Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fexafv2ex Structured version   Visualization version   GIF version

Theorem fexafv2ex 47249
Description: The alternate function value is always a set if the function (resp. the domain of the function) is a set. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
fexafv2ex (𝐹𝑉 → (𝐹''''𝐴) ∈ V)

Proof of Theorem fexafv2ex
StepHypRef Expression
1 rnexg 7898 . 2 (𝐹𝑉 → ran 𝐹 ∈ V)
2 afv2ex 47243 . 2 (ran 𝐹 ∈ V → (𝐹''''𝐴) ∈ V)
31, 2syl 17 1 (𝐹𝑉 → (𝐹''''𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3459  ran crn 5655  ''''cafv2 47237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-cnv 5662  df-dm 5664  df-rn 5665  df-iota 6484  df-afv2 47238
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator