![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpimasn | Structured version Visualization version GIF version |
Description: Direct image of a singleton by a Cartesian product. (Contributed by Thierry Arnoux, 14-Jan-2018.) (Proof shortened by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
xpimasn | ⊢ (𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjsn 4716 | . . . 4 ⊢ ((𝐴 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ 𝐴) | |
2 | 1 | necon3abii 2988 | . . 3 ⊢ ((𝐴 ∩ {𝑋}) ≠ ∅ ↔ ¬ ¬ 𝑋 ∈ 𝐴) |
3 | notnotb 315 | . . 3 ⊢ (𝑋 ∈ 𝐴 ↔ ¬ ¬ 𝑋 ∈ 𝐴) | |
4 | 2, 3 | bitr4i 278 | . 2 ⊢ ((𝐴 ∩ {𝑋}) ≠ ∅ ↔ 𝑋 ∈ 𝐴) |
5 | xpima2 6184 | . 2 ⊢ ((𝐴 ∩ {𝑋}) ≠ ∅ → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) | |
6 | 4, 5 | sylbir 234 | 1 ⊢ (𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∩ cin 3948 ∅c0 4323 {csn 4629 × cxp 5675 “ cima 5680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 |
This theorem is referenced by: imasnopn 23194 imasncld 23195 imasncls 23196 restutopopn 23743 arearect 41964 |
Copyright terms: Public domain | W3C validator |