Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fexafv2ex Structured version   Visualization version   GIF version

Theorem fexafv2ex 47250
Description: The alternate function value is always a set if the function (resp. the domain of the function) is a set. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
fexafv2ex (𝐹𝑉 → (𝐹''''𝐴) ∈ V)

Proof of Theorem fexafv2ex
StepHypRef Expression
1 rnexg 7832 . 2 (𝐹𝑉 → ran 𝐹 ∈ V)
2 afv2ex 47244 . 2 (ran 𝐹 ∈ V → (𝐹''''𝐴) ∈ V)
31, 2syl 17 1 (𝐹𝑉 → (𝐹''''𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Vcvv 3436  ran crn 5617  ''''cafv2 47238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-cnv 5624  df-dm 5626  df-rn 5627  df-iota 6437  df-afv2 47239
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator