Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) |
2 | | eqid 2738 |
. . . . 5
⊢
(le‘𝐾) =
(le‘𝐾) |
3 | | dihatlat.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
4 | | dihatlat.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
5 | | eqid 2738 |
. . . . 5
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
6 | | eqid 2738 |
. . . . 5
⊢ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) |
7 | | dihatlat.u |
. . . . 5
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
8 | | dihatlat.i |
. . . . 5
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
9 | | eqid 2738 |
. . . . 5
⊢
(LSpan‘𝑈) =
(LSpan‘𝑈) |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | dih1dimb2 39255 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄(le‘𝐾)𝑊)) → ∃𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼‘𝑄) = ((LSpan‘𝑈)‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉}))) |
11 | 10 | anassrs 468 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊) → ∃𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼‘𝑄) = ((LSpan‘𝑈)‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉}))) |
12 | | simp3rr 1246 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼‘𝑄) = ((LSpan‘𝑈)‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉})))) → (𝐼‘𝑄) = ((LSpan‘𝑈)‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉})) |
13 | | simp1l 1196 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼‘𝑄) = ((LSpan‘𝑈)‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉})))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
14 | 4, 7, 13 | dvhlmod 39124 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼‘𝑄) = ((LSpan‘𝑈)‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉})))) → 𝑈 ∈ LMod) |
15 | | simp3l 1200 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼‘𝑄) = ((LSpan‘𝑈)‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉})))) → 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) |
16 | | eqid 2738 |
. . . . . . . . 9
⊢
((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) |
17 | 1, 4, 5, 16, 6 | tendo0cl 38804 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) ∈ ((TEndo‘𝐾)‘𝑊)) |
18 | 13, 17 | syl 17 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼‘𝑄) = ((LSpan‘𝑈)‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉})))) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) ∈ ((TEndo‘𝐾)‘𝑊)) |
19 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝑈) =
(Base‘𝑈) |
20 | 4, 5, 16, 7, 19 | dvhelvbasei 39102 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) ∈ ((TEndo‘𝐾)‘𝑊))) → 〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉 ∈
(Base‘𝑈)) |
21 | 13, 15, 18, 20 | syl12anc 834 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼‘𝑄) = ((LSpan‘𝑈)‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉})))) →
〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉 ∈
(Base‘𝑈)) |
22 | | simp3rl 1245 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼‘𝑄) = ((LSpan‘𝑈)‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉})))) → 𝑔 ≠ ( I ↾
(Base‘𝐾))) |
23 | 22 | neneqd 2948 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼‘𝑄) = ((LSpan‘𝑈)‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉})))) → ¬
𝑔 = ( I ↾
(Base‘𝐾))) |
24 | 23 | intnanrd 490 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼‘𝑄) = ((LSpan‘𝑈)‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉})))) → ¬
(𝑔 = ( I ↾
(Base‘𝐾)) ∧
(𝑓 ∈
((LTrn‘𝐾)‘𝑊) ↦ ( I ↾
(Base‘𝐾))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))) |
25 | | vex 3436 |
. . . . . . . . . 10
⊢ 𝑔 ∈ V |
26 | | fvex 6787 |
. . . . . . . . . . 11
⊢
((LTrn‘𝐾)‘𝑊) ∈ V |
27 | 26 | mptex 7099 |
. . . . . . . . . 10
⊢ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) ∈ V |
28 | 25, 27 | opth 5391 |
. . . . . . . . 9
⊢
(〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉 = 〈( I ↾
(Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉 ↔ (𝑔 = ( I ↾ (Base‘𝐾)) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))) |
29 | 28 | necon3abii 2990 |
. . . . . . . 8
⊢
(〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉 ≠ 〈( I ↾
(Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉 ↔ ¬ (𝑔 = ( I ↾ (Base‘𝐾)) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))) |
30 | 24, 29 | sylibr 233 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼‘𝑄) = ((LSpan‘𝑈)‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉})))) →
〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉 ≠ 〈( I ↾
(Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉) |
31 | | eqid 2738 |
. . . . . . . . 9
⊢
(0g‘𝑈) = (0g‘𝑈) |
32 | 1, 4, 5, 7, 31, 6 | dvh0g 39125 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (0g‘𝑈) = 〈( I ↾
(Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉) |
33 | 13, 32 | syl 17 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼‘𝑄) = ((LSpan‘𝑈)‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉})))) →
(0g‘𝑈) =
〈( I ↾ (Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉) |
34 | 30, 33 | neeqtrrd 3018 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼‘𝑄) = ((LSpan‘𝑈)‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉})))) →
〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉 ≠
(0g‘𝑈)) |
35 | | dihatlat.l |
. . . . . . 7
⊢ 𝐿 = (LSAtoms‘𝑈) |
36 | 19, 9, 31, 35 | lsatlspsn2 37006 |
. . . . . 6
⊢ ((𝑈 ∈ LMod ∧ 〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉 ∈
(Base‘𝑈) ∧
〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉 ≠
(0g‘𝑈))
→ ((LSpan‘𝑈)‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉}) ∈ 𝐿) |
37 | 14, 21, 34, 36 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼‘𝑄) = ((LSpan‘𝑈)‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉})))) →
((LSpan‘𝑈)‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉}) ∈ 𝐿) |
38 | 12, 37 | eqeltrd 2839 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼‘𝑄) = ((LSpan‘𝑈)‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉})))) → (𝐼‘𝑄) ∈ 𝐿) |
39 | 38 | 3expa 1117 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝐼‘𝑄) = ((LSpan‘𝑈)‘{〈𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉})))) → (𝐼‘𝑄) ∈ 𝐿) |
40 | 11, 39 | rexlimddv 3220 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ 𝑄(le‘𝐾)𝑊) → (𝐼‘𝑄) ∈ 𝐿) |
41 | | eqid 2738 |
. . . . 5
⊢
((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊) |
42 | | eqid 2738 |
. . . . 5
⊢
(℩𝑓
∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) = (℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) |
43 | 2, 3, 4, 41, 5, 8,
7, 9, 42 | dih1dimc 39256 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → (𝐼‘𝑄) = ((LSpan‘𝑈)‘{〈(℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉})) |
44 | 43 | anassrs 468 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (𝐼‘𝑄) = ((LSpan‘𝑈)‘{〈(℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉})) |
45 | | simpll 764 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
46 | 4, 7, 45 | dvhlmod 39124 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → 𝑈 ∈ LMod) |
47 | | eqid 2738 |
. . . . . . . 8
⊢
(oc‘𝐾) =
(oc‘𝐾) |
48 | 2, 47, 3, 4 | lhpocnel 38032 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) |
49 | 48 | ad2antrr 723 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) |
50 | | simplr 766 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → 𝑄 ∈ 𝐴) |
51 | | simpr 485 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ¬ 𝑄(le‘𝐾)𝑊) |
52 | 2, 3, 4, 5, 42 | ltrniotacl 38593 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → (℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊)) |
53 | 45, 49, 50, 51, 52 | syl112anc 1373 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊)) |
54 | 4, 5, 16 | tendoidcl 38783 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ ((LTrn‘𝐾)‘𝑊)) ∈ ((TEndo‘𝐾)‘𝑊)) |
55 | 54 | ad2antrr 723 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ( I ↾ ((LTrn‘𝐾)‘𝑊)) ∈ ((TEndo‘𝐾)‘𝑊)) |
56 | 4, 5, 16, 7, 19 | dvhelvbasei 39102 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊) ∧ ( I ↾ ((LTrn‘𝐾)‘𝑊)) ∈ ((TEndo‘𝐾)‘𝑊))) → 〈(℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 ∈ (Base‘𝑈)) |
57 | 45, 53, 55, 56 | syl12anc 834 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → 〈(℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 ∈ (Base‘𝑈)) |
58 | 1, 4, 5, 16, 6 | tendo1ne0 38842 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ ((LTrn‘𝐾)‘𝑊)) ≠ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))) |
59 | 58 | ad2antrr 723 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ( I ↾ ((LTrn‘𝐾)‘𝑊)) ≠ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))) |
60 | 59 | neneqd 2948 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ¬ ( I ↾
((LTrn‘𝐾)‘𝑊)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))) |
61 | 60 | intnand 489 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ¬ ((℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) = ( I ↾ (Base‘𝐾)) ∧ ( I ↾
((LTrn‘𝐾)‘𝑊)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))) |
62 | | riotaex 7236 |
. . . . . . . 8
⊢
(℩𝑓
∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ V |
63 | | resiexg 7761 |
. . . . . . . . 9
⊢
(((LTrn‘𝐾)‘𝑊) ∈ V → ( I ↾
((LTrn‘𝐾)‘𝑊)) ∈ V) |
64 | 26, 63 | ax-mp 5 |
. . . . . . . 8
⊢ ( I
↾ ((LTrn‘𝐾)‘𝑊)) ∈ V |
65 | 62, 64 | opth 5391 |
. . . . . . 7
⊢
(〈(℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 = 〈( I ↾
(Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉 ↔
((℩𝑓 ∈
((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) = ( I ↾ (Base‘𝐾)) ∧ ( I ↾
((LTrn‘𝐾)‘𝑊)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))) |
66 | 65 | necon3abii 2990 |
. . . . . 6
⊢
(〈(℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 ≠ 〈( I ↾
(Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉 ↔ ¬
((℩𝑓 ∈
((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) = ( I ↾ (Base‘𝐾)) ∧ ( I ↾
((LTrn‘𝐾)‘𝑊)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))) |
67 | 61, 66 | sylibr 233 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → 〈(℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 ≠ 〈( I ↾
(Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉) |
68 | 32 | ad2antrr 723 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (0g‘𝑈) = 〈( I ↾
(Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉) |
69 | 67, 68 | neeqtrrd 3018 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → 〈(℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 ≠ (0g‘𝑈)) |
70 | 19, 9, 31, 35 | lsatlspsn2 37006 |
. . . 4
⊢ ((𝑈 ∈ LMod ∧
〈(℩𝑓
∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 ∈ (Base‘𝑈) ∧
〈(℩𝑓
∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 ≠ (0g‘𝑈)) → ((LSpan‘𝑈)‘{〈(℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉}) ∈ 𝐿) |
71 | 46, 57, 69, 70 | syl3anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ((LSpan‘𝑈)‘{〈(℩𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉}) ∈ 𝐿) |
72 | 44, 71 | eqeltrd 2839 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (𝐼‘𝑄) ∈ 𝐿) |
73 | 40, 72 | pm2.61dan 810 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) → (𝐼‘𝑄) ∈ 𝐿) |