Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tz6.12-2-afv2 Structured version   Visualization version   GIF version

Theorem tz6.12-2-afv2 47221
Description: Function value when 𝐹 is (locally) not a function. Theorem 6.12(2) of [TakeutiZaring] p. 27, analogous to tz6.12-2 6810. (Contributed by AV, 5-Sep-2022.)
Assertion
Ref Expression
tz6.12-2-afv2 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) ∉ ran 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem tz6.12-2-afv2
StepHypRef Expression
1 dfdfat2 47112 . . 3 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥))
21simprbi 496 . 2 (𝐹 defAt 𝐴 → ∃!𝑥 𝐴𝐹𝑥)
3 ndfatafv2nrn 47205 . 2 𝐹 defAt 𝐴 → (𝐹''''𝐴) ∉ ran 𝐹)
42, 3nsyl5 159 1 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) ∉ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  ∃!weu 2561  wnel 3029   class class class wbr 5092  dom cdm 5619  ran crn 5620   defAt wdfat 47100  ''''cafv2 47192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-res 5631  df-fun 6484  df-dfat 47103  df-afv2 47193
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator