![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tz6.12-2-afv2 | Structured version Visualization version GIF version |
Description: Function value when 𝐹 is (locally) not a function. Theorem 6.12(2) of [TakeutiZaring] p. 27, analogous to tz6.12-2 6877. (Contributed by AV, 5-Sep-2022.) |
Ref | Expression |
---|---|
tz6.12-2-afv2 | ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) ∉ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdfat2 45823 | . . 3 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) | |
2 | 1 | simprbi 498 | . 2 ⊢ (𝐹 defAt 𝐴 → ∃!𝑥 𝐴𝐹𝑥) |
3 | ndfatafv2nrn 45916 | . 2 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) ∉ ran 𝐹) | |
4 | 2, 3 | nsyl5 159 | 1 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) ∉ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2107 ∃!weu 2563 ∉ wnel 3047 class class class wbr 5148 dom cdm 5676 ran crn 5677 defAt wdfat 45811 ''''cafv2 45903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-res 5688 df-fun 6543 df-dfat 45814 df-afv2 45904 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |