MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpimasn Structured version   Visualization version   GIF version

Theorem xpimasn 6185
Description: Direct image of a singleton by a Cartesian product. (Contributed by Thierry Arnoux, 14-Jan-2018.) (Proof shortened by BJ, 6-Apr-2019.)
Assertion
Ref Expression
xpimasn (𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵)

Proof of Theorem xpimasn
StepHypRef Expression
1 disjsn 4716 . . . 4 ((𝐴 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋𝐴)
21necon3abii 2988 . . 3 ((𝐴 ∩ {𝑋}) ≠ ∅ ↔ ¬ ¬ 𝑋𝐴)
3 notnotb 315 . . 3 (𝑋𝐴 ↔ ¬ ¬ 𝑋𝐴)
42, 3bitr4i 278 . 2 ((𝐴 ∩ {𝑋}) ≠ ∅ ↔ 𝑋𝐴)
5 xpima2 6184 . 2 ((𝐴 ∩ {𝑋}) ≠ ∅ → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵)
64, 5sylbir 234 1 (𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1542  wcel 2107  wne 2941  cin 3948  c0 4323  {csn 4629   × cxp 5675  cima 5680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690
This theorem is referenced by:  imasnopn  23194  imasncld  23195  imasncls  23196  restutopopn  23743  arearect  41964
  Copyright terms: Public domain W3C validator