![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpimasn | Structured version Visualization version GIF version |
Description: Direct image of a singleton by a Cartesian product. (Contributed by Thierry Arnoux, 14-Jan-2018.) (Proof shortened by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
xpimasn | ⊢ (𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjsn 4708 | . . . 4 ⊢ ((𝐴 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ 𝐴) | |
2 | 1 | necon3abii 2986 | . . 3 ⊢ ((𝐴 ∩ {𝑋}) ≠ ∅ ↔ ¬ ¬ 𝑋 ∈ 𝐴) |
3 | notnotb 314 | . . 3 ⊢ (𝑋 ∈ 𝐴 ↔ ¬ ¬ 𝑋 ∈ 𝐴) | |
4 | 2, 3 | bitr4i 277 | . 2 ⊢ ((𝐴 ∩ {𝑋}) ≠ ∅ ↔ 𝑋 ∈ 𝐴) |
5 | xpima2 6172 | . 2 ⊢ ((𝐴 ∩ {𝑋}) ≠ ∅ → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) | |
6 | 4, 5 | sylbir 234 | 1 ⊢ (𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2106 ≠ wne 2939 ∩ cin 3943 ∅c0 4318 {csn 4622 × cxp 5667 “ cima 5672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rab 3432 df-v 3475 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-br 5142 df-opab 5204 df-xp 5675 df-rel 5676 df-cnv 5677 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 |
This theorem is referenced by: imasnopn 23123 imasncld 23124 imasncls 23125 restutopopn 23672 arearect 41735 |
Copyright terms: Public domain | W3C validator |