Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihatlat Structured version   Visualization version   GIF version

Theorem dihatlat 41291
Description: The isomorphism H of an atom is a 1-dim subspace. (Contributed by NM, 28-Apr-2014.)
Hypotheses
Ref Expression
dihatlat.a 𝐴 = (Atoms‘𝐾)
dihatlat.h 𝐻 = (LHyp‘𝐾)
dihatlat.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihatlat.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihatlat.l 𝐿 = (LSAtoms‘𝑈)
Assertion
Ref Expression
dihatlat (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) → (𝐼𝑄) ∈ 𝐿)

Proof of Theorem dihatlat
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2740 . . . . 5 (le‘𝐾) = (le‘𝐾)
3 dihatlat.a . . . . 5 𝐴 = (Atoms‘𝐾)
4 dihatlat.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 eqid 2740 . . . . 5 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
6 eqid 2740 . . . . 5 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))
7 dihatlat.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
8 dihatlat.i . . . . 5 𝐼 = ((DIsoH‘𝐾)‘𝑊)
9 eqid 2740 . . . . 5 (LSpan‘𝑈) = (LSpan‘𝑈)
101, 2, 3, 4, 5, 6, 7, 8, 9dih1dimb2 41198 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴𝑄(le‘𝐾)𝑊)) → ∃𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼𝑄) = ((LSpan‘𝑈)‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩})))
1110anassrs 467 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → ∃𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼𝑄) = ((LSpan‘𝑈)‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩})))
12 simp3rr 1247 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼𝑄) = ((LSpan‘𝑈)‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩})))) → (𝐼𝑄) = ((LSpan‘𝑈)‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩}))
13 simp1l 1197 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼𝑄) = ((LSpan‘𝑈)‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩})))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
144, 7, 13dvhlmod 41067 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼𝑄) = ((LSpan‘𝑈)‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩})))) → 𝑈 ∈ LMod)
15 simp3l 1201 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼𝑄) = ((LSpan‘𝑈)‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩})))) → 𝑔 ∈ ((LTrn‘𝐾)‘𝑊))
16 eqid 2740 . . . . . . . . 9 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
171, 4, 5, 16, 6tendo0cl 40747 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) ∈ ((TEndo‘𝐾)‘𝑊))
1813, 17syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼𝑄) = ((LSpan‘𝑈)‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩})))) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) ∈ ((TEndo‘𝐾)‘𝑊))
19 eqid 2740 . . . . . . . 8 (Base‘𝑈) = (Base‘𝑈)
204, 5, 16, 7, 19dvhelvbasei 41045 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) ∈ ((TEndo‘𝐾)‘𝑊))) → ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩ ∈ (Base‘𝑈))
2113, 15, 18, 20syl12anc 836 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼𝑄) = ((LSpan‘𝑈)‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩})))) → ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩ ∈ (Base‘𝑈))
22 simp3rl 1246 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼𝑄) = ((LSpan‘𝑈)‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩})))) → 𝑔 ≠ ( I ↾ (Base‘𝐾)))
2322neneqd 2951 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼𝑄) = ((LSpan‘𝑈)‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩})))) → ¬ 𝑔 = ( I ↾ (Base‘𝐾)))
2423intnanrd 489 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼𝑄) = ((LSpan‘𝑈)‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩})))) → ¬ (𝑔 = ( I ↾ (Base‘𝐾)) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))
25 vex 3492 . . . . . . . . . 10 𝑔 ∈ V
26 fvex 6933 . . . . . . . . . . 11 ((LTrn‘𝐾)‘𝑊) ∈ V
2726mptex 7260 . . . . . . . . . 10 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) ∈ V
2825, 27opth 5496 . . . . . . . . 9 (⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩ = ⟨( I ↾ (Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩ ↔ (𝑔 = ( I ↾ (Base‘𝐾)) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))
2928necon3abii 2993 . . . . . . . 8 (⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩ ≠ ⟨( I ↾ (Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩ ↔ ¬ (𝑔 = ( I ↾ (Base‘𝐾)) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))
3024, 29sylibr 234 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼𝑄) = ((LSpan‘𝑈)‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩})))) → ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩ ≠ ⟨( I ↾ (Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩)
31 eqid 2740 . . . . . . . . 9 (0g𝑈) = (0g𝑈)
321, 4, 5, 7, 31, 6dvh0g 41068 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (0g𝑈) = ⟨( I ↾ (Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩)
3313, 32syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼𝑄) = ((LSpan‘𝑈)‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩})))) → (0g𝑈) = ⟨( I ↾ (Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩)
3430, 33neeqtrrd 3021 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼𝑄) = ((LSpan‘𝑈)‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩})))) → ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩ ≠ (0g𝑈))
35 dihatlat.l . . . . . . 7 𝐿 = (LSAtoms‘𝑈)
3619, 9, 31, 35lsatlspsn2 38948 . . . . . 6 ((𝑈 ∈ LMod ∧ ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩ ∈ (Base‘𝑈) ∧ ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩ ≠ (0g𝑈)) → ((LSpan‘𝑈)‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩}) ∈ 𝐿)
3714, 21, 34, 36syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼𝑄) = ((LSpan‘𝑈)‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩})))) → ((LSpan‘𝑈)‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩}) ∈ 𝐿)
3812, 37eqeltrd 2844 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼𝑄) = ((LSpan‘𝑈)‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩})))) → (𝐼𝑄) ∈ 𝐿)
39383expa 1118 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼𝑄) = ((LSpan‘𝑈)‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩})))) → (𝐼𝑄) ∈ 𝐿)
4011, 39rexlimddv 3167 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → (𝐼𝑄) ∈ 𝐿)
41 eqid 2740 . . . . 5 ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊)
42 eqid 2740 . . . . 5 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄)
432, 3, 4, 41, 5, 8, 7, 9, 42dih1dimc 41199 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → (𝐼𝑄) = ((LSpan‘𝑈)‘{⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}))
4443anassrs 467 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (𝐼𝑄) = ((LSpan‘𝑈)‘{⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}))
45 simpll 766 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
464, 7, 45dvhlmod 41067 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → 𝑈 ∈ LMod)
47 eqid 2740 . . . . . . . 8 (oc‘𝐾) = (oc‘𝐾)
482, 47, 3, 4lhpocnel 39975 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊))
4948ad2antrr 725 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊))
50 simplr 768 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → 𝑄𝐴)
51 simpr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ¬ 𝑄(le‘𝐾)𝑊)
522, 3, 4, 5, 42ltrniotacl 40536 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
5345, 49, 50, 51, 52syl112anc 1374 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
544, 5, 16tendoidcl 40726 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ ((LTrn‘𝐾)‘𝑊)) ∈ ((TEndo‘𝐾)‘𝑊))
5554ad2antrr 725 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ( I ↾ ((LTrn‘𝐾)‘𝑊)) ∈ ((TEndo‘𝐾)‘𝑊))
564, 5, 16, 7, 19dvhelvbasei 41045 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊) ∧ ( I ↾ ((LTrn‘𝐾)‘𝑊)) ∈ ((TEndo‘𝐾)‘𝑊))) → ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ (Base‘𝑈))
5745, 53, 55, 56syl12anc 836 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ (Base‘𝑈))
581, 4, 5, 16, 6tendo1ne0 40785 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ ((LTrn‘𝐾)‘𝑊)) ≠ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))
5958ad2antrr 725 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ( I ↾ ((LTrn‘𝐾)‘𝑊)) ≠ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))
6059neneqd 2951 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ¬ ( I ↾ ((LTrn‘𝐾)‘𝑊)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))
6160intnand 488 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ¬ ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) = ( I ↾ (Base‘𝐾)) ∧ ( I ↾ ((LTrn‘𝐾)‘𝑊)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))
62 riotaex 7408 . . . . . . . 8 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ V
63 resiexg 7952 . . . . . . . . 9 (((LTrn‘𝐾)‘𝑊) ∈ V → ( I ↾ ((LTrn‘𝐾)‘𝑊)) ∈ V)
6426, 63ax-mp 5 . . . . . . . 8 ( I ↾ ((LTrn‘𝐾)‘𝑊)) ∈ V
6562, 64opth 5496 . . . . . . 7 (⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ = ⟨( I ↾ (Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩ ↔ ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) = ( I ↾ (Base‘𝐾)) ∧ ( I ↾ ((LTrn‘𝐾)‘𝑊)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))
6665necon3abii 2993 . . . . . 6 (⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ≠ ⟨( I ↾ (Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩ ↔ ¬ ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) = ( I ↾ (Base‘𝐾)) ∧ ( I ↾ ((LTrn‘𝐾)‘𝑊)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))
6761, 66sylibr 234 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ≠ ⟨( I ↾ (Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩)
6832ad2antrr 725 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (0g𝑈) = ⟨( I ↾ (Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))⟩)
6967, 68neeqtrrd 3021 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ≠ (0g𝑈))
7019, 9, 31, 35lsatlspsn2 38948 . . . 4 ((𝑈 ∈ LMod ∧ ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ (Base‘𝑈) ∧ ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ≠ (0g𝑈)) → ((LSpan‘𝑈)‘{⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∈ 𝐿)
7146, 57, 69, 70syl3anc 1371 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ((LSpan‘𝑈)‘{⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∈ 𝐿)
7244, 71eqeltrd 2844 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (𝐼𝑄) ∈ 𝐿)
7340, 72pm2.61dan 812 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) → (𝐼𝑄) ∈ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  Vcvv 3488  {csn 4648  cop 4654   class class class wbr 5166  cmpt 5249   I cid 5592  cres 5702  cfv 6573  crio 7403  Basecbs 17258  lecple 17318  occoc 17319  0gc0g 17499  LModclmod 20880  LSpanclspn 20992  LSAtomsclsa 38930  Atomscatm 39219  HLchlt 39306  LHypclh 39941  LTrncltrn 40058  TEndoctendo 40709  DVecHcdvh 41035  DIsoHcdih 41185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-riotaBAD 38909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-undef 8314  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-0g 17501  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cntz 19357  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lvec 21125  df-lsatoms 38932  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457  df-lines 39458  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116  df-tendo 40712  df-edring 40714  df-disoa 40986  df-dvech 41036  df-dib 41096  df-dic 41130  df-dih 41186
This theorem is referenced by:  dihat  41292  dihjat3  41389  dihjat5N  41394  dvh4dimat  41395
  Copyright terms: Public domain W3C validator