MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpimasn Structured version   Visualization version   GIF version

Theorem xpimasn 6216
Description: Direct image of a singleton by a Cartesian product. (Contributed by Thierry Arnoux, 14-Jan-2018.) (Proof shortened by BJ, 6-Apr-2019.)
Assertion
Ref Expression
xpimasn (𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵)

Proof of Theorem xpimasn
StepHypRef Expression
1 disjsn 4736 . . . 4 ((𝐴 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋𝐴)
21necon3abii 2993 . . 3 ((𝐴 ∩ {𝑋}) ≠ ∅ ↔ ¬ ¬ 𝑋𝐴)
3 notnotb 315 . . 3 (𝑋𝐴 ↔ ¬ ¬ 𝑋𝐴)
42, 3bitr4i 278 . 2 ((𝐴 ∩ {𝑋}) ≠ ∅ ↔ 𝑋𝐴)
5 xpima2 6215 . 2 ((𝐴 ∩ {𝑋}) ≠ ∅ → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵)
64, 5sylbir 235 1 (𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2108  wne 2946  cin 3975  c0 4352  {csn 4648   × cxp 5698  cima 5703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713
This theorem is referenced by:  imasnopn  23719  imasncld  23720  imasncls  23721  restutopopn  24268  arearect  43176
  Copyright terms: Public domain W3C validator