‘(𝑥𝑋)) ∈ ℝ)
578 dmmptg 6203 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝐶 ((𝐷𝑁)‘(𝑥𝑋)) ∈ ℝ → dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) = 𝐶)
579577, 578syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) = 𝐶)
580579adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))) → dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) = 𝐶)
581576, 580eleqtrd 2830 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))) → 𝑦𝐶)
5825813ad2antl1 1186 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))) → 𝑦𝐶)
583 eqidd 2730 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝐶) → (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) = (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))))
584541adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝐶) ∧ 𝑥 = 𝑦) → ((𝐷𝑁)‘(𝑥𝑋)) = ((𝐷𝑁)‘(𝑦𝑋)))
585 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝐶) → 𝑦𝐶)
586518adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦𝐶) → (𝐷𝑁):ℝ⟶ℝ)
587136, 585sselid 3941 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦𝐶) → 𝑦 ∈ ℝ)
58858adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦𝐶) → 𝑋 ∈ ℝ)
589587, 588resubcld 11582 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦𝐶) → (𝑦𝑋) ∈ ℝ)
590586, 589ffvelcdmd 7039 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝐶) → ((𝐷𝑁)‘(𝑦𝑋)) ∈ ℝ)
591583, 584, 585, 590fvmptd 6957 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦𝐶) → ((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦) = ((𝐷𝑁)‘(𝑦𝑋)))
592591fveq2d 6844 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝐶) → (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) = (abs‘((𝐷𝑁)‘(𝑦𝑋))))
593592adantlr 715 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) = (abs‘((𝐷𝑁)‘(𝑦𝑋))))
594 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦𝐶) → ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
595132sseli 3939 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐶𝑦 ∈ (-π[,]π))
596595adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦𝐶) → 𝑦 ∈ (-π[,]π))
597 rspa 3224 . . . . . . . . . . . . . . . . . 18 ((∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))) ∧ 𝑦 ∈ (-π[,]π)) → (abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
598594, 596, 597syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦𝐶) → (abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
599593, 598eqbrtrd 5124 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
6005993adantl2 1168 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
601582, 600syldan 591 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))) → (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
602601ex 412 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) → (𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) → (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))))
603575, 602ralrimi 3233 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) → ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
604 breq2 5106 . . . . . . . . . . . . . 14 (𝑏 = (abs‘((𝐷𝑁)‘(𝑐𝑋))) → ((abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))))
605604ralbidv 3156 . . . . . . . . . . . . 13 (𝑏 = (abs‘((𝐷𝑁)‘(𝑐𝑋))) → (∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))))
606605rspcev 3585 . . . . . . . . . . . 12 (((abs‘((𝐷𝑁)‘(𝑐𝑋))) ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏)
607571, 603, 606syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏)
608607rexlimdv3a 3138 . . . . . . . . . 10 (𝜑 → (∃𝑐 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏))
609568, 608mpd 15 . . . . . . . . 9 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏)
610 bddmulibl 25716 . . . . . . . . 9 (((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
611529, 140, 609, 610syl3anc 1373 . . . . . . . 8 (𝜑 → ((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
612491, 611eqeltrd 2828 . . . . . . 7 (𝜑 → (𝑥𝐶 ↦ ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))) ∈ 𝐿1)
613142, 483, 612itgmulc2 25711 . . . . . 6 (𝜑 → (π · ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥) = ∫𝐶(π · ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))) d𝑥)
614142adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐶) → π ∈ ℂ)
615120, 488, 614mul13d 45251 . . . . . . . 8 ((𝜑𝑥𝐶) → ((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)) = (π · (((𝐷𝑁)‘(𝑥𝑋)) · (𝐹𝑥))))
616489oveq2d 7385 . . . . . . . 8 ((𝜑𝑥𝐶) → (π · (((𝐷𝑁)‘(𝑥𝑋)) · (𝐹𝑥))) = (π · ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))))
617615, 616eqtrd 2764 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)) = (π · ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))))
618617itgeq2dv 25659 . . . . . 6 (𝜑 → ∫𝐶((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)) d𝑥 = ∫𝐶(π · ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))) d𝑥)
619613, 618eqtr4d 2767 . . . . 5 (𝜑 → (π · ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥) = ∫𝐶((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)) d𝑥)
620148adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐶) → (1 / 2) ∈ ℂ)
621620, 120mulcomd 11171 . . . . . . . 8 ((𝜑𝑥𝐶) → ((1 / 2) · (𝐹𝑥)) = ((𝐹𝑥) · (1 / 2)))
622396an32s 652 . . . . . . . . . 10 (((𝜑𝑥𝐶) ∧ 𝑛 ∈ (1...𝑁)) → (cos‘(𝑛 · (𝑥𝑋))) ∈ ℂ)
623474, 120, 622fsummulc2 15726 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((𝐹𝑥) · Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) = Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))))
624623eqcomd 2735 . . . . . . . 8 ((𝜑𝑥𝐶) → Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) = ((𝐹𝑥) · Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))))
625621, 624oveq12d 7387 . . . . . . 7 ((𝜑𝑥𝐶) → (((1 / 2) · (𝐹𝑥)) + Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) = (((𝐹𝑥) · (1 / 2)) + ((𝐹𝑥) · Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))))))
626474, 622fsumcl 15675 . . . . . . . 8 ((𝜑𝑥𝐶) → Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))) ∈ ℂ)
627120, 620, 626adddid 11174 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝐹𝑥) · ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))))) = (((𝐹𝑥) · (1 / 2)) + ((𝐹𝑥) · Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))))))
628481oveq1d 7384 . . . . . . . . 9 ((𝜑𝑥𝐶) → (((𝐷𝑁)‘(𝑥𝑋)) · π) = ((((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) / π) · π))
629620, 626addcld 11169 . . . . . . . . . 10 ((𝜑𝑥𝐶) → ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) ∈ ℂ)
630629, 614, 479divcan1d 11935 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) / π) · π) = ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))))
631628, 630eqtr2d 2765 . . . . . . . 8 ((𝜑𝑥𝐶) → ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) = (((𝐷𝑁)‘(𝑥𝑋)) · π))
632631oveq2d 7385 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝐹𝑥) · ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))))) = ((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)))
633625, 627, 6323eqtr2rd 2771 . . . . . 6 ((𝜑𝑥𝐶) → ((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)) = (((1 / 2) · (𝐹𝑥)) + Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))))
634633itgeq2dv 25659 . . . . 5 (𝜑 → ∫𝐶((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)) d𝑥 = ∫𝐶(((1 / 2) · (𝐹𝑥)) + Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) d𝑥)
635 remulcl 11129 . . . . . . 7 (((1 / 2) ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → ((1 / 2) · (𝐹𝑥)) ∈ ℝ)
636472, 119, 635sylancr 587 . . . . . 6 ((𝜑𝑥𝐶) → ((1 / 2) · (𝐹𝑥)) ∈ ℝ)
637148, 119, 140iblmulc2 25708 . . . . . 6 (𝜑 → (𝑥𝐶 ↦ ((1 / 2) · (𝐹𝑥))) ∈ 𝐿1)
638391an32s 652 . . . . . . 7 (((𝜑𝑥𝐶) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) ∈ ℝ)
639474, 638fsumrecl 15676 . . . . . 6 ((𝜑𝑥𝐶) → Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) ∈ ℝ)
640453simpld 494 . . . . . 6 (𝜑 → (𝑥𝐶 ↦ Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) ∈ 𝐿1)
641636, 637, 639, 640itgadd 25702 . . . . 5 (𝜑 → ∫𝐶(((1 / 2) · (𝐹𝑥)) + Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) d𝑥 = (∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 + ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥))
642619, 634, 6413eqtrrd 2769 . . . 4 (𝜑 → (∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 + ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥) = (π · ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥))
643642oveq1d 7384 . . 3 (𝜑 → ((∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 + ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥) / π) = ((π · ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥) / π))
644636, 637itgcl 25661 . . . 4 (𝜑 → ∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 ∈ ℂ)
645639, 640itgcl 25661 . . . 4 (𝜑 → ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 ∈ ℂ)
646644, 645, 142, 102divdird 11972 . . 3 (𝜑 → ((∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 + ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥) / π) = ((∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 / π) + (∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π)))
647483, 612itgcl 25661 . . . 4 (𝜑 → ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥 ∈ ℂ)
648647, 142, 102divcan3d 11939 . . 3 (𝜑 → ((π · ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥) / π) = ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥)
649643, 646, 6483eqtr3d 2772 . 2 (𝜑 → ((∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 / π) + (∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π)) = ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥)
65090, 458, 6493eqtrd 2768 1 (𝜑 → (𝑆𝑁) = ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3444  wss 3911  ifcif 4484   class class class wbr 5102  cmpt 5183  dom cdm 5631  cres 5633  wf 6495  cfv 6499  (class class class)co 7369  f cof 7631  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381  -cneg 11382   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  (,)cioo 13282  [,]cicc 13285  ...cfz 13444   mod cmo 13807  abscabs 15176  Σcsu 15628  sincsin 16005  cosccos 16006  πcpi 16008  cnccncf 24745  volcvol 25340  MblFncmbf 25491  𝐿1cibl 25494  citg 25495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-t1 23177  df-haus 23178  df-cmp 23250  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-ovol 25341  df-vol 25342  df-mbf 25496  df-itg1 25497  df-itg2 25498  df-ibl 25499  df-itg 25500  df-0p 25547  df-limc 25743  df-dv 25744
This theorem is referenced by:  fourierdlem111  46188
  Copyright terms: Public domain W3C validator