Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tz6.12-2-afv2 Structured version   Visualization version   GIF version

Theorem tz6.12-2-afv2 47276
Description: Function value when 𝐹 is (locally) not a function. Theorem 6.12(2) of [TakeutiZaring] p. 27, analogous to tz6.12-2 6809. (Contributed by AV, 5-Sep-2022.)
Assertion
Ref Expression
tz6.12-2-afv2 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) ∉ ran 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem tz6.12-2-afv2
StepHypRef Expression
1 dfdfat2 47167 . . 3 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥))
21simprbi 496 . 2 (𝐹 defAt 𝐴 → ∃!𝑥 𝐴𝐹𝑥)
3 ndfatafv2nrn 47260 . 2 𝐹 defAt 𝐴 → (𝐹''''𝐴) ∉ ran 𝐹)
42, 3nsyl5 159 1 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) ∉ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2111  ∃!weu 2563  wnel 3032   class class class wbr 5089  dom cdm 5614  ran crn 5615   defAt wdfat 47155  ''''cafv2 47247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-res 5626  df-fun 6483  df-dfat 47158  df-afv2 47248
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator