| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fexafv2ex | Structured version Visualization version GIF version | ||
| Description: The alternate function value is always a set if the function (resp. the domain of the function) is a set. (Contributed by AV, 3-Sep-2022.) |
| Ref | Expression |
|---|---|
| fexafv2ex | ⊢ (𝐹 ∈ 𝑉 → (𝐹''''𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnexg 7881 | . 2 ⊢ (𝐹 ∈ 𝑉 → ran 𝐹 ∈ V) | |
| 2 | afv2ex 47219 | . 2 ⊢ (ran 𝐹 ∈ V → (𝐹''''𝐴) ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹 ∈ 𝑉 → (𝐹''''𝐴) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 ran crn 5642 ''''cafv2 47213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-cnv 5649 df-dm 5651 df-rn 5652 df-iota 6467 df-afv2 47214 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |