![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpimasn | Structured version Visualization version GIF version |
Description: Direct image of a singleton by a Cartesian product. (Contributed by Thierry Arnoux, 14-Jan-2018.) (Proof shortened by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
xpimasn | ⊢ (𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjsn 4716 | . . . 4 ⊢ ((𝐴 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ 𝐴) | |
2 | 1 | necon3abii 2985 | . . 3 ⊢ ((𝐴 ∩ {𝑋}) ≠ ∅ ↔ ¬ ¬ 𝑋 ∈ 𝐴) |
3 | notnotb 315 | . . 3 ⊢ (𝑋 ∈ 𝐴 ↔ ¬ ¬ 𝑋 ∈ 𝐴) | |
4 | 2, 3 | bitr4i 278 | . 2 ⊢ ((𝐴 ∩ {𝑋}) ≠ ∅ ↔ 𝑋 ∈ 𝐴) |
5 | xpima2 6206 | . 2 ⊢ ((𝐴 ∩ {𝑋}) ≠ ∅ → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) | |
6 | 4, 5 | sylbir 235 | 1 ⊢ (𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∩ cin 3962 ∅c0 4339 {csn 4631 × cxp 5687 “ cima 5692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 |
This theorem is referenced by: imasnopn 23714 imasncld 23715 imasncls 23716 restutopopn 24263 arearect 43204 |
Copyright terms: Public domain | W3C validator |