Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkertrigeqlem3 Structured version   Visualization version   GIF version

Theorem dirkertrigeqlem3 42434
Description: Trigonometric equality lemma for the Dirichlet Kernel trigonometric equality. Here we handle the case for an angle that's an odd multiple of π. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkertrigeqlem3.n (𝜑𝑁 ∈ ℕ)
dirkertrigeqlem3.k (𝜑𝐾 ∈ ℤ)
dirkertrigeqlem3.a 𝐴 = (((2 · 𝐾) + 1) · π)
Assertion
Ref Expression
dirkertrigeqlem3 (𝜑 → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴))) / π) = ((sin‘((𝑁 + (1 / 2)) · 𝐴)) / ((2 · π) · (sin‘(𝐴 / 2)))))
Distinct variable groups:   𝑛,𝑁   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐾(𝑛)

Proof of Theorem dirkertrigeqlem3
StepHypRef Expression
1 dirkertrigeqlem3.a . . . . . . . . . . . . 13 𝐴 = (((2 · 𝐾) + 1) · π)
21a1i 11 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → 𝐴 = (((2 · 𝐾) + 1) · π))
32oveq2d 7172 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑛 · 𝐴) = (𝑛 · (((2 · 𝐾) + 1) · π)))
4 elfzelz 12909 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℤ)
54zcnd 12089 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℂ)
65adantl 484 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℂ)
7 2cnd 11716 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝑁)) → 2 ∈ ℂ)
8 dirkertrigeqlem3.k . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ ℤ)
98zcnd 12089 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ ℂ)
109adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝑁)) → 𝐾 ∈ ℂ)
117, 10mulcld 10661 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → (2 · 𝐾) ∈ ℂ)
12 1cnd 10636 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → 1 ∈ ℂ)
1311, 12addcld 10660 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → ((2 · 𝐾) + 1) ∈ ℂ)
14 picn 25045 . . . . . . . . . . . . . 14 π ∈ ℂ
1514a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → π ∈ ℂ)
1613, 15mulcld 10661 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (((2 · 𝐾) + 1) · π) ∈ ℂ)
176, 16mulcomd 10662 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑛 · (((2 · 𝐾) + 1) · π)) = ((((2 · 𝐾) + 1) · π) · 𝑛))
1813, 15, 6mulassd 10664 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → ((((2 · 𝐾) + 1) · π) · 𝑛) = (((2 · 𝐾) + 1) · (π · 𝑛)))
1915, 6mulcld 10661 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → (π · 𝑛) ∈ ℂ)
2011, 12, 19adddird 10666 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (((2 · 𝐾) + 1) · (π · 𝑛)) = (((2 · 𝐾) · (π · 𝑛)) + (1 · (π · 𝑛))))
2111, 19mulcld 10661 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → ((2 · 𝐾) · (π · 𝑛)) ∈ ℂ)
2212, 19mulcld 10661 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → (1 · (π · 𝑛)) ∈ ℂ)
2321, 22addcomd 10842 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → (((2 · 𝐾) · (π · 𝑛)) + (1 · (π · 𝑛))) = ((1 · (π · 𝑛)) + ((2 · 𝐾) · (π · 𝑛))))
2414a1i 11 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...𝑁) → π ∈ ℂ)
2524, 5mulcld 10661 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...𝑁) → (π · 𝑛) ∈ ℂ)
2625mulid2d 10659 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...𝑁) → (1 · (π · 𝑛)) = (π · 𝑛))
2726adantl 484 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → (1 · (π · 𝑛)) = (π · 𝑛))
287, 10, 15, 6mul4d 10852 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝑁)) → ((2 · 𝐾) · (π · 𝑛)) = ((2 · π) · (𝐾 · 𝑛)))
297, 15mulcld 10661 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...𝑁)) → (2 · π) ∈ ℂ)
3010, 6mulcld 10661 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐾 · 𝑛) ∈ ℂ)
3129, 30mulcomd 10662 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝑁)) → ((2 · π) · (𝐾 · 𝑛)) = ((𝐾 · 𝑛) · (2 · π)))
3228, 31eqtrd 2856 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → ((2 · 𝐾) · (π · 𝑛)) = ((𝐾 · 𝑛) · (2 · π)))
3327, 32oveq12d 7174 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → ((1 · (π · 𝑛)) + ((2 · 𝐾) · (π · 𝑛))) = ((π · 𝑛) + ((𝐾 · 𝑛) · (2 · π))))
3423, 33eqtrd 2856 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (((2 · 𝐾) · (π · 𝑛)) + (1 · (π · 𝑛))) = ((π · 𝑛) + ((𝐾 · 𝑛) · (2 · π))))
3518, 20, 343eqtrd 2860 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ((((2 · 𝐾) + 1) · π) · 𝑛) = ((π · 𝑛) + ((𝐾 · 𝑛) · (2 · π))))
363, 17, 353eqtrd 2860 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑛 · 𝐴) = ((π · 𝑛) + ((𝐾 · 𝑛) · (2 · π))))
3736fveq2d 6674 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (cos‘(𝑛 · 𝐴)) = (cos‘((π · 𝑛) + ((𝐾 · 𝑛) · (2 · π)))))
388adantr 483 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → 𝐾 ∈ ℤ)
394adantl 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℤ)
4038, 39zmulcld 12094 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐾 · 𝑛) ∈ ℤ)
41 cosper 25068 . . . . . . . . . 10 (((π · 𝑛) ∈ ℂ ∧ (𝐾 · 𝑛) ∈ ℤ) → (cos‘((π · 𝑛) + ((𝐾 · 𝑛) · (2 · π)))) = (cos‘(π · 𝑛)))
4219, 40, 41syl2anc 586 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (cos‘((π · 𝑛) + ((𝐾 · 𝑛) · (2 · π)))) = (cos‘(π · 𝑛)))
4337, 42eqtrd 2856 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (cos‘(𝑛 · 𝐴)) = (cos‘(π · 𝑛)))
4443sumeq2dv 15060 . . . . . . 7 (𝜑 → Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴)) = Σ𝑛 ∈ (1...𝑁)(cos‘(π · 𝑛)))
4544oveq2d 7172 . . . . . 6 (𝜑 → ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴))) = ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(π · 𝑛))))
4645oveq1d 7171 . . . . 5 (𝜑 → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴))) / π) = (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(π · 𝑛))) / π))
4746adantr 483 . . . 4 ((𝜑 ∧ (𝑁 mod 2) = 0) → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴))) / π) = (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(π · 𝑛))) / π))
48 dirkertrigeqlem3.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
4948nncnd 11654 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
50 2cnd 11716 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℂ)
51 2ne0 11742 . . . . . . . . . . . . . 14 2 ≠ 0
5251a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ≠ 0)
5349, 50, 52divcan2d 11418 . . . . . . . . . . . 12 (𝜑 → (2 · (𝑁 / 2)) = 𝑁)
5453eqcomd 2827 . . . . . . . . . . 11 (𝜑𝑁 = (2 · (𝑁 / 2)))
5554oveq2d 7172 . . . . . . . . . 10 (𝜑 → (1...𝑁) = (1...(2 · (𝑁 / 2))))
5655sumeq1d 15058 . . . . . . . . 9 (𝜑 → Σ𝑛 ∈ (1...𝑁)(cos‘(π · 𝑛)) = Σ𝑛 ∈ (1...(2 · (𝑁 / 2)))(cos‘(π · 𝑛)))
5756adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑁 mod 2) = 0) → Σ𝑛 ∈ (1...𝑁)(cos‘(π · 𝑛)) = Σ𝑛 ∈ (1...(2 · (𝑁 / 2)))(cos‘(π · 𝑛)))
5814a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(2 · (𝑁 / 2))) → π ∈ ℂ)
59 elfzelz 12909 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...(2 · (𝑁 / 2))) → 𝑛 ∈ ℤ)
6059zcnd 12089 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(2 · (𝑁 / 2))) → 𝑛 ∈ ℂ)
6158, 60mulcomd 10662 . . . . . . . . . . . 12 (𝑛 ∈ (1...(2 · (𝑁 / 2))) → (π · 𝑛) = (𝑛 · π))
6261fveq2d 6674 . . . . . . . . . . 11 (𝑛 ∈ (1...(2 · (𝑁 / 2))) → (cos‘(π · 𝑛)) = (cos‘(𝑛 · π)))
6362rgen 3148 . . . . . . . . . 10 𝑛 ∈ (1...(2 · (𝑁 / 2)))(cos‘(π · 𝑛)) = (cos‘(𝑛 · π))
6463a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑁 mod 2) = 0) → ∀𝑛 ∈ (1...(2 · (𝑁 / 2)))(cos‘(π · 𝑛)) = (cos‘(𝑛 · π)))
6564sumeq2d 15059 . . . . . . . 8 ((𝜑 ∧ (𝑁 mod 2) = 0) → Σ𝑛 ∈ (1...(2 · (𝑁 / 2)))(cos‘(π · 𝑛)) = Σ𝑛 ∈ (1...(2 · (𝑁 / 2)))(cos‘(𝑛 · π)))
66 simpr 487 . . . . . . . . . . 11 ((𝜑 ∧ (𝑁 mod 2) = 0) → (𝑁 mod 2) = 0)
6748nnred 11653 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
6867adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑁 mod 2) = 0) → 𝑁 ∈ ℝ)
69 2rp 12395 . . . . . . . . . . . 12 2 ∈ ℝ+
70 mod0 13245 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ+) → ((𝑁 mod 2) = 0 ↔ (𝑁 / 2) ∈ ℤ))
7168, 69, 70sylancl 588 . . . . . . . . . . 11 ((𝜑 ∧ (𝑁 mod 2) = 0) → ((𝑁 mod 2) = 0 ↔ (𝑁 / 2) ∈ ℤ))
7266, 71mpbid 234 . . . . . . . . . 10 ((𝜑 ∧ (𝑁 mod 2) = 0) → (𝑁 / 2) ∈ ℤ)
73 2re 11712 . . . . . . . . . . . . 13 2 ∈ ℝ
7473a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℝ)
7548nngt0d 11687 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑁)
76 2pos 11741 . . . . . . . . . . . . 13 0 < 2
7776a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 2)
7867, 74, 75, 77divgt0d 11575 . . . . . . . . . . 11 (𝜑 → 0 < (𝑁 / 2))
7978adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑁 mod 2) = 0) → 0 < (𝑁 / 2))
80 elnnz 11992 . . . . . . . . . 10 ((𝑁 / 2) ∈ ℕ ↔ ((𝑁 / 2) ∈ ℤ ∧ 0 < (𝑁 / 2)))
8172, 79, 80sylanbrc 585 . . . . . . . . 9 ((𝜑 ∧ (𝑁 mod 2) = 0) → (𝑁 / 2) ∈ ℕ)
82 dirkertrigeqlem1 42432 . . . . . . . . 9 ((𝑁 / 2) ∈ ℕ → Σ𝑛 ∈ (1...(2 · (𝑁 / 2)))(cos‘(𝑛 · π)) = 0)
8381, 82syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑁 mod 2) = 0) → Σ𝑛 ∈ (1...(2 · (𝑁 / 2)))(cos‘(𝑛 · π)) = 0)
8457, 65, 833eqtrd 2860 . . . . . . 7 ((𝜑 ∧ (𝑁 mod 2) = 0) → Σ𝑛 ∈ (1...𝑁)(cos‘(π · 𝑛)) = 0)
8584oveq2d 7172 . . . . . 6 ((𝜑 ∧ (𝑁 mod 2) = 0) → ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(π · 𝑛))) = ((1 / 2) + 0))
86 halfcn 11853 . . . . . . 7 (1 / 2) ∈ ℂ
8786addid1i 10827 . . . . . 6 ((1 / 2) + 0) = (1 / 2)
8885, 87syl6eq 2872 . . . . 5 ((𝜑 ∧ (𝑁 mod 2) = 0) → ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(π · 𝑛))) = (1 / 2))
8988oveq1d 7171 . . . 4 ((𝜑 ∧ (𝑁 mod 2) = 0) → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(π · 𝑛))) / π) = ((1 / 2) / π))
90 ax-1cn 10595 . . . . . 6 1 ∈ ℂ
91 2cnne0 11848 . . . . . 6 (2 ∈ ℂ ∧ 2 ≠ 0)
92 pire 25044 . . . . . . . 8 π ∈ ℝ
93 pipos 25046 . . . . . . . 8 0 < π
9492, 93gt0ne0ii 11176 . . . . . . 7 π ≠ 0
9514, 94pm3.2i 473 . . . . . 6 (π ∈ ℂ ∧ π ≠ 0)
96 divdiv1 11351 . . . . . 6 ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → ((1 / 2) / π) = (1 / (2 · π)))
9790, 91, 95, 96mp3an 1457 . . . . 5 ((1 / 2) / π) = (1 / (2 · π))
9897a1i 11 . . . 4 ((𝜑 ∧ (𝑁 mod 2) = 0) → ((1 / 2) / π) = (1 / (2 · π)))
9947, 89, 983eqtrd 2860 . . 3 ((𝜑 ∧ (𝑁 mod 2) = 0) → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴))) / π) = (1 / (2 · π)))
1001oveq2i 7167 . . . . . . . . . 10 ((𝑁 + (1 / 2)) · 𝐴) = ((𝑁 + (1 / 2)) · (((2 · 𝐾) + 1) · π))
101100a1i 11 . . . . . . . . 9 (𝜑 → ((𝑁 + (1 / 2)) · 𝐴) = ((𝑁 + (1 / 2)) · (((2 · 𝐾) + 1) · π)))
10286a1i 11 . . . . . . . . . . 11 (𝜑 → (1 / 2) ∈ ℂ)
10349, 102addcld 10660 . . . . . . . . . 10 (𝜑 → (𝑁 + (1 / 2)) ∈ ℂ)
10450, 9mulcld 10661 . . . . . . . . . . 11 (𝜑 → (2 · 𝐾) ∈ ℂ)
105 peano2cn 10812 . . . . . . . . . . 11 ((2 · 𝐾) ∈ ℂ → ((2 · 𝐾) + 1) ∈ ℂ)
106104, 105syl 17 . . . . . . . . . 10 (𝜑 → ((2 · 𝐾) + 1) ∈ ℂ)
10714a1i 11 . . . . . . . . . 10 (𝜑 → π ∈ ℂ)
108103, 106, 107mulassd 10664 . . . . . . . . 9 (𝜑 → (((𝑁 + (1 / 2)) · ((2 · 𝐾) + 1)) · π) = ((𝑁 + (1 / 2)) · (((2 · 𝐾) + 1) · π)))
109 1cnd 10636 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℂ)
11049, 102, 104, 109muladdd 11098 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 + (1 / 2)) · ((2 · 𝐾) + 1)) = (((𝑁 · (2 · 𝐾)) + (1 · (1 / 2))) + ((𝑁 · 1) + ((2 · 𝐾) · (1 / 2)))))
11149, 50, 9mul12d 10849 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 · (2 · 𝐾)) = (2 · (𝑁 · 𝐾)))
112102mulid2d 10659 . . . . . . . . . . . . . . 15 (𝜑 → (1 · (1 / 2)) = (1 / 2))
113111, 112oveq12d 7174 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 · (2 · 𝐾)) + (1 · (1 / 2))) = ((2 · (𝑁 · 𝐾)) + (1 / 2)))
11449mulid1d 10658 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 · 1) = 𝑁)
11550, 9mulcomd 10662 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · 𝐾) = (𝐾 · 2))
116115oveq1d 7171 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 · 𝐾) · (1 / 2)) = ((𝐾 · 2) · (1 / 2)))
1179, 50, 102mulassd 10664 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐾 · 2) · (1 / 2)) = (𝐾 · (2 · (1 / 2))))
118 2cn 11713 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℂ
119118, 51recidi 11371 . . . . . . . . . . . . . . . . . 18 (2 · (1 / 2)) = 1
120119oveq2i 7167 . . . . . . . . . . . . . . . . 17 (𝐾 · (2 · (1 / 2))) = (𝐾 · 1)
1219mulid1d 10658 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾 · 1) = 𝐾)
122120, 121syl5eq 2868 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾 · (2 · (1 / 2))) = 𝐾)
123116, 117, 1223eqtrd 2860 . . . . . . . . . . . . . . 15 (𝜑 → ((2 · 𝐾) · (1 / 2)) = 𝐾)
124114, 123oveq12d 7174 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 · 1) + ((2 · 𝐾) · (1 / 2))) = (𝑁 + 𝐾))
125113, 124oveq12d 7174 . . . . . . . . . . . . 13 (𝜑 → (((𝑁 · (2 · 𝐾)) + (1 · (1 / 2))) + ((𝑁 · 1) + ((2 · 𝐾) · (1 / 2)))) = (((2 · (𝑁 · 𝐾)) + (1 / 2)) + (𝑁 + 𝐾)))
12649, 9mulcld 10661 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 · 𝐾) ∈ ℂ)
12750, 126mulcld 10661 . . . . . . . . . . . . . 14 (𝜑 → (2 · (𝑁 · 𝐾)) ∈ ℂ)
12849, 9addcld 10660 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 + 𝐾) ∈ ℂ)
129127, 102, 128addassd 10663 . . . . . . . . . . . . 13 (𝜑 → (((2 · (𝑁 · 𝐾)) + (1 / 2)) + (𝑁 + 𝐾)) = ((2 · (𝑁 · 𝐾)) + ((1 / 2) + (𝑁 + 𝐾))))
130110, 125, 1293eqtrd 2860 . . . . . . . . . . . 12 (𝜑 → ((𝑁 + (1 / 2)) · ((2 · 𝐾) + 1)) = ((2 · (𝑁 · 𝐾)) + ((1 / 2) + (𝑁 + 𝐾))))
131102, 128addcld 10660 . . . . . . . . . . . . 13 (𝜑 → ((1 / 2) + (𝑁 + 𝐾)) ∈ ℂ)
132127, 131addcomd 10842 . . . . . . . . . . . 12 (𝜑 → ((2 · (𝑁 · 𝐾)) + ((1 / 2) + (𝑁 + 𝐾))) = (((1 / 2) + (𝑁 + 𝐾)) + (2 · (𝑁 · 𝐾))))
13350, 126mulcomd 10662 . . . . . . . . . . . . 13 (𝜑 → (2 · (𝑁 · 𝐾)) = ((𝑁 · 𝐾) · 2))
134133oveq2d 7172 . . . . . . . . . . . 12 (𝜑 → (((1 / 2) + (𝑁 + 𝐾)) + (2 · (𝑁 · 𝐾))) = (((1 / 2) + (𝑁 + 𝐾)) + ((𝑁 · 𝐾) · 2)))
135130, 132, 1343eqtrd 2860 . . . . . . . . . . 11 (𝜑 → ((𝑁 + (1 / 2)) · ((2 · 𝐾) + 1)) = (((1 / 2) + (𝑁 + 𝐾)) + ((𝑁 · 𝐾) · 2)))
136135oveq1d 7171 . . . . . . . . . 10 (𝜑 → (((𝑁 + (1 / 2)) · ((2 · 𝐾) + 1)) · π) = ((((1 / 2) + (𝑁 + 𝐾)) + ((𝑁 · 𝐾) · 2)) · π))
137126, 50mulcld 10661 . . . . . . . . . . 11 (𝜑 → ((𝑁 · 𝐾) · 2) ∈ ℂ)
138131, 137, 107adddird 10666 . . . . . . . . . 10 (𝜑 → ((((1 / 2) + (𝑁 + 𝐾)) + ((𝑁 · 𝐾) · 2)) · π) = ((((1 / 2) + (𝑁 + 𝐾)) · π) + (((𝑁 · 𝐾) · 2) · π)))
139126, 50, 107mulassd 10664 . . . . . . . . . . 11 (𝜑 → (((𝑁 · 𝐾) · 2) · π) = ((𝑁 · 𝐾) · (2 · π)))
140139oveq2d 7172 . . . . . . . . . 10 (𝜑 → ((((1 / 2) + (𝑁 + 𝐾)) · π) + (((𝑁 · 𝐾) · 2) · π)) = ((((1 / 2) + (𝑁 + 𝐾)) · π) + ((𝑁 · 𝐾) · (2 · π))))
141136, 138, 1403eqtrd 2860 . . . . . . . . 9 (𝜑 → (((𝑁 + (1 / 2)) · ((2 · 𝐾) + 1)) · π) = ((((1 / 2) + (𝑁 + 𝐾)) · π) + ((𝑁 · 𝐾) · (2 · π))))
142101, 108, 1413eqtr2d 2862 . . . . . . . 8 (𝜑 → ((𝑁 + (1 / 2)) · 𝐴) = ((((1 / 2) + (𝑁 + 𝐾)) · π) + ((𝑁 · 𝐾) · (2 · π))))
143142fveq2d 6674 . . . . . . 7 (𝜑 → (sin‘((𝑁 + (1 / 2)) · 𝐴)) = (sin‘((((1 / 2) + (𝑁 + 𝐾)) · π) + ((𝑁 · 𝐾) · (2 · π)))))
144131, 107mulcld 10661 . . . . . . . 8 (𝜑 → (((1 / 2) + (𝑁 + 𝐾)) · π) ∈ ℂ)
14548nnzd 12087 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
146145, 8zmulcld 12094 . . . . . . . 8 (𝜑 → (𝑁 · 𝐾) ∈ ℤ)
147 sinper 25067 . . . . . . . 8 (((((1 / 2) + (𝑁 + 𝐾)) · π) ∈ ℂ ∧ (𝑁 · 𝐾) ∈ ℤ) → (sin‘((((1 / 2) + (𝑁 + 𝐾)) · π) + ((𝑁 · 𝐾) · (2 · π)))) = (sin‘(((1 / 2) + (𝑁 + 𝐾)) · π)))
148144, 146, 147syl2anc 586 . . . . . . 7 (𝜑 → (sin‘((((1 / 2) + (𝑁 + 𝐾)) · π) + ((𝑁 · 𝐾) · (2 · π)))) = (sin‘(((1 / 2) + (𝑁 + 𝐾)) · π)))
149102, 128addcomd 10842 . . . . . . . . . 10 (𝜑 → ((1 / 2) + (𝑁 + 𝐾)) = ((𝑁 + 𝐾) + (1 / 2)))
15049, 9, 102addassd 10663 . . . . . . . . . 10 (𝜑 → ((𝑁 + 𝐾) + (1 / 2)) = (𝑁 + (𝐾 + (1 / 2))))
1519, 102addcld 10660 . . . . . . . . . . 11 (𝜑 → (𝐾 + (1 / 2)) ∈ ℂ)
15249, 151addcomd 10842 . . . . . . . . . 10 (𝜑 → (𝑁 + (𝐾 + (1 / 2))) = ((𝐾 + (1 / 2)) + 𝑁))
153149, 150, 1523eqtrd 2860 . . . . . . . . 9 (𝜑 → ((1 / 2) + (𝑁 + 𝐾)) = ((𝐾 + (1 / 2)) + 𝑁))
154153oveq1d 7171 . . . . . . . 8 (𝜑 → (((1 / 2) + (𝑁 + 𝐾)) · π) = (((𝐾 + (1 / 2)) + 𝑁) · π))
155154fveq2d 6674 . . . . . . 7 (𝜑 → (sin‘(((1 / 2) + (𝑁 + 𝐾)) · π)) = (sin‘(((𝐾 + (1 / 2)) + 𝑁) · π)))
156143, 148, 1553eqtrd 2860 . . . . . 6 (𝜑 → (sin‘((𝑁 + (1 / 2)) · 𝐴)) = (sin‘(((𝐾 + (1 / 2)) + 𝑁) · π)))
1571a1i 11 . . . . . . . . . 10 (𝜑𝐴 = (((2 · 𝐾) + 1) · π))
158157oveq1d 7171 . . . . . . . . 9 (𝜑 → (𝐴 / 2) = ((((2 · 𝐾) + 1) · π) / 2))
159106, 107, 50, 52div23d 11453 . . . . . . . . 9 (𝜑 → ((((2 · 𝐾) + 1) · π) / 2) = ((((2 · 𝐾) + 1) / 2) · π))
160104, 109, 50, 52divdird 11454 . . . . . . . . . . 11 (𝜑 → (((2 · 𝐾) + 1) / 2) = (((2 · 𝐾) / 2) + (1 / 2)))
1619, 50, 52divcan3d 11421 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝐾) / 2) = 𝐾)
162161oveq1d 7171 . . . . . . . . . . 11 (𝜑 → (((2 · 𝐾) / 2) + (1 / 2)) = (𝐾 + (1 / 2)))
163160, 162eqtrd 2856 . . . . . . . . . 10 (𝜑 → (((2 · 𝐾) + 1) / 2) = (𝐾 + (1 / 2)))
164163oveq1d 7171 . . . . . . . . 9 (𝜑 → ((((2 · 𝐾) + 1) / 2) · π) = ((𝐾 + (1 / 2)) · π))
165158, 159, 1643eqtrd 2860 . . . . . . . 8 (𝜑 → (𝐴 / 2) = ((𝐾 + (1 / 2)) · π))
166165fveq2d 6674 . . . . . . 7 (𝜑 → (sin‘(𝐴 / 2)) = (sin‘((𝐾 + (1 / 2)) · π)))
167166oveq2d 7172 . . . . . 6 (𝜑 → ((2 · π) · (sin‘(𝐴 / 2))) = ((2 · π) · (sin‘((𝐾 + (1 / 2)) · π))))
168156, 167oveq12d 7174 . . . . 5 (𝜑 → ((sin‘((𝑁 + (1 / 2)) · 𝐴)) / ((2 · π) · (sin‘(𝐴 / 2)))) = ((sin‘(((𝐾 + (1 / 2)) + 𝑁) · π)) / ((2 · π) · (sin‘((𝐾 + (1 / 2)) · π)))))
169168adantr 483 . . . 4 ((𝜑 ∧ (𝑁 mod 2) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝐴)) / ((2 · π) · (sin‘(𝐴 / 2)))) = ((sin‘(((𝐾 + (1 / 2)) + 𝑁) · π)) / ((2 · π) · (sin‘((𝐾 + (1 / 2)) · π)))))
170151, 49, 107adddird 10666 . . . . . . 7 (𝜑 → (((𝐾 + (1 / 2)) + 𝑁) · π) = (((𝐾 + (1 / 2)) · π) + (𝑁 · π)))
171170fveq2d 6674 . . . . . 6 (𝜑 → (sin‘(((𝐾 + (1 / 2)) + 𝑁) · π)) = (sin‘(((𝐾 + (1 / 2)) · π) + (𝑁 · π))))
172171oveq1d 7171 . . . . 5 (𝜑 → ((sin‘(((𝐾 + (1 / 2)) + 𝑁) · π)) / ((2 · π) · (sin‘((𝐾 + (1 / 2)) · π)))) = ((sin‘(((𝐾 + (1 / 2)) · π) + (𝑁 · π))) / ((2 · π) · (sin‘((𝐾 + (1 / 2)) · π)))))
173172adantr 483 . . . 4 ((𝜑 ∧ (𝑁 mod 2) = 0) → ((sin‘(((𝐾 + (1 / 2)) + 𝑁) · π)) / ((2 · π) · (sin‘((𝐾 + (1 / 2)) · π)))) = ((sin‘(((𝐾 + (1 / 2)) · π) + (𝑁 · π))) / ((2 · π) · (sin‘((𝐾 + (1 / 2)) · π)))))
17449halfcld 11883 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 / 2) ∈ ℂ)
17550, 174mulcomd 10662 . . . . . . . . . . . . 13 (𝜑 → (2 · (𝑁 / 2)) = ((𝑁 / 2) · 2))
17653, 175eqtr3d 2858 . . . . . . . . . . . 12 (𝜑𝑁 = ((𝑁 / 2) · 2))
177176oveq1d 7171 . . . . . . . . . . 11 (𝜑 → (𝑁 · π) = (((𝑁 / 2) · 2) · π))
178174, 50, 107mulassd 10664 . . . . . . . . . . 11 (𝜑 → (((𝑁 / 2) · 2) · π) = ((𝑁 / 2) · (2 · π)))
179177, 178eqtrd 2856 . . . . . . . . . 10 (𝜑 → (𝑁 · π) = ((𝑁 / 2) · (2 · π)))
180179oveq2d 7172 . . . . . . . . 9 (𝜑 → (((𝐾 + (1 / 2)) · π) + (𝑁 · π)) = (((𝐾 + (1 / 2)) · π) + ((𝑁 / 2) · (2 · π))))
181180fveq2d 6674 . . . . . . . 8 (𝜑 → (sin‘(((𝐾 + (1 / 2)) · π) + (𝑁 · π))) = (sin‘(((𝐾 + (1 / 2)) · π) + ((𝑁 / 2) · (2 · π)))))
182181adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑁 mod 2) = 0) → (sin‘(((𝐾 + (1 / 2)) · π) + (𝑁 · π))) = (sin‘(((𝐾 + (1 / 2)) · π) + ((𝑁 / 2) · (2 · π)))))
1839adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑁 mod 2) = 0) → 𝐾 ∈ ℂ)
184 1cnd 10636 . . . . . . . . . . 11 ((𝜑 ∧ (𝑁 mod 2) = 0) → 1 ∈ ℂ)
185184halfcld 11883 . . . . . . . . . 10 ((𝜑 ∧ (𝑁 mod 2) = 0) → (1 / 2) ∈ ℂ)
186183, 185addcld 10660 . . . . . . . . 9 ((𝜑 ∧ (𝑁 mod 2) = 0) → (𝐾 + (1 / 2)) ∈ ℂ)
18714a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑁 mod 2) = 0) → π ∈ ℂ)
188186, 187mulcld 10661 . . . . . . . 8 ((𝜑 ∧ (𝑁 mod 2) = 0) → ((𝐾 + (1 / 2)) · π) ∈ ℂ)
189 sinper 25067 . . . . . . . 8 ((((𝐾 + (1 / 2)) · π) ∈ ℂ ∧ (𝑁 / 2) ∈ ℤ) → (sin‘(((𝐾 + (1 / 2)) · π) + ((𝑁 / 2) · (2 · π)))) = (sin‘((𝐾 + (1 / 2)) · π)))
190188, 72, 189syl2anc 586 . . . . . . 7 ((𝜑 ∧ (𝑁 mod 2) = 0) → (sin‘(((𝐾 + (1 / 2)) · π) + ((𝑁 / 2) · (2 · π)))) = (sin‘((𝐾 + (1 / 2)) · π)))
191182, 190eqtrd 2856 . . . . . 6 ((𝜑 ∧ (𝑁 mod 2) = 0) → (sin‘(((𝐾 + (1 / 2)) · π) + (𝑁 · π))) = (sin‘((𝐾 + (1 / 2)) · π)))
19250, 107mulcld 10661 . . . . . . . 8 (𝜑 → (2 · π) ∈ ℂ)
193151, 107mulcld 10661 . . . . . . . . 9 (𝜑 → ((𝐾 + (1 / 2)) · π) ∈ ℂ)
194193sincld 15483 . . . . . . . 8 (𝜑 → (sin‘((𝐾 + (1 / 2)) · π)) ∈ ℂ)
195192, 194mulcomd 10662 . . . . . . 7 (𝜑 → ((2 · π) · (sin‘((𝐾 + (1 / 2)) · π))) = ((sin‘((𝐾 + (1 / 2)) · π)) · (2 · π)))
196195adantr 483 . . . . . 6 ((𝜑 ∧ (𝑁 mod 2) = 0) → ((2 · π) · (sin‘((𝐾 + (1 / 2)) · π))) = ((sin‘((𝐾 + (1 / 2)) · π)) · (2 · π)))
197191, 196oveq12d 7174 . . . . 5 ((𝜑 ∧ (𝑁 mod 2) = 0) → ((sin‘(((𝐾 + (1 / 2)) · π) + (𝑁 · π))) / ((2 · π) · (sin‘((𝐾 + (1 / 2)) · π)))) = ((sin‘((𝐾 + (1 / 2)) · π)) / ((sin‘((𝐾 + (1 / 2)) · π)) · (2 · π))))
19894a1i 11 . . . . . . . . . . . 12 (𝜑 → π ≠ 0)
199151, 107, 198divcan4d 11422 . . . . . . . . . . 11 (𝜑 → (((𝐾 + (1 / 2)) · π) / π) = (𝐾 + (1 / 2)))
2008zred 12088 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ ℝ)
20169a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ+)
202201rpreccld 12442 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ∈ ℝ+)
203200, 202ltaddrpd 12465 . . . . . . . . . . . 12 (𝜑𝐾 < (𝐾 + (1 / 2)))
204 1red 10642 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
205204rehalfcld 11885 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ∈ ℝ)
206 halflt1 11856 . . . . . . . . . . . . . 14 (1 / 2) < 1
207206a1i 11 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) < 1)
208205, 204, 200, 207ltadd2dd 10799 . . . . . . . . . . . 12 (𝜑 → (𝐾 + (1 / 2)) < (𝐾 + 1))
209 btwnnz 12059 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝐾 < (𝐾 + (1 / 2)) ∧ (𝐾 + (1 / 2)) < (𝐾 + 1)) → ¬ (𝐾 + (1 / 2)) ∈ ℤ)
2108, 203, 208, 209syl3anc 1367 . . . . . . . . . . 11 (𝜑 → ¬ (𝐾 + (1 / 2)) ∈ ℤ)
211199, 210eqneltrd 2932 . . . . . . . . . 10 (𝜑 → ¬ (((𝐾 + (1 / 2)) · π) / π) ∈ ℤ)
212 sineq0 25109 . . . . . . . . . . 11 (((𝐾 + (1 / 2)) · π) ∈ ℂ → ((sin‘((𝐾 + (1 / 2)) · π)) = 0 ↔ (((𝐾 + (1 / 2)) · π) / π) ∈ ℤ))
213193, 212syl 17 . . . . . . . . . 10 (𝜑 → ((sin‘((𝐾 + (1 / 2)) · π)) = 0 ↔ (((𝐾 + (1 / 2)) · π) / π) ∈ ℤ))
214211, 213mtbird 327 . . . . . . . . 9 (𝜑 → ¬ (sin‘((𝐾 + (1 / 2)) · π)) = 0)
215214neqned 3023 . . . . . . . 8 (𝜑 → (sin‘((𝐾 + (1 / 2)) · π)) ≠ 0)
21650, 107, 52, 198mulne0d 11292 . . . . . . . 8 (𝜑 → (2 · π) ≠ 0)
217194, 194, 192, 215, 216divdiv1d 11447 . . . . . . 7 (𝜑 → (((sin‘((𝐾 + (1 / 2)) · π)) / (sin‘((𝐾 + (1 / 2)) · π))) / (2 · π)) = ((sin‘((𝐾 + (1 / 2)) · π)) / ((sin‘((𝐾 + (1 / 2)) · π)) · (2 · π))))
218194, 215dividd 11414 . . . . . . . 8 (𝜑 → ((sin‘((𝐾 + (1 / 2)) · π)) / (sin‘((𝐾 + (1 / 2)) · π))) = 1)
219218oveq1d 7171 . . . . . . 7 (𝜑 → (((sin‘((𝐾 + (1 / 2)) · π)) / (sin‘((𝐾 + (1 / 2)) · π))) / (2 · π)) = (1 / (2 · π)))
220217, 219eqtr3d 2858 . . . . . 6 (𝜑 → ((sin‘((𝐾 + (1 / 2)) · π)) / ((sin‘((𝐾 + (1 / 2)) · π)) · (2 · π))) = (1 / (2 · π)))
221220adantr 483 . . . . 5 ((𝜑 ∧ (𝑁 mod 2) = 0) → ((sin‘((𝐾 + (1 / 2)) · π)) / ((sin‘((𝐾 + (1 / 2)) · π)) · (2 · π))) = (1 / (2 · π)))
222197, 221eqtrd 2856 . . . 4 ((𝜑 ∧ (𝑁 mod 2) = 0) → ((sin‘(((𝐾 + (1 / 2)) · π) + (𝑁 · π))) / ((2 · π) · (sin‘((𝐾 + (1 / 2)) · π)))) = (1 / (2 · π)))
223169, 173, 2223eqtrrd 2861 . . 3 ((𝜑 ∧ (𝑁 mod 2) = 0) → (1 / (2 · π)) = ((sin‘((𝑁 + (1 / 2)) · 𝐴)) / ((2 · π) · (sin‘(𝐴 / 2)))))
22499, 223eqtrd 2856 . 2 ((𝜑 ∧ (𝑁 mod 2) = 0) → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴))) / π) = ((sin‘((𝑁 + (1 / 2)) · 𝐴)) / ((2 · π) · (sin‘(𝐴 / 2)))))
22546adantr 483 . . 3 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴))) / π) = (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(π · 𝑛))) / π))
226145adantr 483 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → 𝑁 ∈ ℤ)
227 simpr 487 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → ¬ (𝑁 mod 2) = 0)
228227neqned 3023 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → (𝑁 mod 2) ≠ 0)
229 oddfl 41592 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) ≠ 0) → 𝑁 = ((2 · (⌊‘(𝑁 / 2))) + 1))
230226, 228, 229syl2anc 586 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → 𝑁 = ((2 · (⌊‘(𝑁 / 2))) + 1))
231230oveq2d 7172 . . . . . . 7 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → (1...𝑁) = (1...((2 · (⌊‘(𝑁 / 2))) + 1)))
232231sumeq1d 15058 . . . . . 6 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → Σ𝑛 ∈ (1...𝑁)(cos‘(π · 𝑛)) = Σ𝑛 ∈ (1...((2 · (⌊‘(𝑁 / 2))) + 1))(cos‘(π · 𝑛)))
233 fvoveq1 7179 . . . . . . . . . . . . . . . . 17 (𝑁 = 1 → (⌊‘(𝑁 / 2)) = (⌊‘(1 / 2)))
234 halffl 41612 . . . . . . . . . . . . . . . . 17 (⌊‘(1 / 2)) = 0
235233, 234syl6eq 2872 . . . . . . . . . . . . . . . 16 (𝑁 = 1 → (⌊‘(𝑁 / 2)) = 0)
236235oveq2d 7172 . . . . . . . . . . . . . . 15 (𝑁 = 1 → (2 · (⌊‘(𝑁 / 2))) = (2 · 0))
237 2t0e0 11807 . . . . . . . . . . . . . . 15 (2 · 0) = 0
238236, 237syl6eq 2872 . . . . . . . . . . . . . 14 (𝑁 = 1 → (2 · (⌊‘(𝑁 / 2))) = 0)
239238oveq1d 7171 . . . . . . . . . . . . 13 (𝑁 = 1 → ((2 · (⌊‘(𝑁 / 2))) + 1) = (0 + 1))
24090addid2i 10828 . . . . . . . . . . . . 13 (0 + 1) = 1
241239, 240syl6eq 2872 . . . . . . . . . . . 12 (𝑁 = 1 → ((2 · (⌊‘(𝑁 / 2))) + 1) = 1)
242241oveq2d 7172 . . . . . . . . . . 11 (𝑁 = 1 → (1...((2 · (⌊‘(𝑁 / 2))) + 1)) = (1...1))
243242sumeq1d 15058 . . . . . . . . . 10 (𝑁 = 1 → Σ𝑛 ∈ (1...((2 · (⌊‘(𝑁 / 2))) + 1))(cos‘(π · 𝑛)) = Σ𝑛 ∈ (1...1)(cos‘(π · 𝑛)))
244 1z 12013 . . . . . . . . . . . 12 1 ∈ ℤ
245 coscl 15480 . . . . . . . . . . . . 13 (π ∈ ℂ → (cos‘π) ∈ ℂ)
24614, 245ax-mp 5 . . . . . . . . . . . 12 (cos‘π) ∈ ℂ
247 oveq2 7164 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (π · 𝑛) = (π · 1))
24814mulid1i 10645 . . . . . . . . . . . . . . 15 (π · 1) = π
249247, 248syl6eq 2872 . . . . . . . . . . . . . 14 (𝑛 = 1 → (π · 𝑛) = π)
250249fveq2d 6674 . . . . . . . . . . . . 13 (𝑛 = 1 → (cos‘(π · 𝑛)) = (cos‘π))
251250fsum1 15102 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ (cos‘π) ∈ ℂ) → Σ𝑛 ∈ (1...1)(cos‘(π · 𝑛)) = (cos‘π))
252244, 246, 251mp2an 690 . . . . . . . . . . 11 Σ𝑛 ∈ (1...1)(cos‘(π · 𝑛)) = (cos‘π)
253252a1i 11 . . . . . . . . . 10 (𝑁 = 1 → Σ𝑛 ∈ (1...1)(cos‘(π · 𝑛)) = (cos‘π))
254 cospi 25058 . . . . . . . . . . 11 (cos‘π) = -1
255254a1i 11 . . . . . . . . . 10 (𝑁 = 1 → (cos‘π) = -1)
256243, 253, 2553eqtrd 2860 . . . . . . . . 9 (𝑁 = 1 → Σ𝑛 ∈ (1...((2 · (⌊‘(𝑁 / 2))) + 1))(cos‘(π · 𝑛)) = -1)
257256adantl 484 . . . . . . . 8 ((𝜑𝑁 = 1) → Σ𝑛 ∈ (1...((2 · (⌊‘(𝑁 / 2))) + 1))(cos‘(π · 𝑛)) = -1)
258 2nn 11711 . . . . . . . . . . . . 13 2 ∈ ℕ
259258a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑁 = 1) → 2 ∈ ℕ)
26067rehalfcld 11885 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 / 2) ∈ ℝ)
261260flcld 13169 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘(𝑁 / 2)) ∈ ℤ)
262261adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑁 = 1) → (⌊‘(𝑁 / 2)) ∈ ℤ)
263 2div2e1 11779 . . . . . . . . . . . . . . 15 (2 / 2) = 1
26473a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝑁 = 1) → 2 ∈ ℝ)
26567adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝑁 = 1) → 𝑁 ∈ ℝ)
26669a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝑁 = 1) → 2 ∈ ℝ+)
267 neqne 3024 . . . . . . . . . . . . . . . . 17 𝑁 = 1 → 𝑁 ≠ 1)
268 nnne1ge2 41607 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁)
26948, 267, 268syl2an 597 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝑁 = 1) → 2 ≤ 𝑁)
270264, 265, 266, 269lediv1dd 12490 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝑁 = 1) → (2 / 2) ≤ (𝑁 / 2))
271263, 270eqbrtrrid 5102 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝑁 = 1) → 1 ≤ (𝑁 / 2))
272260adantr 483 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝑁 = 1) → (𝑁 / 2) ∈ ℝ)
273 flge 13176 . . . . . . . . . . . . . . 15 (((𝑁 / 2) ∈ ℝ ∧ 1 ∈ ℤ) → (1 ≤ (𝑁 / 2) ↔ 1 ≤ (⌊‘(𝑁 / 2))))
274272, 244, 273sylancl 588 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝑁 = 1) → (1 ≤ (𝑁 / 2) ↔ 1 ≤ (⌊‘(𝑁 / 2))))
275271, 274mpbid 234 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑁 = 1) → 1 ≤ (⌊‘(𝑁 / 2)))
276 elnnz1 12009 . . . . . . . . . . . . 13 ((⌊‘(𝑁 / 2)) ∈ ℕ ↔ ((⌊‘(𝑁 / 2)) ∈ ℤ ∧ 1 ≤ (⌊‘(𝑁 / 2))))
277262, 275, 276sylanbrc 585 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑁 = 1) → (⌊‘(𝑁 / 2)) ∈ ℕ)
278259, 277nnmulcld 11691 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑁 = 1) → (2 · (⌊‘(𝑁 / 2))) ∈ ℕ)
279 nnuz 12282 . . . . . . . . . . 11 ℕ = (ℤ‘1)
280278, 279eleqtrdi 2923 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑁 = 1) → (2 · (⌊‘(𝑁 / 2))) ∈ (ℤ‘1))
28114a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑁 = 1) ∧ 𝑛 ∈ (1...((2 · (⌊‘(𝑁 / 2))) + 1))) → π ∈ ℂ)
282 elfzelz 12909 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...((2 · (⌊‘(𝑁 / 2))) + 1)) → 𝑛 ∈ ℤ)
283282zcnd 12089 . . . . . . . . . . . . 13 (𝑛 ∈ (1...((2 · (⌊‘(𝑁 / 2))) + 1)) → 𝑛 ∈ ℂ)
284283adantl 484 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑁 = 1) ∧ 𝑛 ∈ (1...((2 · (⌊‘(𝑁 / 2))) + 1))) → 𝑛 ∈ ℂ)
285281, 284mulcld 10661 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑁 = 1) ∧ 𝑛 ∈ (1...((2 · (⌊‘(𝑁 / 2))) + 1))) → (π · 𝑛) ∈ ℂ)
286285coscld 15484 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑁 = 1) ∧ 𝑛 ∈ (1...((2 · (⌊‘(𝑁 / 2))) + 1))) → (cos‘(π · 𝑛)) ∈ ℂ)
287 oveq2 7164 . . . . . . . . . . 11 (𝑛 = ((2 · (⌊‘(𝑁 / 2))) + 1) → (π · 𝑛) = (π · ((2 · (⌊‘(𝑁 / 2))) + 1)))
288287fveq2d 6674 . . . . . . . . . 10 (𝑛 = ((2 · (⌊‘(𝑁 / 2))) + 1) → (cos‘(π · 𝑛)) = (cos‘(π · ((2 · (⌊‘(𝑁 / 2))) + 1))))
289280, 286, 288fsump1 15111 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑁 = 1) → Σ𝑛 ∈ (1...((2 · (⌊‘(𝑁 / 2))) + 1))(cos‘(π · 𝑛)) = (Σ𝑛 ∈ (1...(2 · (⌊‘(𝑁 / 2))))(cos‘(π · 𝑛)) + (cos‘(π · ((2 · (⌊‘(𝑁 / 2))) + 1)))))
29014a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...(2 · (⌊‘(𝑁 / 2)))) → π ∈ ℂ)
291 elfzelz 12909 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...(2 · (⌊‘(𝑁 / 2)))) → 𝑛 ∈ ℤ)
292291zcnd 12089 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...(2 · (⌊‘(𝑁 / 2)))) → 𝑛 ∈ ℂ)
293290, 292mulcomd 10662 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(2 · (⌊‘(𝑁 / 2)))) → (π · 𝑛) = (𝑛 · π))
294293fveq2d 6674 . . . . . . . . . . . 12 (𝑛 ∈ (1...(2 · (⌊‘(𝑁 / 2)))) → (cos‘(π · 𝑛)) = (cos‘(𝑛 · π)))
295294sumeq2i 15056 . . . . . . . . . . 11 Σ𝑛 ∈ (1...(2 · (⌊‘(𝑁 / 2))))(cos‘(π · 𝑛)) = Σ𝑛 ∈ (1...(2 · (⌊‘(𝑁 / 2))))(cos‘(𝑛 · π))
296 dirkertrigeqlem1 42432 . . . . . . . . . . . 12 ((⌊‘(𝑁 / 2)) ∈ ℕ → Σ𝑛 ∈ (1...(2 · (⌊‘(𝑁 / 2))))(cos‘(𝑛 · π)) = 0)
297277, 296syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑁 = 1) → Σ𝑛 ∈ (1...(2 · (⌊‘(𝑁 / 2))))(cos‘(𝑛 · π)) = 0)
298295, 297syl5eq 2868 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑁 = 1) → Σ𝑛 ∈ (1...(2 · (⌊‘(𝑁 / 2))))(cos‘(π · 𝑛)) = 0)
299261zcnd 12089 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘(𝑁 / 2)) ∈ ℂ)
30050, 299mulcld 10661 . . . . . . . . . . . . . . 15 (𝜑 → (2 · (⌊‘(𝑁 / 2))) ∈ ℂ)
301107, 300, 109adddid 10665 . . . . . . . . . . . . . 14 (𝜑 → (π · ((2 · (⌊‘(𝑁 / 2))) + 1)) = ((π · (2 · (⌊‘(𝑁 / 2)))) + (π · 1)))
302107, 50, 299mul13d 41594 . . . . . . . . . . . . . . 15 (𝜑 → (π · (2 · (⌊‘(𝑁 / 2)))) = ((⌊‘(𝑁 / 2)) · (2 · π)))
303248a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (π · 1) = π)
304302, 303oveq12d 7174 . . . . . . . . . . . . . 14 (𝜑 → ((π · (2 · (⌊‘(𝑁 / 2)))) + (π · 1)) = (((⌊‘(𝑁 / 2)) · (2 · π)) + π))
305299, 192mulcld 10661 . . . . . . . . . . . . . . 15 (𝜑 → ((⌊‘(𝑁 / 2)) · (2 · π)) ∈ ℂ)
306305, 107addcomd 10842 . . . . . . . . . . . . . 14 (𝜑 → (((⌊‘(𝑁 / 2)) · (2 · π)) + π) = (π + ((⌊‘(𝑁 / 2)) · (2 · π))))
307301, 304, 3063eqtrd 2860 . . . . . . . . . . . . 13 (𝜑 → (π · ((2 · (⌊‘(𝑁 / 2))) + 1)) = (π + ((⌊‘(𝑁 / 2)) · (2 · π))))
308307fveq2d 6674 . . . . . . . . . . . 12 (𝜑 → (cos‘(π · ((2 · (⌊‘(𝑁 / 2))) + 1))) = (cos‘(π + ((⌊‘(𝑁 / 2)) · (2 · π)))))
309 cosper 25068 . . . . . . . . . . . . 13 ((π ∈ ℂ ∧ (⌊‘(𝑁 / 2)) ∈ ℤ) → (cos‘(π + ((⌊‘(𝑁 / 2)) · (2 · π)))) = (cos‘π))
310107, 261, 309syl2anc 586 . . . . . . . . . . . 12 (𝜑 → (cos‘(π + ((⌊‘(𝑁 / 2)) · (2 · π)))) = (cos‘π))
311254a1i 11 . . . . . . . . . . . 12 (𝜑 → (cos‘π) = -1)
312308, 310, 3113eqtrd 2860 . . . . . . . . . . 11 (𝜑 → (cos‘(π · ((2 · (⌊‘(𝑁 / 2))) + 1))) = -1)
313312adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑁 = 1) → (cos‘(π · ((2 · (⌊‘(𝑁 / 2))) + 1))) = -1)
314298, 313oveq12d 7174 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑁 = 1) → (Σ𝑛 ∈ (1...(2 · (⌊‘(𝑁 / 2))))(cos‘(π · 𝑛)) + (cos‘(π · ((2 · (⌊‘(𝑁 / 2))) + 1)))) = (0 + -1))
315 neg1cn 11752 . . . . . . . . . . 11 -1 ∈ ℂ
316315addid2i 10828 . . . . . . . . . 10 (0 + -1) = -1
317316a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑁 = 1) → (0 + -1) = -1)
318289, 314, 3173eqtrd 2860 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑁 = 1) → Σ𝑛 ∈ (1...((2 · (⌊‘(𝑁 / 2))) + 1))(cos‘(π · 𝑛)) = -1)
319257, 318pm2.61dan 811 . . . . . . 7 (𝜑 → Σ𝑛 ∈ (1...((2 · (⌊‘(𝑁 / 2))) + 1))(cos‘(π · 𝑛)) = -1)
320319adantr 483 . . . . . 6 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → Σ𝑛 ∈ (1...((2 · (⌊‘(𝑁 / 2))) + 1))(cos‘(π · 𝑛)) = -1)
321232, 320eqtrd 2856 . . . . 5 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → Σ𝑛 ∈ (1...𝑁)(cos‘(π · 𝑛)) = -1)
322321oveq2d 7172 . . . 4 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(π · 𝑛))) = ((1 / 2) + -1))
323322oveq1d 7171 . . 3 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(π · 𝑛))) / π) = (((1 / 2) + -1) / π))
324168, 172eqtrd 2856 . . . . 5 (𝜑 → ((sin‘((𝑁 + (1 / 2)) · 𝐴)) / ((2 · π) · (sin‘(𝐴 / 2)))) = ((sin‘(((𝐾 + (1 / 2)) · π) + (𝑁 · π))) / ((2 · π) · (sin‘((𝐾 + (1 / 2)) · π)))))
325324adantr 483 . . . 4 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝐴)) / ((2 · π) · (sin‘(𝐴 / 2)))) = ((sin‘(((𝐾 + (1 / 2)) · π) + (𝑁 · π))) / ((2 · π) · (sin‘((𝐾 + (1 / 2)) · π)))))
326230oveq1d 7171 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → (𝑁 · π) = (((2 · (⌊‘(𝑁 / 2))) + 1) · π))
327300, 109, 107adddird 10666 . . . . . . . . . . 11 (𝜑 → (((2 · (⌊‘(𝑁 / 2))) + 1) · π) = (((2 · (⌊‘(𝑁 / 2))) · π) + (1 · π)))
328107mulid2d 10659 . . . . . . . . . . . 12 (𝜑 → (1 · π) = π)
329328oveq2d 7172 . . . . . . . . . . 11 (𝜑 → (((2 · (⌊‘(𝑁 / 2))) · π) + (1 · π)) = (((2 · (⌊‘(𝑁 / 2))) · π) + π))
330300, 107mulcld 10661 . . . . . . . . . . . 12 (𝜑 → ((2 · (⌊‘(𝑁 / 2))) · π) ∈ ℂ)
331330, 107addcomd 10842 . . . . . . . . . . 11 (𝜑 → (((2 · (⌊‘(𝑁 / 2))) · π) + π) = (π + ((2 · (⌊‘(𝑁 / 2))) · π)))
332327, 329, 3313eqtrd 2860 . . . . . . . . . 10 (𝜑 → (((2 · (⌊‘(𝑁 / 2))) + 1) · π) = (π + ((2 · (⌊‘(𝑁 / 2))) · π)))
333332adantr 483 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → (((2 · (⌊‘(𝑁 / 2))) + 1) · π) = (π + ((2 · (⌊‘(𝑁 / 2))) · π)))
33450, 299mulcomd 10662 . . . . . . . . . . . . 13 (𝜑 → (2 · (⌊‘(𝑁 / 2))) = ((⌊‘(𝑁 / 2)) · 2))
335334oveq1d 7171 . . . . . . . . . . . 12 (𝜑 → ((2 · (⌊‘(𝑁 / 2))) · π) = (((⌊‘(𝑁 / 2)) · 2) · π))
336299, 50, 107mulassd 10664 . . . . . . . . . . . 12 (𝜑 → (((⌊‘(𝑁 / 2)) · 2) · π) = ((⌊‘(𝑁 / 2)) · (2 · π)))
337335, 336eqtrd 2856 . . . . . . . . . . 11 (𝜑 → ((2 · (⌊‘(𝑁 / 2))) · π) = ((⌊‘(𝑁 / 2)) · (2 · π)))
338337oveq2d 7172 . . . . . . . . . 10 (𝜑 → (π + ((2 · (⌊‘(𝑁 / 2))) · π)) = (π + ((⌊‘(𝑁 / 2)) · (2 · π))))
339338adantr 483 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → (π + ((2 · (⌊‘(𝑁 / 2))) · π)) = (π + ((⌊‘(𝑁 / 2)) · (2 · π))))
340326, 333, 3393eqtrd 2860 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → (𝑁 · π) = (π + ((⌊‘(𝑁 / 2)) · (2 · π))))
341340oveq2d 7172 . . . . . . 7 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → (((𝐾 + (1 / 2)) · π) + (𝑁 · π)) = (((𝐾 + (1 / 2)) · π) + (π + ((⌊‘(𝑁 / 2)) · (2 · π)))))
342193adantr 483 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → ((𝐾 + (1 / 2)) · π) ∈ ℂ)
34314a1i 11 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → π ∈ ℂ)
344305adantr 483 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → ((⌊‘(𝑁 / 2)) · (2 · π)) ∈ ℂ)
345342, 343, 344addassd 10663 . . . . . . 7 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → ((((𝐾 + (1 / 2)) · π) + π) + ((⌊‘(𝑁 / 2)) · (2 · π))) = (((𝐾 + (1 / 2)) · π) + (π + ((⌊‘(𝑁 / 2)) · (2 · π)))))
346341, 345eqtr4d 2859 . . . . . 6 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → (((𝐾 + (1 / 2)) · π) + (𝑁 · π)) = ((((𝐾 + (1 / 2)) · π) + π) + ((⌊‘(𝑁 / 2)) · (2 · π))))
347346fveq2d 6674 . . . . 5 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → (sin‘(((𝐾 + (1 / 2)) · π) + (𝑁 · π))) = (sin‘((((𝐾 + (1 / 2)) · π) + π) + ((⌊‘(𝑁 / 2)) · (2 · π)))))
348347oveq1d 7171 . . . 4 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → ((sin‘(((𝐾 + (1 / 2)) · π) + (𝑁 · π))) / ((2 · π) · (sin‘((𝐾 + (1 / 2)) · π)))) = ((sin‘((((𝐾 + (1 / 2)) · π) + π) + ((⌊‘(𝑁 / 2)) · (2 · π)))) / ((2 · π) · (sin‘((𝐾 + (1 / 2)) · π)))))
349193, 107addcld 10660 . . . . . . . . 9 (𝜑 → (((𝐾 + (1 / 2)) · π) + π) ∈ ℂ)
350 sinper 25067 . . . . . . . . 9 (((((𝐾 + (1 / 2)) · π) + π) ∈ ℂ ∧ (⌊‘(𝑁 / 2)) ∈ ℤ) → (sin‘((((𝐾 + (1 / 2)) · π) + π) + ((⌊‘(𝑁 / 2)) · (2 · π)))) = (sin‘(((𝐾 + (1 / 2)) · π) + π)))
351349, 261, 350syl2anc 586 . . . . . . . 8 (𝜑 → (sin‘((((𝐾 + (1 / 2)) · π) + π) + ((⌊‘(𝑁 / 2)) · (2 · π)))) = (sin‘(((𝐾 + (1 / 2)) · π) + π)))
352 sinppi 25075 . . . . . . . . 9 (((𝐾 + (1 / 2)) · π) ∈ ℂ → (sin‘(((𝐾 + (1 / 2)) · π) + π)) = -(sin‘((𝐾 + (1 / 2)) · π)))
353193, 352syl 17 . . . . . . . 8 (𝜑 → (sin‘(((𝐾 + (1 / 2)) · π) + π)) = -(sin‘((𝐾 + (1 / 2)) · π)))
354351, 353eqtrd 2856 . . . . . . 7 (𝜑 → (sin‘((((𝐾 + (1 / 2)) · π) + π) + ((⌊‘(𝑁 / 2)) · (2 · π)))) = -(sin‘((𝐾 + (1 / 2)) · π)))
355354oveq1d 7171 . . . . . 6 (𝜑 → ((sin‘((((𝐾 + (1 / 2)) · π) + π) + ((⌊‘(𝑁 / 2)) · (2 · π)))) / ((2 · π) · (sin‘((𝐾 + (1 / 2)) · π)))) = (-(sin‘((𝐾 + (1 / 2)) · π)) / ((2 · π) · (sin‘((𝐾 + (1 / 2)) · π)))))
356195oveq2d 7172 . . . . . 6 (𝜑 → (-(sin‘((𝐾 + (1 / 2)) · π)) / ((2 · π) · (sin‘((𝐾 + (1 / 2)) · π)))) = (-(sin‘((𝐾 + (1 / 2)) · π)) / ((sin‘((𝐾 + (1 / 2)) · π)) · (2 · π))))
357194, 194, 215divnegd 11429 . . . . . . . . 9 (𝜑 → -((sin‘((𝐾 + (1 / 2)) · π)) / (sin‘((𝐾 + (1 / 2)) · π))) = (-(sin‘((𝐾 + (1 / 2)) · π)) / (sin‘((𝐾 + (1 / 2)) · π))))
358218negeqd 10880 . . . . . . . . 9 (𝜑 → -((sin‘((𝐾 + (1 / 2)) · π)) / (sin‘((𝐾 + (1 / 2)) · π))) = -1)
359357, 358eqtr3d 2858 . . . . . . . 8 (𝜑 → (-(sin‘((𝐾 + (1 / 2)) · π)) / (sin‘((𝐾 + (1 / 2)) · π))) = -1)
360359oveq1d 7171 . . . . . . 7 (𝜑 → ((-(sin‘((𝐾 + (1 / 2)) · π)) / (sin‘((𝐾 + (1 / 2)) · π))) / (2 · π)) = (-1 / (2 · π)))
361194negcld 10984 . . . . . . . 8 (𝜑 → -(sin‘((𝐾 + (1 / 2)) · π)) ∈ ℂ)
362361, 194, 192, 215, 216divdiv1d 11447 . . . . . . 7 (𝜑 → ((-(sin‘((𝐾 + (1 / 2)) · π)) / (sin‘((𝐾 + (1 / 2)) · π))) / (2 · π)) = (-(sin‘((𝐾 + (1 / 2)) · π)) / ((sin‘((𝐾 + (1 / 2)) · π)) · (2 · π))))
36386, 90negsubi 10964 . . . . . . . . . . 11 ((1 / 2) + -1) = ((1 / 2) − 1)
36490, 86negsubdi2i 10972 . . . . . . . . . . 11 -(1 − (1 / 2)) = ((1 / 2) − 1)
365 1mhlfehlf 11857 . . . . . . . . . . . . 13 (1 − (1 / 2)) = (1 / 2)
366365negeqi 10879 . . . . . . . . . . . 12 -(1 − (1 / 2)) = -(1 / 2)
367 divneg 11332 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(1 / 2) = (-1 / 2))
36890, 118, 51, 367mp3an 1457 . . . . . . . . . . . 12 -(1 / 2) = (-1 / 2)
369366, 368eqtri 2844 . . . . . . . . . . 11 -(1 − (1 / 2)) = (-1 / 2)
370363, 364, 3693eqtr2i 2850 . . . . . . . . . 10 ((1 / 2) + -1) = (-1 / 2)
371370oveq1i 7166 . . . . . . . . 9 (((1 / 2) + -1) / π) = ((-1 / 2) / π)
372 divdiv1 11351 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → ((-1 / 2) / π) = (-1 / (2 · π)))
373315, 91, 95, 372mp3an 1457 . . . . . . . . 9 ((-1 / 2) / π) = (-1 / (2 · π))
374371, 373eqtr2i 2845 . . . . . . . 8 (-1 / (2 · π)) = (((1 / 2) + -1) / π)
375374a1i 11 . . . . . . 7 (𝜑 → (-1 / (2 · π)) = (((1 / 2) + -1) / π))
376360, 362, 3753eqtr3d 2864 . . . . . 6 (𝜑 → (-(sin‘((𝐾 + (1 / 2)) · π)) / ((sin‘((𝐾 + (1 / 2)) · π)) · (2 · π))) = (((1 / 2) + -1) / π))
377355, 356, 3763eqtrd 2860 . . . . 5 (𝜑 → ((sin‘((((𝐾 + (1 / 2)) · π) + π) + ((⌊‘(𝑁 / 2)) · (2 · π)))) / ((2 · π) · (sin‘((𝐾 + (1 / 2)) · π)))) = (((1 / 2) + -1) / π))
378377adantr 483 . . . 4 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → ((sin‘((((𝐾 + (1 / 2)) · π) + π) + ((⌊‘(𝑁 / 2)) · (2 · π)))) / ((2 · π) · (sin‘((𝐾 + (1 / 2)) · π)))) = (((1 / 2) + -1) / π))
379325, 348, 3783eqtrrd 2861 . . 3 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → (((1 / 2) + -1) / π) = ((sin‘((𝑁 + (1 / 2)) · 𝐴)) / ((2 · π) · (sin‘(𝐴 / 2)))))
380225, 323, 3793eqtrd 2860 . 2 ((𝜑 ∧ ¬ (𝑁 mod 2) = 0) → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴))) / π) = ((sin‘((𝑁 + (1 / 2)) · 𝐴)) / ((2 · π) · (sin‘(𝐴 / 2)))))
381224, 380pm2.61dan 811 1 (𝜑 → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴))) / π) = ((sin‘((𝑁 + (1 / 2)) · 𝐴)) / ((2 · π) · (sin‘(𝐴 / 2)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  wral 3138   class class class wbr 5066  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cle 10676  cmin 10870  -cneg 10871   / cdiv 11297  cn 11638  2c2 11693  cz 11982  cuz 12244  +crp 12390  ...cfz 12893  cfl 13161   mod cmo 13238  Σcsu 15042  sincsin 15417  cosccos 15418  πcpi 15420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465
This theorem is referenced by:  dirkertrigeq  42435
  Copyright terms: Public domain W3C validator