|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fexafv2ex | Structured version Visualization version GIF version | ||
| Description: The alternate function value is always a set if the function (resp. the domain of the function) is a set. (Contributed by AV, 3-Sep-2022.) | 
| Ref | Expression | 
|---|---|
| fexafv2ex | ⊢ (𝐹 ∈ 𝑉 → (𝐹''''𝐴) ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rnexg 7924 | . 2 ⊢ (𝐹 ∈ 𝑉 → ran 𝐹 ∈ V) | |
| 2 | afv2ex 47226 | . 2 ⊢ (ran 𝐹 ∈ V → (𝐹''''𝐴) ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹 ∈ 𝑉 → (𝐹''''𝐴) ∈ V) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3480 ran crn 5686 ''''cafv2 47220 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-cnv 5693 df-dm 5695 df-rn 5696 df-iota 6514 df-afv2 47221 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |