| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpimasn | Structured version Visualization version GIF version | ||
| Description: Direct image of a singleton by a Cartesian product. (Contributed by Thierry Arnoux, 14-Jan-2018.) (Proof shortened by BJ, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| xpimasn | ⊢ (𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjsn 4678 | . . . 4 ⊢ ((𝐴 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ 𝐴) | |
| 2 | 1 | necon3abii 2972 | . . 3 ⊢ ((𝐴 ∩ {𝑋}) ≠ ∅ ↔ ¬ ¬ 𝑋 ∈ 𝐴) |
| 3 | notnotb 315 | . . 3 ⊢ (𝑋 ∈ 𝐴 ↔ ¬ ¬ 𝑋 ∈ 𝐴) | |
| 4 | 2, 3 | bitr4i 278 | . 2 ⊢ ((𝐴 ∩ {𝑋}) ≠ ∅ ↔ 𝑋 ∈ 𝐴) |
| 5 | xpima2 6160 | . 2 ⊢ ((𝐴 ∩ {𝑋}) ≠ ∅ → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) | |
| 6 | 4, 5 | sylbir 235 | 1 ⊢ (𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∩ cin 3916 ∅c0 4299 {csn 4592 × cxp 5639 “ cima 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: imasnopn 23584 imasncld 23585 imasncls 23586 restutopopn 24133 arearect 43211 |
| Copyright terms: Public domain | W3C validator |