Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem83 Structured version   Visualization version   GIF version

Theorem fourierdlem83 43737
Description: The fourier partial sum for 𝐹 rewritten as an integral. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem83.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem83.c 𝐶 = (-π(,)π)
fourierdlem83.fl1 (𝜑 → (𝐹𝐶) ∈ 𝐿1)
fourierdlem83.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem83.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem83.x (𝜑𝑋 ∈ ℝ)
fourierdlem83.s 𝑆 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
fourierdlem83.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
fourierdlem83.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
fourierdlem83 (𝜑 → (𝑆𝑁) = ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥)
Distinct variable groups:   𝐴,𝑚,𝑛   𝐵,𝑚   𝑥,𝐶,𝑛,𝑠   𝑥,𝐷,𝑠   𝑛,𝐹,𝑥   𝑥,𝑁   𝑚,𝑁,𝑛   𝑁,𝑠   𝑥,𝑋   𝑚,𝑋,𝑛   𝑋,𝑠   𝜑,𝑥,𝑛   𝜑,𝑚   𝜑,𝑠
Allowed substitution hints:   𝐴(𝑥,𝑠)   𝐵(𝑥,𝑛,𝑠)   𝐶(𝑚)   𝐷(𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛,𝑠)   𝐹(𝑚,𝑠)

Proof of Theorem fourierdlem83
Dummy variables 𝑏 𝑐 𝑦 𝑘 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem83.s . . . 4 𝑆 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
21a1i 11 . . 3 (𝜑𝑆 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))))
3 oveq2 7292 . . . . . 6 (𝑚 = 𝑁 → (1...𝑚) = (1...𝑁))
43sumeq1d 15422 . . . . 5 (𝑚 = 𝑁 → Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
54oveq2d 7300 . . . 4 (𝑚 = 𝑁 → (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
65adantl 482 . . 3 ((𝜑𝑚 = 𝑁) → (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
7 fourierdlem83.n . . 3 (𝜑𝑁 ∈ ℕ)
8 id 22 . . . . . 6 (𝜑𝜑)
9 0nn0 12257 . . . . . . 7 0 ∈ ℕ0
109a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℕ0)
119elexi 3452 . . . . . . 7 0 ∈ V
12 eleq1 2827 . . . . . . . . 9 (𝑛 = 0 → (𝑛 ∈ ℕ0 ↔ 0 ∈ ℕ0))
1312anbi2d 629 . . . . . . . 8 (𝑛 = 0 → ((𝜑𝑛 ∈ ℕ0) ↔ (𝜑 ∧ 0 ∈ ℕ0)))
14 fveq2 6783 . . . . . . . . 9 (𝑛 = 0 → (𝐴𝑛) = (𝐴‘0))
1514eleq1d 2824 . . . . . . . 8 (𝑛 = 0 → ((𝐴𝑛) ∈ ℝ ↔ (𝐴‘0) ∈ ℝ))
1613, 15imbi12d 345 . . . . . . 7 (𝑛 = 0 → (((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℝ) ↔ ((𝜑 ∧ 0 ∈ ℕ0) → (𝐴‘0) ∈ ℝ)))
17 fourierdlem83.f . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
18 fourierdlem83.c . . . . . . . . . 10 𝐶 = (-π(,)π)
19 fourierdlem83.fl1 . . . . . . . . . 10 (𝜑 → (𝐹𝐶) ∈ 𝐿1)
20 fourierdlem83.a . . . . . . . . . 10 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
21 fourierdlem83.b . . . . . . . . . 10 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
2217, 18, 19, 20, 21fourierdlem22 43677 . . . . . . . . 9 (𝜑 → ((𝑛 ∈ ℕ0 → (𝐴𝑛) ∈ ℝ) ∧ (𝑛 ∈ ℕ → (𝐵𝑛) ∈ ℝ)))
2322simpld 495 . . . . . . . 8 (𝜑 → (𝑛 ∈ ℕ0 → (𝐴𝑛) ∈ ℝ))
2423imp 407 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℝ)
2511, 16, 24vtocl 3499 . . . . . 6 ((𝜑 ∧ 0 ∈ ℕ0) → (𝐴‘0) ∈ ℝ)
268, 10, 25syl2anc 584 . . . . 5 (𝜑 → (𝐴‘0) ∈ ℝ)
2726rehalfcld 12229 . . . 4 (𝜑 → ((𝐴‘0) / 2) ∈ ℝ)
28 fzfid 13702 . . . . 5 (𝜑 → (1...𝑁) ∈ Fin)
29 eleq1 2827 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝑘 ∈ ℕ0𝑛 ∈ ℕ0))
3029anbi2d 629 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((𝜑𝑘 ∈ ℕ0) ↔ (𝜑𝑛 ∈ ℕ0)))
31 simpl 483 . . . . . . . . . . . . . . . . . 18 ((𝑘 = 𝑛𝑥𝐶) → 𝑘 = 𝑛)
3231oveq1d 7299 . . . . . . . . . . . . . . . . 17 ((𝑘 = 𝑛𝑥𝐶) → (𝑘 · 𝑥) = (𝑛 · 𝑥))
3332fveq2d 6787 . . . . . . . . . . . . . . . 16 ((𝑘 = 𝑛𝑥𝐶) → (cos‘(𝑘 · 𝑥)) = (cos‘(𝑛 · 𝑥)))
3433oveq2d 7300 . . . . . . . . . . . . . . 15 ((𝑘 = 𝑛𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) = ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))))
3534itgeq2dv 24955 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ∫𝐶((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 = ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥)
3635eleq1d 2824 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (∫𝐶((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ ↔ ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ))
3730, 36imbi12d 345 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ) ↔ ((𝜑𝑛 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)))
3817adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → 𝐹:ℝ⟶ℝ)
3919adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝐶) ∈ 𝐿1)
40 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
4138, 18, 39, 20, 40fourierdlem16 43671 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (((𝐴𝑘) ∈ ℝ ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1) ∧ ∫𝐶((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ))
4241simprd 496 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ)
4337, 42chvarvv 2003 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
44 pire 25624 . . . . . . . . . . . 12 π ∈ ℝ
4544a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → π ∈ ℝ)
46 0re 10986 . . . . . . . . . . . . 13 0 ∈ ℝ
47 pipos 25626 . . . . . . . . . . . . 13 0 < π
4846, 47gtneii 11096 . . . . . . . . . . . 12 π ≠ 0
4948a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → π ≠ 0)
5043, 45, 49redivcld 11812 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
5150, 20fmptd 6997 . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℝ)
5251adantr 481 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → 𝐴:ℕ0⟶ℝ)
53 elfznn 13294 . . . . . . . . . 10 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ)
5453nnnn0d 12302 . . . . . . . . 9 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ0)
5554adantl 482 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℕ0)
5652, 55ffvelrnd 6971 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐴𝑛) ∈ ℝ)
5755nn0red 12303 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℝ)
58 fourierdlem83.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
5958adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑋 ∈ ℝ)
6057, 59remulcld 11014 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑛 · 𝑋) ∈ ℝ)
6160recoscld 15862 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (cos‘(𝑛 · 𝑋)) ∈ ℝ)
6256, 61remulcld 11014 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) ∈ ℝ)
63 eleq1 2827 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝑘 ∈ ℕ ↔ 𝑛 ∈ ℕ))
6463anbi2d 629 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((𝜑𝑘 ∈ ℕ) ↔ (𝜑𝑛 ∈ ℕ)))
65 oveq1 7291 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → (𝑘 · 𝑥) = (𝑛 · 𝑥))
6665fveq2d 6787 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (sin‘(𝑘 · 𝑥)) = (sin‘(𝑛 · 𝑥)))
6766oveq2d 7300 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))
6867adantr 481 . . . . . . . . . . . . . . 15 ((𝑘 = 𝑛𝑥𝐶) → ((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))
6968itgeq2dv 24955 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ∫𝐶((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 = ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥)
7069eleq1d 2824 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (∫𝐶((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ ↔ ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ))
7164, 70imbi12d 345 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ) ↔ ((𝜑𝑛 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)))
7217adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
7319adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐹𝐶) ∈ 𝐿1)
74 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
7572, 18, 73, 21, 74fourierdlem21 43676 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (((𝐵𝑘) ∈ ℝ ∧ (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑘 · 𝑥)))) ∈ 𝐿1) ∧ ∫𝐶((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ))
7675simprd 496 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ)
7771, 76chvarvv 2003 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
7844a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
7948a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → π ≠ 0)
8077, 78, 79redivcld 11812 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
8180, 21fmptd 6997 . . . . . . . . 9 (𝜑𝐵:ℕ⟶ℝ)
8281adantr 481 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → 𝐵:ℕ⟶ℝ)
8353adantl 482 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℕ)
8482, 83ffvelrnd 6971 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐵𝑛) ∈ ℝ)
8560resincld 15861 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (sin‘(𝑛 · 𝑋)) ∈ ℝ)
8684, 85remulcld 11014 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) ∈ ℝ)
8762, 86readdcld 11013 . . . . 5 ((𝜑𝑛 ∈ (1...𝑁)) → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℝ)
8828, 87fsumrecl 15455 . . . 4 (𝜑 → Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℝ)
8927, 88readdcld 11013 . . 3 (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) ∈ ℝ)
902, 6, 7, 89fvmptd 6891 . 2 (𝜑 → (𝑆𝑁) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
9120a1i 11 . . . . . . 7 (𝜑𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)))
92 oveq1 7291 . . . . . . . . . . . . 13 (𝑛 = 0 → (𝑛 · 𝑥) = (0 · 𝑥))
9392fveq2d 6787 . . . . . . . . . . . 12 (𝑛 = 0 → (cos‘(𝑛 · 𝑥)) = (cos‘(0 · 𝑥)))
9493oveq2d 7300 . . . . . . . . . . 11 (𝑛 = 0 → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (cos‘(0 · 𝑥))))
9594adantr 481 . . . . . . . . . 10 ((𝑛 = 0 ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (cos‘(0 · 𝑥))))
9695itgeq2dv 24955 . . . . . . . . 9 (𝑛 = 0 → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 = ∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥)
9796adantl 482 . . . . . . . 8 ((𝜑𝑛 = 0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 = ∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥)
9897oveq1d 7299 . . . . . . 7 ((𝜑𝑛 = 0) → (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) = (∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 / π))
9917, 18, 19, 20, 10fourierdlem16 43671 . . . . . . . . 9 (𝜑 → (((𝐴‘0) ∈ ℝ ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1) ∧ ∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 ∈ ℝ))
10099simprd 496 . . . . . . . 8 (𝜑 → ∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 ∈ ℝ)
10144a1i 11 . . . . . . . 8 (𝜑 → π ∈ ℝ)
10248a1i 11 . . . . . . . 8 (𝜑 → π ≠ 0)
103100, 101, 102redivcld 11812 . . . . . . 7 (𝜑 → (∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 / π) ∈ ℝ)
10491, 98, 10, 103fvmptd 6891 . . . . . 6 (𝜑 → (𝐴‘0) = (∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 / π))
105 ioosscn 13150 . . . . . . . . . . . . . . 15 (-π(,)π) ⊆ ℂ
106 id 22 . . . . . . . . . . . . . . . 16 (𝑥𝐶𝑥𝐶)
107106, 18eleqtrdi 2850 . . . . . . . . . . . . . . 15 (𝑥𝐶𝑥 ∈ (-π(,)π))
108105, 107sselid 3920 . . . . . . . . . . . . . 14 (𝑥𝐶𝑥 ∈ ℂ)
109108mul02d 11182 . . . . . . . . . . . . 13 (𝑥𝐶 → (0 · 𝑥) = 0)
110109fveq2d 6787 . . . . . . . . . . . 12 (𝑥𝐶 → (cos‘(0 · 𝑥)) = (cos‘0))
111 cos0 15868 . . . . . . . . . . . 12 (cos‘0) = 1
112110, 111eqtrdi 2795 . . . . . . . . . . 11 (𝑥𝐶 → (cos‘(0 · 𝑥)) = 1)
113112oveq2d 7300 . . . . . . . . . 10 (𝑥𝐶 → ((𝐹𝑥) · (cos‘(0 · 𝑥))) = ((𝐹𝑥) · 1))
114113adantl 482 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((𝐹𝑥) · (cos‘(0 · 𝑥))) = ((𝐹𝑥) · 1))
11517adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → 𝐹:ℝ⟶ℝ)
116 ioossre 13149 . . . . . . . . . . . . . 14 (-π(,)π) ⊆ ℝ
117116, 107sselid 3920 . . . . . . . . . . . . 13 (𝑥𝐶𝑥 ∈ ℝ)
118117adantl 482 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → 𝑥 ∈ ℝ)
119115, 118ffvelrnd 6971 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
120119recnd 11012 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (𝐹𝑥) ∈ ℂ)
121120mulid1d 11001 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((𝐹𝑥) · 1) = (𝐹𝑥))
122114, 121eqtrd 2779 . . . . . . . 8 ((𝜑𝑥𝐶) → ((𝐹𝑥) · (cos‘(0 · 𝑥))) = (𝐹𝑥))
123122itgeq2dv 24955 . . . . . . 7 (𝜑 → ∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 = ∫𝐶(𝐹𝑥) d𝑥)
124123oveq1d 7299 . . . . . 6 (𝜑 → (∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 / π) = (∫𝐶(𝐹𝑥) d𝑥 / π))
125104, 124eqtrd 2779 . . . . 5 (𝜑 → (𝐴‘0) = (∫𝐶(𝐹𝑥) d𝑥 / π))
126125oveq1d 7299 . . . 4 (𝜑 → ((𝐴‘0) / 2) = ((∫𝐶(𝐹𝑥) d𝑥 / π) / 2))
12717feqmptd 6846 . . . . . . . . 9 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
128127reseq1d 5893 . . . . . . . 8 (𝜑 → (𝐹𝐶) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶))
12944a1i 11 . . . . . . . . . . . 12 (𝑥𝐶 → π ∈ ℝ)
130129renegcld 11411 . . . . . . . . . . 11 (𝑥𝐶 → -π ∈ ℝ)
131 ioossicc 13174 . . . . . . . . . . . . 13 (-π(,)π) ⊆ (-π[,]π)
13218, 131eqsstri 3956 . . . . . . . . . . . 12 𝐶 ⊆ (-π[,]π)
133132sseli 3918 . . . . . . . . . . 11 (𝑥𝐶𝑥 ∈ (-π[,]π))
134 eliccre 43050 . . . . . . . . . . 11 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ 𝑥 ∈ (-π[,]π)) → 𝑥 ∈ ℝ)
135130, 129, 133, 134syl3anc 1370 . . . . . . . . . 10 (𝑥𝐶𝑥 ∈ ℝ)
136135ssriv 3926 . . . . . . . . 9 𝐶 ⊆ ℝ
137 resmpt 5948 . . . . . . . . 9 (𝐶 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
138136, 137mp1i 13 . . . . . . . 8 (𝜑 → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
139128, 138eqtr2d 2780 . . . . . . 7 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝐹𝐶))
140139, 19eqeltrd 2840 . . . . . 6 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
141119, 140itgcl 24957 . . . . 5 (𝜑 → ∫𝐶(𝐹𝑥) d𝑥 ∈ ℂ)
142101recnd 11012 . . . . 5 (𝜑 → π ∈ ℂ)
143 2cnd 12060 . . . . 5 (𝜑 → 2 ∈ ℂ)
144 2ne0 12086 . . . . . 6 2 ≠ 0
145144a1i 11 . . . . 5 (𝜑 → 2 ≠ 0)
146141, 142, 143, 102, 145divdiv32d 11785 . . . 4 (𝜑 → ((∫𝐶(𝐹𝑥) d𝑥 / π) / 2) = ((∫𝐶(𝐹𝑥) d𝑥 / 2) / π))
147141, 143, 145divrecd 11763 . . . . . 6 (𝜑 → (∫𝐶(𝐹𝑥) d𝑥 / 2) = (∫𝐶(𝐹𝑥) d𝑥 · (1 / 2)))
148143, 145reccld 11753 . . . . . . 7 (𝜑 → (1 / 2) ∈ ℂ)
149141, 148mulcomd 11005 . . . . . 6 (𝜑 → (∫𝐶(𝐹𝑥) d𝑥 · (1 / 2)) = ((1 / 2) · ∫𝐶(𝐹𝑥) d𝑥))
150148, 119, 140itgmulc2 25007 . . . . . 6 (𝜑 → ((1 / 2) · ∫𝐶(𝐹𝑥) d𝑥) = ∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥)
151147, 149, 1503eqtrd 2783 . . . . 5 (𝜑 → (∫𝐶(𝐹𝑥) d𝑥 / 2) = ∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥)
152151oveq1d 7299 . . . 4 (𝜑 → ((∫𝐶(𝐹𝑥) d𝑥 / 2) / π) = (∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 / π))
153126, 146, 1523eqtrd 2783 . . 3 (𝜑 → ((𝐴‘0) / 2) = (∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 / π))
15455, 50syldan 591 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
15520fvmpt2 6895 . . . . . . . . . 10 ((𝑛 ∈ ℕ0 ∧ (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ) → (𝐴𝑛) = (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
15655, 154, 155syl2anc 584 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐴𝑛) = (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
157156oveq1d 7299 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) = ((∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) · (cos‘(𝑛 · 𝑋))))
158154recnd 11012 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℂ)
15961recnd 11012 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (cos‘(𝑛 · 𝑋)) ∈ ℂ)
160158, 159mulcomd 11005 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) · (cos‘(𝑛 · 𝑋))) = ((cos‘(𝑛 · 𝑋)) · (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)))
16155, 43syldan 591 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
162161recnd 11012 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℂ)
163142adantr 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → π ∈ ℂ)
16448a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → π ≠ 0)
165159, 162, 163, 164divassd 11795 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (((cos‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥) / π) = ((cos‘(𝑛 · 𝑋)) · (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)))
16617ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → 𝐹:ℝ⟶ℝ)
167117adantl 482 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → 𝑥 ∈ ℝ)
168166, 167ffvelrnd 6971 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
169 nn0re 12251 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
170169ad2antlr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → 𝑛 ∈ ℝ)
171170, 167remulcld 11014 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝑛 · 𝑥) ∈ ℝ)
172171recoscld 15862 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℝ)
173168, 172remulcld 11014 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) ∈ ℝ)
17454, 173sylanl2 678 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) ∈ ℝ)
175 ioombl 24738 . . . . . . . . . . . . . . . . . . 19 (-π(,)π) ∈ dom vol
17618, 175eqeltri 2836 . . . . . . . . . . . . . . . . . 18 𝐶 ∈ dom vol
177176elexi 3452 . . . . . . . . . . . . . . . . 17 𝐶 ∈ V
178177a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → 𝐶 ∈ V)
179 eqidd 2740 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
180 eqidd 2740 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥)))
181178, 172, 168, 179, 180offval2 7562 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥))))
182172recnd 11012 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℂ)
183120adantlr 712 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℂ)
184182, 183mulcomd 11005 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))))
185184mpteq2dva 5175 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))))
186181, 185eqtr2d 2780 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) = ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))))
187 coscn 25613 . . . . . . . . . . . . . . . . . 18 cos ∈ (ℂ–cn→ℂ)
188187a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ0) → cos ∈ (ℂ–cn→ℂ))
189 ax-resscn 10937 . . . . . . . . . . . . . . . . . . . . 21 ℝ ⊆ ℂ
190136, 189sstri 3931 . . . . . . . . . . . . . . . . . . . 20 𝐶 ⊆ ℂ
191190a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ0) → 𝐶 ⊆ ℂ)
192169recnd 11012 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
193192adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
194 ssid 3944 . . . . . . . . . . . . . . . . . . . 20 ℂ ⊆ ℂ
195194a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ0) → ℂ ⊆ ℂ)
196191, 193, 195constcncfg 43420 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶𝑛) ∈ (𝐶cn→ℂ))
197191, 195idcncfg 43421 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ))
198196, 197mulcncf 24619 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶cn→ℂ))
199188, 198cncfmpt1f 24086 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ))
200 cnmbf 24832 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn)
201176, 199, 200sylancr 587 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn)
202140adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
203 1re 10984 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
204 simpr 485 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
205169adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ0𝑥𝐶) → 𝑛 ∈ ℝ)
206117adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ0𝑥𝐶) → 𝑥 ∈ ℝ)
207205, 206remulcld 11014 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ0𝑥𝐶) → (𝑛 · 𝑥) ∈ ℝ)
208207recoscld 15862 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ0𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℝ)
209208ralrimiva 3104 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ0 → ∀𝑥𝐶 (cos‘(𝑛 · 𝑥)) ∈ ℝ)
210209adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → ∀𝑥𝐶 (cos‘(𝑛 · 𝑥)) ∈ ℝ)
211 dmmptg 6150 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑥𝐶 (cos‘(𝑛 · 𝑥)) ∈ ℝ → dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = 𝐶)
212210, 211syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = 𝐶)
213204, 212eleqtrd 2842 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → 𝑦𝐶)
214 eqidd 2740 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
215 oveq2 7292 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑦 → (𝑛 · 𝑥) = (𝑛 · 𝑦))
216215fveq2d 6787 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑛 · 𝑦)))
217216adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0𝑦𝐶) ∧ 𝑥 = 𝑦) → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑛 · 𝑦)))
218 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑦𝐶)
219169adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑛 ∈ ℝ)
220136, 218sselid 3920 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑦 ∈ ℝ)
221219, 220remulcld 11014 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑛 · 𝑦) ∈ ℝ)
222221recoscld 15862 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ0𝑦𝐶) → (cos‘(𝑛 · 𝑦)) ∈ ℝ)
223214, 217, 218, 222fvmptd 6891 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ0𝑦𝐶) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦) = (cos‘(𝑛 · 𝑦)))
224223fveq2d 6787 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) = (abs‘(cos‘(𝑛 · 𝑦))))
225 abscosbd 42824 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 · 𝑦) ∈ ℝ → (abs‘(cos‘(𝑛 · 𝑦))) ≤ 1)
226221, 225syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘(cos‘(𝑛 · 𝑦))) ≤ 1)
227224, 226eqbrtrd 5097 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
228213, 227syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
229228ralrimiva 3104 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
230 breq2 5079 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 1 → ((abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
231230ralbidv 3113 . . . . . . . . . . . . . . . . . 18 (𝑏 = 1 → (∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
232231rspcev 3562 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
233203, 229, 232sylancr 587 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
234233adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
235 bddmulibl 25012 . . . . . . . . . . . . . . 15 (((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
236201, 202, 234, 235syl3anc 1370 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
237186, 236eqeltrd 2840 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) ∈ 𝐿1)
23855, 237syldan 591 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) ∈ 𝐿1)
239159, 174, 238itgmulc2 25007 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ((cos‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥) = ∫𝐶((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) d𝑥)
240159adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑋)) ∈ ℂ)
241120adantlr 712 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℂ)
24254, 182sylanl2 678 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℂ)
243240, 241, 242mul12d 11193 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) = ((𝐹𝑥) · ((cos‘(𝑛 · 𝑋)) · (cos‘(𝑛 · 𝑥)))))
244240, 242mulcomd 11005 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑋)) · (cos‘(𝑛 · 𝑥))) = ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))))
245244oveq2d 7300 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((cos‘(𝑛 · 𝑋)) · (cos‘(𝑛 · 𝑥)))) = ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))))
246243, 245eqtrd 2779 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) = ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))))
247246itgeq2dv 24955 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) d𝑥 = ∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥)
248239, 247eqtrd 2779 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → ((cos‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥) = ∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥)
249248oveq1d 7299 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (((cos‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥) / π) = (∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 / π))
250165, 249eqtr3d 2781 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((cos‘(𝑛 · 𝑋)) · (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) = (∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 / π))
251157, 160, 2503eqtrd 2783 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) = (∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 / π))
25283, 80syldan 591 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
25321fvmpt2 6895 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ) → (𝐵𝑛) = (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
25483, 252, 253syl2anc 584 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐵𝑛) = (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
255254oveq1d 7299 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) = ((∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) · (sin‘(𝑛 · 𝑋))))
256252recnd 11012 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℂ)
25785recnd 11012 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (sin‘(𝑛 · 𝑋)) ∈ ℂ)
258256, 257mulcomd 11005 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) · (sin‘(𝑛 · 𝑋))) = ((sin‘(𝑛 · 𝑋)) · (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)))
25983, 77syldan 591 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
260259recnd 11012 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℂ)
261257, 260, 163, 164divassd 11795 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (((sin‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥) / π) = ((sin‘(𝑛 · 𝑋)) · (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)))
262119adantlr 712 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
263 nnre 11989 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
264263adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ 𝑥𝐶) → 𝑛 ∈ ℝ)
265117adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ 𝑥𝐶) → 𝑥 ∈ ℝ)
266264, 265remulcld 11014 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ 𝑥𝐶) → (𝑛 · 𝑥) ∈ ℝ)
267266resincld 15861 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℝ)
268267adantll 711 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℝ)
269262, 268remulcld 11014 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝐶) → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) ∈ ℝ)
27053, 269sylanl2 678 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) ∈ ℝ)
271177a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ V)
272 eqidd 2740 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
273 eqidd 2740 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥)))
274271, 268, 262, 272, 273offval2 7562 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))))
275268recnd 11012 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℂ)
276120adantlr 712 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℂ)
277275, 276mulcomd 11005 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))
278277mpteq2dva 5175 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))))
279274, 278eqtr2d 2780 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) = ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))))
280 sincn 25612 . . . . . . . . . . . . . . . . . 18 sin ∈ (ℂ–cn→ℂ)
281280a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → sin ∈ (ℂ–cn→ℂ))
282190a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 𝐶 ⊆ ℂ)
283263recnd 11012 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
284194a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → ℂ ⊆ ℂ)
285282, 283, 284constcncfg 43420 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑥𝐶𝑛) ∈ (𝐶cn→ℂ))
286282, 284idcncfg 43421 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ))
287285, 286mulcncf 24619 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (𝑥𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶cn→ℂ))
288287adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶cn→ℂ))
289281, 288cncfmpt1f 24086 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ))
290 cnmbf 24832 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn)
291176, 289, 290sylancr 587 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn)
292140adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
293 simpr 485 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
294267ralrimiva 3104 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → ∀𝑥𝐶 (sin‘(𝑛 · 𝑥)) ∈ ℝ)
295 dmmptg 6150 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑥𝐶 (sin‘(𝑛 · 𝑥)) ∈ ℝ → dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = 𝐶)
296294, 295syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = 𝐶)
297296adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = 𝐶)
298293, 297eleqtrd 2842 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → 𝑦𝐶)
299 eqidd 2740 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
300215fveq2d 6787 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑛 · 𝑦)))
301300adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ ∧ 𝑦𝐶) ∧ 𝑥 = 𝑦) → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑛 · 𝑦)))
302 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → 𝑦𝐶)
303263adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → 𝑛 ∈ ℝ)
304136, 302sselid 3920 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → 𝑦 ∈ ℝ)
305303, 304remulcld 11014 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → (𝑛 · 𝑦) ∈ ℝ)
306305resincld 15861 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → (sin‘(𝑛 · 𝑦)) ∈ ℝ)
307299, 301, 302, 306fvmptd 6891 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦) = (sin‘(𝑛 · 𝑦)))
308307fveq2d 6787 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) = (abs‘(sin‘(𝑛 · 𝑦))))
309 abssinbd 42841 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 · 𝑦) ∈ ℝ → (abs‘(sin‘(𝑛 · 𝑦))) ≤ 1)
310305, 309syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → (abs‘(sin‘(𝑛 · 𝑦))) ≤ 1)
311308, 310eqbrtrd 5097 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
312298, 311syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
313312ralrimiva 3104 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
314 breq2 5079 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 1 → ((abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
315314ralbidv 3113 . . . . . . . . . . . . . . . . . 18 (𝑏 = 1 → (∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
316315rspcev 3562 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
317203, 313, 316sylancr 587 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
318317adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
319 bddmulibl 25012 . . . . . . . . . . . . . . 15 (((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
320291, 292, 318, 319syl3anc 1370 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
321279, 320eqeltrd 2840 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) ∈ 𝐿1)
32283, 321syldan 591 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) ∈ 𝐿1)
323257, 270, 322itgmulc2 25007 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ((sin‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥) = ∫𝐶((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) d𝑥)
324257adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑋)) ∈ ℂ)
32553, 275sylanl2 678 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℂ)
326324, 241, 325mul12d 11193 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) = ((𝐹𝑥) · ((sin‘(𝑛 · 𝑋)) · (sin‘(𝑛 · 𝑥)))))
327324, 325mulcomd 11005 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑋)) · (sin‘(𝑛 · 𝑥))) = ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))
328327oveq2d 7300 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((sin‘(𝑛 · 𝑋)) · (sin‘(𝑛 · 𝑥)))) = ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))))
329326, 328eqtrd 2779 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) = ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))))
330329itgeq2dv 24955 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) d𝑥 = ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥)
331323, 330eqtrd 2779 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → ((sin‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥) = ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥)
332331oveq1d 7299 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (((sin‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥) / π) = (∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥 / π))
333261, 332eqtr3d 2781 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((sin‘(𝑛 · 𝑋)) · (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) = (∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥 / π))
334255, 258, 3333eqtrd 2783 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) = (∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥 / π))
335251, 334oveq12d 7302 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = ((∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 / π) + (∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥 / π)))
33654, 168sylanl2 678 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
33755, 208sylan 580 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℝ)
33861adantr 481 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑋)) ∈ ℝ)
339337, 338remulcld 11014 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) ∈ ℝ)
340336, 339remulcld 11014 . . . . . . . 8 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) ∈ ℝ)
341241, 242, 240mul13d 42825 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) = ((cos‘(𝑛 · 𝑋)) · ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥))))
342242, 241mulcomd 11005 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))))
343342oveq2d 7300 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑋)) · ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥))) = ((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))))
344341, 343eqtrd 2779 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) = ((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))))
345344mpteq2dva 5175 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))))) = (𝑥𝐶 ↦ ((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))))))
346159, 174, 238iblmulc2 25004 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))))) ∈ 𝐿1)
347345, 346eqeltrd 2840 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))))) ∈ 𝐿1)
348340, 347itgcl 24957 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 ∈ ℂ)
34983, 267sylan 580 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℝ)
35085adantr 481 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑋)) ∈ ℝ)
351349, 350remulcld 11014 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))) ∈ ℝ)
352336, 351remulcld 11014 . . . . . . . 8 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) ∈ ℝ)
353241, 325, 324mul13d 42825 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) = ((sin‘(𝑛 · 𝑋)) · ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))))
354325, 241mulcomd 11005 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))
355354oveq2d 7300 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑋)) · ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))) = ((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))))
356353, 355eqtrd 2779 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) = ((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))))
357356mpteq2dva 5175 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))) = (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))))
358257, 270, 322iblmulc2 25004 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))) ∈ 𝐿1)
359357, 358eqeltrd 2840 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))) ∈ 𝐿1)
360352, 359itgcl 24957 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥 ∈ ℂ)
361348, 360, 163, 164divdird 11798 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → ((∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 + ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥) / π) = ((∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 / π) + (∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥 / π)))
36253nncnd 11998 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℂ)
363362ad2antlr 724 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → 𝑛 ∈ ℂ)
364108adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → 𝑥 ∈ ℂ)
36558recnd 11012 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℂ)
366365ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → 𝑋 ∈ ℂ)
367363, 364, 366subdid 11440 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝑛 · (𝑥𝑋)) = ((𝑛 · 𝑥) − (𝑛 · 𝑋)))
368367fveq2d 6787 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · (𝑥𝑋))) = (cos‘((𝑛 · 𝑥) − (𝑛 · 𝑋))))
369363, 364mulcld 11004 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝑛 · 𝑥) ∈ ℂ)
370363, 366mulcld 11004 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝑛 · 𝑋) ∈ ℂ)
371 cossub 15887 . . . . . . . . . . . . 13 (((𝑛 · 𝑥) ∈ ℂ ∧ (𝑛 · 𝑋) ∈ ℂ) → (cos‘((𝑛 · 𝑥) − (𝑛 · 𝑋))) = (((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) + ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))))
372369, 370, 371syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘((𝑛 · 𝑥) − (𝑛 · 𝑋))) = (((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) + ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))))
373368, 372eqtrd 2779 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · (𝑥𝑋))) = (((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) + ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))))
374373oveq2d 7300 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) = ((𝐹𝑥) · (((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) + ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))))
375339recnd 11012 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) ∈ ℂ)
376351recnd 11012 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))) ∈ ℂ)
377241, 375, 376adddid 11008 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · (((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) + ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))) = (((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) + ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))))
378374, 377eqtrd 2779 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) = (((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) + ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))))
379378itgeq2dv 24955 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 = ∫𝐶(((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) + ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))) d𝑥)
380340, 347, 352, 359itgadd 24998 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶(((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) + ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))) d𝑥 = (∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 + ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥))
381379, 380eqtr2d 2780 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 + ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥) = ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥)
382381oveq1d 7299 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → ((∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 + ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥) / π) = (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π))
383335, 361, 3823eqtr2d 2785 . . . . 5 ((𝜑𝑛 ∈ (1...𝑁)) → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π))
384383sumeq2dv 15424 . . . 4 (𝜑 → Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = Σ𝑛 ∈ (1...𝑁)(∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π))
38557adantr 481 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → 𝑛 ∈ ℝ)
386117adantl 482 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → 𝑥 ∈ ℝ)
38758ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → 𝑋 ∈ ℝ)
388386, 387resubcld 11412 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝑥𝑋) ∈ ℝ)
389385, 388remulcld 11014 . . . . . . . 8 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝑛 · (𝑥𝑋)) ∈ ℝ)
390389recoscld 15862 . . . . . . 7 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · (𝑥𝑋))) ∈ ℝ)
391336, 390remulcld 11014 . . . . . 6 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) ∈ ℝ)
392177a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → 𝐶 ∈ V)
393 eqidd 2740 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) = (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))))
394 eqidd 2740 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥)))
395392, 390, 336, 393, 394offval2 7562 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ ((cos‘(𝑛 · (𝑥𝑋))) · (𝐹𝑥))))
396390recnd 11012 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · (𝑥𝑋))) ∈ ℂ)
397396, 241mulcomd 11005 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · (𝑥𝑋))) · (𝐹𝑥)) = ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))))
398397mpteq2dva 5175 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((cos‘(𝑛 · (𝑥𝑋))) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))))
399395, 398eqtr2d 2780 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) = ((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))))
400187a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → cos ∈ (ℂ–cn→ℂ))
40183, 285syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶𝑛) ∈ (𝐶cn→ℂ))
40283, 286syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ))
403190a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → 𝐶 ⊆ ℂ)
404365adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑋 ∈ ℂ)
405194a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → ℂ ⊆ ℂ)
406403, 404, 405constcncfg 43420 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶𝑋) ∈ (𝐶cn→ℂ))
407402, 406subcncf 24618 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (𝑥𝑋)) ∈ (𝐶cn→ℂ))
408401, 407mulcncf 24619 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (𝑛 · (𝑥𝑋))) ∈ (𝐶cn→ℂ))
409400, 408cncfmpt1f 24086 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∈ (𝐶cn→ℂ))
410 cnmbf 24832 . . . . . . . . 9 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∈ MblFn)
411176, 409, 410sylancr 587 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∈ MblFn)
412140adantr 481 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
413 simpr 485 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))) → 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))))
414390ralrimiva 3104 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → ∀𝑥𝐶 (cos‘(𝑛 · (𝑥𝑋))) ∈ ℝ)
415 dmmptg 6150 . . . . . . . . . . . . . 14 (∀𝑥𝐶 (cos‘(𝑛 · (𝑥𝑋))) ∈ ℝ → dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) = 𝐶)
416414, 415syl 17 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) = 𝐶)
417416adantr 481 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))) → dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) = 𝐶)
418413, 417eleqtrd 2842 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))) → 𝑦𝐶)
419 eqidd 2740 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) = (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))))
420 oveq1 7291 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝑥𝑋) = (𝑦𝑋))
421420oveq2d 7300 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑛 · (𝑥𝑋)) = (𝑛 · (𝑦𝑋)))
422421fveq2d 6787 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (cos‘(𝑛 · (𝑥𝑋))) = (cos‘(𝑛 · (𝑦𝑋))))
423422adantl 482 . . . . . . . . . . . . . 14 ((((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) ∧ 𝑥 = 𝑦) → (cos‘(𝑛 · (𝑥𝑋))) = (cos‘(𝑛 · (𝑦𝑋))))
424 simpr 485 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → 𝑦𝐶)
42557adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → 𝑛 ∈ ℝ)
42655, 220sylan 580 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → 𝑦 ∈ ℝ)
42758ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → 𝑋 ∈ ℝ)
428426, 427resubcld 11412 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (𝑦𝑋) ∈ ℝ)
429425, 428remulcld 11014 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (𝑛 · (𝑦𝑋)) ∈ ℝ)
430429recoscld 15862 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (cos‘(𝑛 · (𝑦𝑋))) ∈ ℝ)
431419, 423, 424, 430fvmptd 6891 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → ((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦) = (cos‘(𝑛 · (𝑦𝑋))))
432431fveq2d 6787 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) = (abs‘(cos‘(𝑛 · (𝑦𝑋)))))
433 abscosbd 42824 . . . . . . . . . . . . 13 ((𝑛 · (𝑦𝑋)) ∈ ℝ → (abs‘(cos‘(𝑛 · (𝑦𝑋)))) ≤ 1)
434429, 433syl 17 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (abs‘(cos‘(𝑛 · (𝑦𝑋)))) ≤ 1)
435432, 434eqbrtrd 5097 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 1)
436418, 435syldan 591 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 1)
437436ralrimiva 3104 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 1)
438 breq2 5079 . . . . . . . . . . 11 (𝑏 = 1 → ((abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 1))
439438ralbidv 3113 . . . . . . . . . 10 (𝑏 = 1 → (∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 1))
440439rspcev 3562 . . . . . . . . 9 ((1 ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 1) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 𝑏)
441203, 437, 440sylancr 587 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 𝑏)
442 bddmulibl 25012 . . . . . . . 8 (((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
443411, 412, 441, 442syl3anc 1370 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
444399, 443eqeltrd 2840 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) ∈ 𝐿1)
445391, 444itgcl 24957 . . . . 5 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 ∈ ℂ)
44628, 142, 445, 102fsumdivc 15507 . . . 4 (𝜑 → (Σ𝑛 ∈ (1...𝑁)∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π) = Σ𝑛 ∈ (1...𝑁)(∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π))
447176a1i 11 . . . . . . . 8 (𝜑𝐶 ∈ dom vol)
448 anass 469 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) ↔ (𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑥𝐶)))
449 ancom 461 . . . . . . . . . . 11 ((𝑛 ∈ (1...𝑁) ∧ 𝑥𝐶) ↔ (𝑥𝐶𝑛 ∈ (1...𝑁)))
450449anbi2i 623 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑥𝐶)) ↔ (𝜑 ∧ (𝑥𝐶𝑛 ∈ (1...𝑁))))
451448, 450bitri 274 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) ↔ (𝜑 ∧ (𝑥𝐶𝑛 ∈ (1...𝑁))))
452451, 391sylbir 234 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑛 ∈ (1...𝑁))) → ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) ∈ ℝ)
453447, 28, 452, 444itgfsum 25000 . . . . . . 7 (𝜑 → ((𝑥𝐶 ↦ Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) ∈ 𝐿1 ∧ ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 = Σ𝑛 ∈ (1...𝑁)∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥))
454453simprd 496 . . . . . 6 (𝜑 → ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 = Σ𝑛 ∈ (1...𝑁)∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥)
455454eqcomd 2745 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...𝑁)∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 = ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥)
456455oveq1d 7299 . . . 4 (𝜑 → (Σ𝑛 ∈ (1...𝑁)∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π) = (∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π))
457384, 446, 4563eqtr2d 2785 . . 3 (𝜑 → Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π))
458153, 457oveq12d 7302 . 2 (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 / π) + (∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π)))
459 fourierdlem83.d . . . . . . . . . . 11 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
4607adantr 481 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝑁 ∈ ℕ)
461 eqid 2739 . . . . . . . . . . 11 (𝐷𝑁) = (𝐷𝑁)
462 eqid 2739 . . . . . . . . . . 11 (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠))) / π)) = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠))) / π))
463459, 460, 461, 462dirkertrigeq 43649 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠))) / π)))
464 oveq2 7292 . . . . . . . . . . . . . . 15 (𝑠 = (𝑥𝑋) → (𝑛 · 𝑠) = (𝑛 · (𝑥𝑋)))
465464fveq2d 6787 . . . . . . . . . . . . . 14 (𝑠 = (𝑥𝑋) → (cos‘(𝑛 · 𝑠)) = (cos‘(𝑛 · (𝑥𝑋))))
466465sumeq2sdv 15425 . . . . . . . . . . . . 13 (𝑠 = (𝑥𝑋) → Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠)) = Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))))
467466oveq2d 7300 . . . . . . . . . . . 12 (𝑠 = (𝑥𝑋) → ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠))) = ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))))
468467oveq1d 7299 . . . . . . . . . . 11 (𝑠 = (𝑥𝑋) → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠))) / π) = (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) / π))
469468adantl 482 . . . . . . . . . 10 (((𝜑𝑥𝐶) ∧ 𝑠 = (𝑥𝑋)) → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠))) / π) = (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) / π))
47058adantr 481 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝑋 ∈ ℝ)
471118, 470resubcld 11412 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (𝑥𝑋) ∈ ℝ)
472 halfre 12196 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ
473472a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → (1 / 2) ∈ ℝ)
474 fzfid 13702 . . . . . . . . . . . . 13 ((𝜑𝑥𝐶) → (1...𝑁) ∈ Fin)
475390an32s 649 . . . . . . . . . . . . 13 (((𝜑𝑥𝐶) ∧ 𝑛 ∈ (1...𝑁)) → (cos‘(𝑛 · (𝑥𝑋))) ∈ ℝ)
476474, 475fsumrecl 15455 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))) ∈ ℝ)
477473, 476readdcld 11013 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) ∈ ℝ)
47844a1i 11 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → π ∈ ℝ)
47948a1i 11 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → π ≠ 0)
480477, 478, 479redivcld 11812 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) / π) ∈ ℝ)
481463, 469, 471, 480fvmptd 6891 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((𝐷𝑁)‘(𝑥𝑋)) = (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) / π))
482481, 480eqeltrd 2840 . . . . . . . 8 ((𝜑𝑥𝐶) → ((𝐷𝑁)‘(𝑥𝑋)) ∈ ℝ)
483119, 482remulcld 11014 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) ∈ ℝ)
484177a1i 11 . . . . . . . . . 10 (𝜑𝐶 ∈ V)
485 eqidd 2740 . . . . . . . . . 10 (𝜑 → (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) = (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))))
486 eqidd 2740 . . . . . . . . . 10 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥)))
487484, 482, 119, 485, 486offval2 7562 . . . . . . . . 9 (𝜑 → ((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ (((𝐷𝑁)‘(𝑥𝑋)) · (𝐹𝑥))))
488482recnd 11012 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → ((𝐷𝑁)‘(𝑥𝑋)) ∈ ℂ)
489488, 120mulcomd 11005 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (((𝐷𝑁)‘(𝑥𝑋)) · (𝐹𝑥)) = ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))))
490489mpteq2dva 5175 . . . . . . . . 9 (𝜑 → (𝑥𝐶 ↦ (((𝐷𝑁)‘(𝑥𝑋)) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))))
491487, 490eqtr2d 2780 . . . . . . . 8 (𝜑 → (𝑥𝐶 ↦ ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))) = ((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))))
492 eqid 2739 . . . . . . . . . . 11 (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))) = (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))
493 eqid 2739 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ ((𝐷𝑁)‘(𝑥𝑋))) = (𝑥 ∈ ℝ ↦ ((𝐷𝑁)‘(𝑥𝑋)))
494194a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ℂ ⊆ ℂ)
495 cncfss 24071 . . . . . . . . . . . . . 14 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ))
496189, 494, 495sylancr 587 . . . . . . . . . . . . 13 (𝜑 → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ))
497 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
49858adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ) → 𝑋 ∈ ℝ)
499497, 498resubcld 11412 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → (𝑥𝑋) ∈ ℝ)
500 eqid 2739 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ ↦ (𝑥𝑋)) = (𝑥 ∈ ℝ ↦ (𝑥𝑋))
501499, 500fmptd 6997 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥𝑋)):ℝ⟶ℝ)
502189a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → ℝ ⊆ ℂ)
503502, 494idcncfg 43421 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ ℝ ↦ 𝑥) ∈ (ℝ–cn→ℂ))
504502, 365, 494constcncfg 43420 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ ℝ ↦ 𝑋) ∈ (ℝ–cn→ℂ))
505503, 504subcncf 24618 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥𝑋)) ∈ (ℝ–cn→ℂ))
506 cncffvrn 24070 . . . . . . . . . . . . . . . 16 ((ℝ ⊆ ℂ ∧ (𝑥 ∈ ℝ ↦ (𝑥𝑋)) ∈ (ℝ–cn→ℂ)) → ((𝑥 ∈ ℝ ↦ (𝑥𝑋)) ∈ (ℝ–cn→ℝ) ↔ (𝑥 ∈ ℝ ↦ (𝑥𝑋)):ℝ⟶ℝ))
507189, 505, 506sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑥 ∈ ℝ ↦ (𝑥𝑋)) ∈ (ℝ–cn→ℝ) ↔ (𝑥 ∈ ℝ ↦ (𝑥𝑋)):ℝ⟶ℝ))
508501, 507mpbird 256 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥𝑋)) ∈ (ℝ–cn→ℝ))
509459dirkercncf 43655 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (𝐷𝑁) ∈ (ℝ–cn→ℝ))
5107, 509syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐷𝑁) ∈ (ℝ–cn→ℝ))
511508, 510cncfcompt 43431 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ (ℝ–cn→ℝ))
512496, 511sseldd 3923 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℝ ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ (ℝ–cn→ℂ))
51344renegcli 11291 . . . . . . . . . . . . . 14 -π ∈ ℝ
514 iccssre 13170 . . . . . . . . . . . . . 14 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
515513, 44, 514mp2an 689 . . . . . . . . . . . . 13 (-π[,]π) ⊆ ℝ
516515a1i 11 . . . . . . . . . . . 12 (𝜑 → (-π[,]π) ⊆ ℝ)
517459dirkerf 43645 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝐷𝑁):ℝ⟶ℝ)
5187, 517syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝑁):ℝ⟶ℝ)
519518adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (-π[,]π)) → (𝐷𝑁):ℝ⟶ℝ)
520516sselda 3922 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (-π[,]π)) → 𝑥 ∈ ℝ)
52158adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (-π[,]π)) → 𝑋 ∈ ℝ)
522520, 521resubcld 11412 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (-π[,]π)) → (𝑥𝑋) ∈ ℝ)
523519, 522ffvelrnd 6971 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (-π[,]π)) → ((𝐷𝑁)‘(𝑥𝑋)) ∈ ℝ)
524523recnd 11012 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (-π[,]π)) → ((𝐷𝑁)‘(𝑥𝑋)) ∈ ℂ)
525493, 512, 516, 494, 524cncfmptssg 43419 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ ((-π[,]π)–cn→ℂ))
526132a1i 11 . . . . . . . . . . 11 (𝜑𝐶 ⊆ (-π[,]π))
527492, 525, 526, 494, 488cncfmptssg 43419 . . . . . . . . . 10 (𝜑 → (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ (𝐶cn→ℂ))
528 cnmbf 24832 . . . . . . . . . 10 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ MblFn)
529176, 527, 528sylancr 587 . . . . . . . . 9 (𝜑 → (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ MblFn)
530513a1i 11 . . . . . . . . . . . . 13 (𝜑 → -π ∈ ℝ)
531 0red 10987 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℝ)
532 negpilt0 42826 . . . . . . . . . . . . . . . 16 -π < 0
533532a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → -π < 0)
53447a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < π)
535530, 531, 101, 533, 534lttrd 11145 . . . . . . . . . . . . . 14 (𝜑 → -π < π)
536530, 101, 535ltled 11132 . . . . . . . . . . . . 13 (𝜑 → -π ≤ π)
537493, 512, 516, 502, 523cncfmptssg 43419 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ ((-π[,]π)–cn→ℝ))
538530, 101, 536, 537evthiccabs 43041 . . . . . . . . . . . 12 (𝜑 → (∃𝑐 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)) ∧ ∃𝑧 ∈ (-π[,]π)∀𝑤 ∈ (-π[,]π)(abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑧)) ≤ (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑤))))
539538simpld 495 . . . . . . . . . . 11 (𝜑 → ∃𝑐 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)))
540 eqidd 2740 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (-π[,]π)) → (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))) = (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))))
541420fveq2d 6787 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝐷𝑁)‘(𝑥𝑋)) = ((𝐷𝑁)‘(𝑦𝑋)))
542541adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (-π[,]π)) ∧ 𝑥 = 𝑦) → ((𝐷𝑁)‘(𝑥𝑋)) = ((𝐷𝑁)‘(𝑦𝑋)))
543 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (-π[,]π)) → 𝑦 ∈ (-π[,]π))
544518adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (-π[,]π)) → (𝐷𝑁):ℝ⟶ℝ)
545515, 543sselid 3920 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (-π[,]π)) → 𝑦 ∈ ℝ)
54658adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (-π[,]π)) → 𝑋 ∈ ℝ)
547545, 546resubcld 11412 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (-π[,]π)) → (𝑦𝑋) ∈ ℝ)
548544, 547ffvelrnd 6971 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (-π[,]π)) → ((𝐷𝑁)‘(𝑦𝑋)) ∈ ℝ)
549540, 542, 543, 548fvmptd 6891 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (-π[,]π)) → ((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦) = ((𝐷𝑁)‘(𝑦𝑋)))
550549fveq2d 6787 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (-π[,]π)) → (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) = (abs‘((𝐷𝑁)‘(𝑦𝑋))))
551550adantlr 712 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (-π[,]π)) ∧ 𝑦 ∈ (-π[,]π)) → (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) = (abs‘((𝐷𝑁)‘(𝑦𝑋))))
552 eqidd 2740 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ (-π[,]π)) → (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))) = (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))))
553 oveq1 7291 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑐 → (𝑥𝑋) = (𝑐𝑋))
554553fveq2d 6787 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑐 → ((𝐷𝑁)‘(𝑥𝑋)) = ((𝐷𝑁)‘(𝑐𝑋)))
555554adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ (-π[,]π)) ∧ 𝑥 = 𝑐) → ((𝐷𝑁)‘(𝑥𝑋)) = ((𝐷𝑁)‘(𝑐𝑋)))
556 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ (-π[,]π)) → 𝑐 ∈ (-π[,]π))
557518adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ (-π[,]π)) → (𝐷𝑁):ℝ⟶ℝ)
558515, 556sselid 3920 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑐 ∈ (-π[,]π)) → 𝑐 ∈ ℝ)
55958adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑐 ∈ (-π[,]π)) → 𝑋 ∈ ℝ)
560558, 559resubcld 11412 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ (-π[,]π)) → (𝑐𝑋) ∈ ℝ)
561557, 560ffvelrnd 6971 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ (-π[,]π)) → ((𝐷𝑁)‘(𝑐𝑋)) ∈ ℝ)
562552, 555, 556, 561fvmptd 6891 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ (-π[,]π)) → ((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐) = ((𝐷𝑁)‘(𝑐𝑋)))
563562fveq2d 6787 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (-π[,]π)) → (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)) = (abs‘((𝐷𝑁)‘(𝑐𝑋))))
564563adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (-π[,]π)) ∧ 𝑦 ∈ (-π[,]π)) → (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)) = (abs‘((𝐷𝑁)‘(𝑐𝑋))))
565551, 564breq12d 5088 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (-π[,]π)) ∧ 𝑦 ∈ (-π[,]π)) → ((abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)) ↔ (abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))))
566565ralbidva 3112 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (-π[,]π)) → (∀𝑦 ∈ (-π[,]π)(abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)) ↔ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))))
567566rexbidva 3226 . . . . . . . . . . 11 (𝜑 → (∃𝑐 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)) ↔ ∃𝑐 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))))
568539, 567mpbid 231 . . . . . . . . . 10 (𝜑 → ∃𝑐 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
569561recnd 11012 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (-π[,]π)) → ((𝐷𝑁)‘(𝑐𝑋)) ∈ ℂ)
570569abscld 15157 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (-π[,]π)) → (abs‘((𝐷𝑁)‘(𝑐𝑋))) ∈ ℝ)
5715703adant3 1131 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) → (abs‘((𝐷𝑁)‘(𝑐𝑋))) ∈ ℝ)
572 nfv 1918 . . . . . . . . . . . . . 14 𝑦𝜑
573 nfv 1918 . . . . . . . . . . . . . 14 𝑦 𝑐 ∈ (-π[,]π)
574 nfra1 3145 . . . . . . . . . . . . . 14 𝑦𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))
575572, 573, 574nf3an 1905 . . . . . . . . . . . . 13 𝑦(𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
576 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))) → 𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))))
577482ralrimiva 3104 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥𝐶 ((𝐷𝑁)‘(𝑥𝑋)) ∈ ℝ)
578 dmmptg 6150 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝐶 ((𝐷𝑁)‘(𝑥𝑋)) ∈ ℝ → dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) = 𝐶)
579577, 578syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) = 𝐶)
580579adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))) → dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) = 𝐶)
581576, 580eleqtrd 2842 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))) → 𝑦𝐶)
5825813ad2antl1 1184 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))) → 𝑦𝐶)
583 eqidd 2740 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝐶) → (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) = (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))))
584541adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝐶) ∧ 𝑥 = 𝑦) → ((𝐷𝑁)‘(𝑥𝑋)) = ((𝐷𝑁)‘(𝑦𝑋)))
585 simpr 485 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝐶) → 𝑦𝐶)
586518adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦𝐶) → (𝐷𝑁):ℝ⟶ℝ)
587136, 585sselid 3920 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦𝐶) → 𝑦 ∈ ℝ)
58858adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦𝐶) → 𝑋 ∈ ℝ)
589587, 588resubcld 11412 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦𝐶) → (𝑦𝑋) ∈ ℝ)
590586, 589ffvelrnd 6971 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝐶) → ((𝐷𝑁)‘(𝑦𝑋)) ∈ ℝ)
591583, 584, 585, 590fvmptd 6891 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦𝐶) → ((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦) = ((𝐷𝑁)‘(𝑦𝑋)))
592591fveq2d 6787 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝐶) → (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) = (abs‘((𝐷𝑁)‘(𝑦𝑋))))
593592adantlr 712 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) = (abs‘((𝐷𝑁)‘(𝑦𝑋))))
594 simplr 766 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦𝐶) → ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
595132sseli 3918 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐶𝑦 ∈ (-π[,]π))
596595adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦𝐶) → 𝑦 ∈ (-π[,]π))
597 rspa 3133 . . . . . . . . . . . . . . . . . 18 ((∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))) ∧ 𝑦 ∈ (-π[,]π)) → (abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
598594, 596, 597syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦𝐶) → (abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
599593, 598eqbrtrd 5097 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
6005993adantl2 1166 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
601582, 600syldan 591 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))) → (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
602601ex 413 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) → (𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) → (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))))
603575, 602ralrimi 3142 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) → ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
604 breq2 5079 . . . . . . . . . . . . . 14 (𝑏 = (abs‘((𝐷𝑁)‘(𝑐𝑋))) → ((abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))))
605604ralbidv 3113 . . . . . . . . . . . . 13 (𝑏 = (abs‘((𝐷𝑁)‘(𝑐𝑋))) → (∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))))
606605rspcev 3562 . . . . . . . . . . . 12 (((abs‘((𝐷𝑁)‘(𝑐𝑋))) ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏)
607571, 603, 606syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏)
608607rexlimdv3a 3216 . . . . . . . . . 10 (𝜑 → (∃𝑐 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏))
609568, 608mpd 15 . . . . . . . . 9 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏)
610 bddmulibl 25012 . . . . . . . . 9 (((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
611529, 140, 609, 610syl3anc 1370 . . . . . . . 8 (𝜑 → ((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
612491, 611eqeltrd 2840 . . . . . . 7 (𝜑 → (𝑥𝐶 ↦ ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))) ∈ 𝐿1)
613142, 483, 612itgmulc2 25007 . . . . . 6 (𝜑 → (π · ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥) = ∫𝐶(π · ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))) d𝑥)
614142adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐶) → π ∈ ℂ)
615120, 488, 614mul13d 42825 . . . . . . . 8 ((𝜑𝑥𝐶) → ((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)) = (π · (((𝐷𝑁)‘(𝑥𝑋)) · (𝐹𝑥))))
616489oveq2d 7300 . . . . . . . 8 ((𝜑𝑥𝐶) → (π · (((𝐷𝑁)‘(𝑥𝑋)) · (𝐹𝑥))) = (π · ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))))
617615, 616eqtrd 2779 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)) = (π · ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))))
618617itgeq2dv 24955 . . . . . 6 (𝜑 → ∫𝐶((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)) d𝑥 = ∫𝐶(π · ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))) d𝑥)
619613, 618eqtr4d 2782 . . . . 5 (𝜑 → (π · ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥) = ∫𝐶((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)) d𝑥)
620148adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐶) → (1 / 2) ∈ ℂ)
621620, 120mulcomd 11005 . . . . . . . 8 ((𝜑𝑥𝐶) → ((1 / 2) · (𝐹𝑥)) = ((𝐹𝑥) · (1 / 2)))
622396an32s 649 . . . . . . . . . 10 (((𝜑𝑥𝐶) ∧ 𝑛 ∈ (1...𝑁)) → (cos‘(𝑛 · (𝑥𝑋))) ∈ ℂ)
623474, 120, 622fsummulc2 15505 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((𝐹𝑥) · Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) = Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))))
624623eqcomd 2745 . . . . . . . 8 ((𝜑𝑥𝐶) → Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) = ((𝐹𝑥) · Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))))
625621, 624oveq12d 7302 . . . . . . 7 ((𝜑𝑥𝐶) → (((1 / 2) · (𝐹𝑥)) + Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) = (((𝐹𝑥) · (1 / 2)) + ((𝐹𝑥) · Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))))))
626474, 622fsumcl 15454 . . . . . . . 8 ((𝜑𝑥𝐶) → Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))) ∈ ℂ)
627120, 620, 626adddid 11008 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝐹𝑥) · ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))))) = (((𝐹𝑥) · (1 / 2)) + ((𝐹𝑥) · Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))))))
628481oveq1d 7299 . . . . . . . . 9 ((𝜑𝑥𝐶) → (((𝐷𝑁)‘(𝑥𝑋)) · π) = ((((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) / π) · π))
629620, 626addcld 11003 . . . . . . . . . 10 ((𝜑𝑥𝐶) → ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) ∈ ℂ)
630629, 614, 479divcan1d 11761 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) / π) · π) = ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))))
631628, 630eqtr2d 2780 . . . . . . . 8 ((𝜑𝑥𝐶) → ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) = (((𝐷𝑁)‘(𝑥𝑋)) · π))
632631oveq2d 7300 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝐹𝑥) · ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))))) = ((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)))
633625, 627, 6323eqtr2rd 2786 . . . . . 6 ((𝜑𝑥𝐶) → ((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)) = (((1 / 2) · (𝐹𝑥)) + Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))))
634633itgeq2dv 24955 . . . . 5 (𝜑 → ∫𝐶((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)) d𝑥 = ∫𝐶(((1 / 2) · (𝐹𝑥)) + Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) d𝑥)
635 remulcl 10965 . . . . . . 7 (((1 / 2) ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → ((1 / 2) · (𝐹𝑥)) ∈ ℝ)
636472, 119, 635sylancr 587 . . . . . 6 ((𝜑𝑥𝐶) → ((1 / 2) · (𝐹𝑥)) ∈ ℝ)
637148, 119, 140iblmulc2 25004 . . . . . 6 (𝜑 → (𝑥𝐶 ↦ ((1 / 2) · (𝐹𝑥))) ∈ 𝐿1)
638391an32s 649 . . . . . . 7 (((𝜑𝑥𝐶) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) ∈ ℝ)
639474, 638fsumrecl 15455 . . . . . 6 ((𝜑𝑥𝐶) → Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) ∈ ℝ)
640453simpld 495 . . . . . 6 (𝜑 → (𝑥𝐶 ↦ Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) ∈ 𝐿1)
641636, 637, 639, 640itgadd 24998 . . . . 5 (𝜑 → ∫𝐶(((1 / 2) · (𝐹𝑥)) + Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) d𝑥 = (∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 + ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥))
642619, 634, 6413eqtrrd 2784 . . . 4 (𝜑 → (∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 + ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥) = (π · ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥))
643642oveq1d 7299 . . 3 (𝜑 → ((∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 + ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥) / π) = ((π · ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥) / π))
644636, 637itgcl 24957 . . . 4 (𝜑 → ∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 ∈ ℂ)
645639, 640itgcl 24957 . . . 4 (𝜑 → ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 ∈ ℂ)
646644, 645, 142, 102divdird 11798 . . 3 (𝜑 → ((∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 + ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥) / π) = ((∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 / π) + (∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π)))
647483, 612itgcl 24957 . . . 4 (𝜑 → ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥 ∈ ℂ)
648647, 142, 102divcan3d 11765 . . 3 (𝜑 → ((π · ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥) / π) = ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥)
649643, 646, 6483eqtr3d 2787 . 2 (𝜑 → ((∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 / π) + (∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π)) = ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥)
65090, 458, 6493eqtrd 2783 1 (𝜑 → (𝑆𝑁) = ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2107  wne 2944  wral 3065  wrex 3066  Vcvv 3433  wss 3888  ifcif 4460   class class class wbr 5075  cmpt 5158  dom cdm 5590  cres 5592  wf 6433  cfv 6437  (class class class)co 7284  f cof 7540  cc 10878  cr 10879  0cc0 10880  1c1 10881   + caddc 10883   · cmul 10885   < clt 11018  cle 11019  cmin 11214  -cneg 11215   / cdiv 11641  cn 11982  2c2 12037  0cn0 12242  (,)cioo 13088  [,]cicc 13091  ...cfz 13248   mod cmo 13598  abscabs 14954  Σcsu 15406  sincsin 15782  cosccos 15783  πcpi 15785  cnccncf 24048  volcvol 24636  MblFncmbf 24787  𝐿1cibl 24790  citg 24791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cc 10200  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-disj 5041  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-ofr 7543  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-oadd 8310  df-omul 8311  df-er 8507  df-map 8626  df-pm 8627  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-dju 9668  df-card 9706  df-acn 9709  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-ioo 13092  df-ioc 13093  df-ico 13094  df-icc 13095  df-fz 13249  df-fzo 13392  df-fl 13521  df-mod 13599  df-seq 13731  df-exp 13792  df-fac 13997  df-bc 14026  df-hash 14054  df-shft 14787  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-limsup 15189  df-clim 15206  df-rlim 15207  df-sum 15407  df-ef 15786  df-sin 15788  df-cos 15789  df-pi 15791  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-pt 17164  df-prds 17167  df-xrs 17222  df-qtop 17227  df-imas 17228  df-xps 17230  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-mulg 18710  df-cntz 18932  df-cmn 19397  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-fbas 20603  df-fg 20604  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cld 22179  df-ntr 22180  df-cls 22181  df-nei 22258  df-lp 22296  df-perf 22297  df-cn 22387  df-cnp 22388  df-t1 22474  df-haus 22475  df-cmp 22547  df-tx 22722  df-hmeo 22915  df-fil 23006  df-fm 23098  df-flim 23099  df-flf 23100  df-xms 23482  df-ms 23483  df-tms 23484  df-cncf 24050  df-ovol 24637  df-vol 24638  df-mbf 24792  df-itg1 24793  df-itg2 24794  df-ibl 24795  df-itg 24796  df-0p 24843  df-limc 25039  df-dv 25040
This theorem is referenced by:  fourierdlem111  43765
  Copyright terms: Public domain W3C validator