MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpimasn Structured version   Visualization version   GIF version

Theorem xpimasn 6146
Description: Direct image of a singleton by a Cartesian product. (Contributed by Thierry Arnoux, 14-Jan-2018.) (Proof shortened by BJ, 6-Apr-2019.)
Assertion
Ref Expression
xpimasn (𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵)

Proof of Theorem xpimasn
StepHypRef Expression
1 disjsn 4671 . . . 4 ((𝐴 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋𝐴)
21necon3abii 2971 . . 3 ((𝐴 ∩ {𝑋}) ≠ ∅ ↔ ¬ ¬ 𝑋𝐴)
3 notnotb 315 . . 3 (𝑋𝐴 ↔ ¬ ¬ 𝑋𝐴)
42, 3bitr4i 278 . 2 ((𝐴 ∩ {𝑋}) ≠ ∅ ↔ 𝑋𝐴)
5 xpima2 6145 . 2 ((𝐴 ∩ {𝑋}) ≠ ∅ → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵)
64, 5sylbir 235 1 (𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wne 2925  cin 3910  c0 4292  {csn 4585   × cxp 5629  cima 5634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644
This theorem is referenced by:  imasnopn  23553  imasncld  23554  imasncls  23555  restutopopn  24102  arearect  43177
  Copyright terms: Public domain W3C validator