Step | Hyp | Ref
| Expression |
1 | | 3simpa 1146 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
2 | 1 | ad2antlr 723 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
3 | | fvex 6769 |
. . . . . . . 8
⊢
(1r‘𝑅) ∈ V |
4 | | fvex 6769 |
. . . . . . . 8
⊢
((invg‘𝑅)‘𝐴) ∈ V |
5 | 3, 4 | pm3.2i 470 |
. . . . . . 7
⊢
((1r‘𝑅) ∈ V ∧
((invg‘𝑅)‘𝐴) ∈ V) |
6 | 5 | a1i 11 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → ((1r‘𝑅) ∈ V ∧
((invg‘𝑅)‘𝐴) ∈ V)) |
7 | | simp3 1136 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) |
8 | 7 | ad2antlr 723 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → 𝑋 ≠ 𝑌) |
9 | | fprg 7009 |
. . . . . 6
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((1r‘𝑅) ∈ V ∧
((invg‘𝑅)‘𝐴) ∈ V) ∧ 𝑋 ≠ 𝑌) → {〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}:{𝑋, 𝑌}⟶{(1r‘𝑅), ((invg‘𝑅)‘𝐴)}) |
10 | 2, 6, 8, 9 | syl3anc 1369 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → {〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}:{𝑋, 𝑌}⟶{(1r‘𝑅), ((invg‘𝑅)‘𝐴)}) |
11 | | prfi 9019 |
. . . . . 6
⊢ {𝑋, 𝑌} ∈ Fin |
12 | 11 | a1i 11 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → {𝑋, 𝑌} ∈ Fin) |
13 | | snlindsntor.0 |
. . . . . . 7
⊢ 0 =
(0g‘𝑅) |
14 | 13 | fvexi 6770 |
. . . . . 6
⊢ 0 ∈
V |
15 | 14 | a1i 11 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → 0 ∈ V) |
16 | 10, 12, 15 | fdmfifsupp 9068 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → {〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉} finSupp 0 ) |
17 | 7 | anim2i 616 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) → (𝑀 ∈ LMod ∧ 𝑋 ≠ 𝑌)) |
18 | 17 | adantr 480 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → (𝑀 ∈ LMod ∧ 𝑋 ≠ 𝑌)) |
19 | | snlindsntor.r |
. . . . . . . . 9
⊢ 𝑅 = (Scalar‘𝑀) |
20 | | snlindsntor.s |
. . . . . . . . 9
⊢ 𝑆 = (Base‘𝑅) |
21 | | eqid 2738 |
. . . . . . . . 9
⊢
(1r‘𝑅) = (1r‘𝑅) |
22 | 19, 20, 21 | lmod1cl 20065 |
. . . . . . . 8
⊢ (𝑀 ∈ LMod →
(1r‘𝑅)
∈ 𝑆) |
23 | | simp1 1134 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ 𝐵) |
24 | 22, 23 | anim12ci 613 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) → (𝑋 ∈ 𝐵 ∧ (1r‘𝑅) ∈ 𝑆)) |
25 | 24 | adantr 480 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → (𝑋 ∈ 𝐵 ∧ (1r‘𝑅) ∈ 𝑆)) |
26 | | simp2 1135 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ 𝐵) |
27 | 26 | ad2antlr 723 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → 𝑌 ∈ 𝐵) |
28 | 19 | lmodfgrp 20047 |
. . . . . . . 8
⊢ (𝑀 ∈ LMod → 𝑅 ∈ Grp) |
29 | 28 | adantr 480 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) → 𝑅 ∈ Grp) |
30 | | simpl 482 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌)) → 𝐴 ∈ 𝑆) |
31 | | eqid 2738 |
. . . . . . . 8
⊢
(invg‘𝑅) = (invg‘𝑅) |
32 | 20, 31 | grpinvcl 18542 |
. . . . . . 7
⊢ ((𝑅 ∈ Grp ∧ 𝐴 ∈ 𝑆) → ((invg‘𝑅)‘𝐴) ∈ 𝑆) |
33 | 29, 30, 32 | syl2an 595 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → ((invg‘𝑅)‘𝐴) ∈ 𝑆) |
34 | | snlindsntor.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑀) |
35 | | snlindsntor.t |
. . . . . . 7
⊢ · = (
·𝑠 ‘𝑀) |
36 | | eqid 2738 |
. . . . . . 7
⊢
(+g‘𝑀) = (+g‘𝑀) |
37 | | eqid 2738 |
. . . . . . 7
⊢
{〈𝑋,
(1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉} = {〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉} |
38 | 34, 19, 20, 35, 36, 37 | lincvalpr 45647 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑋 ≠ 𝑌) ∧ (𝑋 ∈ 𝐵 ∧ (1r‘𝑅) ∈ 𝑆) ∧ (𝑌 ∈ 𝐵 ∧ ((invg‘𝑅)‘𝐴) ∈ 𝑆)) → ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉} ( linC ‘𝑀){𝑋, 𝑌}) = (((1r‘𝑅) · 𝑋)(+g‘𝑀)(((invg‘𝑅)‘𝐴) · 𝑌))) |
39 | 18, 25, 27, 33, 38 | syl112anc 1372 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉} ( linC ‘𝑀){𝑋, 𝑌}) = (((1r‘𝑅) · 𝑋)(+g‘𝑀)(((invg‘𝑅)‘𝐴) · 𝑌))) |
40 | | simpll 763 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → 𝑀 ∈ LMod) |
41 | 23 | ad2antlr 723 |
. . . . . . . 8
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → 𝑋 ∈ 𝐵) |
42 | 30 | adantl 481 |
. . . . . . . 8
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → 𝐴 ∈ 𝑆) |
43 | 41, 27, 42 | 3jca 1126 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆)) |
44 | 40, 43 | jca 511 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → (𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆))) |
45 | | simprr 769 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → 𝑋 = (𝐴 · 𝑌)) |
46 | | snlindsntor.z |
. . . . . . 7
⊢ 𝑍 = (0g‘𝑀) |
47 | 34, 19, 20, 13, 46, 35, 21, 31 | ldepsprlem 45701 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆)) → (𝑋 = (𝐴 · 𝑌) → (((1r‘𝑅) · 𝑋)(+g‘𝑀)(((invg‘𝑅)‘𝐴) · 𝑌)) = 𝑍)) |
48 | 44, 45, 47 | sylc 65 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → (((1r‘𝑅) · 𝑋)(+g‘𝑀)(((invg‘𝑅)‘𝐴) · 𝑌)) = 𝑍) |
49 | 39, 48 | eqtrd 2778 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉} ( linC ‘𝑀){𝑋, 𝑌}) = 𝑍) |
50 | 19 | lmodring 20046 |
. . . . . . . . . 10
⊢ (𝑀 ∈ LMod → 𝑅 ∈ Ring) |
51 | | eqcom 2745 |
. . . . . . . . . . . 12
⊢
((1r‘𝑅) = (0g‘𝑅) ↔ (0g‘𝑅) = (1r‘𝑅)) |
52 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(0g‘𝑅) = (0g‘𝑅) |
53 | 20, 52, 21 | 01eq0ring 20456 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧
(0g‘𝑅) =
(1r‘𝑅))
→ 𝑆 =
{(0g‘𝑅)}) |
54 | | sneq 4568 |
. . . . . . . . . . . . . . . . 17
⊢
((0g‘𝑅) = (1r‘𝑅) → {(0g‘𝑅)} = {(1r‘𝑅)}) |
55 | 54 | eqeq2d 2749 |
. . . . . . . . . . . . . . . 16
⊢
((0g‘𝑅) = (1r‘𝑅) → (𝑆 = {(0g‘𝑅)} ↔ 𝑆 = {(1r‘𝑅)})) |
56 | | eleq2 2827 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑆 = {(1r‘𝑅)} → (𝐴 ∈ 𝑆 ↔ 𝐴 ∈ {(1r‘𝑅)})) |
57 | | elsni 4575 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈
{(1r‘𝑅)}
→ 𝐴 =
(1r‘𝑅)) |
58 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 = (1r‘𝑅) → (𝐴 · 𝑌) = ((1r‘𝑅) · 𝑌)) |
59 | 58 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 = (1r‘𝑅) → (𝑋 = (𝐴 · 𝑌) ↔ 𝑋 = ((1r‘𝑅) · 𝑌))) |
60 | 26 | anim1i 614 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) ∧ 𝑀 ∈ LMod) → (𝑌 ∈ 𝐵 ∧ 𝑀 ∈ LMod)) |
61 | 60 | ancomd 461 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) ∧ 𝑀 ∈ LMod) → (𝑀 ∈ LMod ∧ 𝑌 ∈ 𝐵)) |
62 | 34, 19, 35, 21 | lmodvs1 20066 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑀 ∈ LMod ∧ 𝑌 ∈ 𝐵) → ((1r‘𝑅) · 𝑌) = 𝑌) |
63 | 61, 62 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) ∧ 𝑀 ∈ LMod) →
((1r‘𝑅)
·
𝑌) = 𝑌) |
64 | 63 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) ∧ 𝑀 ∈ LMod) → (𝑋 = ((1r‘𝑅) · 𝑌) ↔ 𝑋 = 𝑌)) |
65 | | eqneqall 2953 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑋 = 𝑌 → (𝑋 ≠ 𝑌 → (¬ (1r‘𝑅) = (0g‘𝑅) ∨
((invg‘𝑅)‘𝐴) ≠ 0 ))) |
66 | 65 | com12 32 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑋 ≠ 𝑌 → (𝑋 = 𝑌 → (¬ (1r‘𝑅) = (0g‘𝑅) ∨
((invg‘𝑅)‘𝐴) ≠ 0 ))) |
67 | 66 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → (𝑋 = 𝑌 → (¬ (1r‘𝑅) = (0g‘𝑅) ∨
((invg‘𝑅)‘𝐴) ≠ 0 ))) |
68 | 67 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) ∧ 𝑀 ∈ LMod) → (𝑋 = 𝑌 → (¬ (1r‘𝑅) = (0g‘𝑅) ∨
((invg‘𝑅)‘𝐴) ≠ 0 ))) |
69 | 64, 68 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) ∧ 𝑀 ∈ LMod) → (𝑋 = ((1r‘𝑅) · 𝑌) → (¬ (1r‘𝑅) = (0g‘𝑅) ∨
((invg‘𝑅)‘𝐴) ≠ 0 ))) |
70 | 69 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → (𝑀 ∈ LMod → (𝑋 = ((1r‘𝑅) · 𝑌) → (¬ (1r‘𝑅) = (0g‘𝑅) ∨
((invg‘𝑅)‘𝐴) ≠ 0 )))) |
71 | 70 | com3r 87 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑋 = ((1r‘𝑅) · 𝑌) → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → (𝑀 ∈ LMod → (¬
(1r‘𝑅) =
(0g‘𝑅)
∨ ((invg‘𝑅)‘𝐴) ≠ 0 )))) |
72 | 59, 71 | syl6bi 252 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 = (1r‘𝑅) → (𝑋 = (𝐴 · 𝑌) → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → (𝑀 ∈ LMod → (¬
(1r‘𝑅) =
(0g‘𝑅)
∨ ((invg‘𝑅)‘𝐴) ≠ 0 ))))) |
73 | 57, 72 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈
{(1r‘𝑅)}
→ (𝑋 = (𝐴 · 𝑌) → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → (𝑀 ∈ LMod → (¬
(1r‘𝑅) =
(0g‘𝑅)
∨ ((invg‘𝑅)‘𝐴) ≠ 0 ))))) |
74 | 56, 73 | syl6bi 252 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑆 = {(1r‘𝑅)} → (𝐴 ∈ 𝑆 → (𝑋 = (𝐴 · 𝑌) → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → (𝑀 ∈ LMod → (¬
(1r‘𝑅) =
(0g‘𝑅)
∨ ((invg‘𝑅)‘𝐴) ≠ 0 )))))) |
75 | 74 | impd 410 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑆 = {(1r‘𝑅)} → ((𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌)) → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → (𝑀 ∈ LMod → (¬
(1r‘𝑅) =
(0g‘𝑅)
∨ ((invg‘𝑅)‘𝐴) ≠ 0 ))))) |
76 | 75 | com23 86 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 = {(1r‘𝑅)} → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → ((𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬
(1r‘𝑅) =
(0g‘𝑅)
∨ ((invg‘𝑅)‘𝐴) ≠ 0 ))))) |
77 | 55, 76 | syl6bi 252 |
. . . . . . . . . . . . . . 15
⊢
((0g‘𝑅) = (1r‘𝑅) → (𝑆 = {(0g‘𝑅)} → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → ((𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬
(1r‘𝑅) =
(0g‘𝑅)
∨ ((invg‘𝑅)‘𝐴) ≠ 0 )))))) |
78 | 77 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧
(0g‘𝑅) =
(1r‘𝑅))
→ (𝑆 =
{(0g‘𝑅)}
→ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → ((𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬
(1r‘𝑅) =
(0g‘𝑅)
∨ ((invg‘𝑅)‘𝐴) ≠ 0 )))))) |
79 | 53, 78 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧
(0g‘𝑅) =
(1r‘𝑅))
→ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → ((𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬
(1r‘𝑅) =
(0g‘𝑅)
∨ ((invg‘𝑅)‘𝐴) ≠ 0 ))))) |
80 | 79 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring →
((0g‘𝑅) =
(1r‘𝑅)
→ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → ((𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬
(1r‘𝑅) =
(0g‘𝑅)
∨ ((invg‘𝑅)‘𝐴) ≠ 0 )))))) |
81 | 51, 80 | syl5bi 241 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring →
((1r‘𝑅) =
(0g‘𝑅)
→ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → ((𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬
(1r‘𝑅) =
(0g‘𝑅)
∨ ((invg‘𝑅)‘𝐴) ≠ 0 )))))) |
82 | 81 | com25 99 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → (𝑀 ∈ LMod → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → ((𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌)) → ((1r‘𝑅) = (0g‘𝑅) → (¬
(1r‘𝑅) =
(0g‘𝑅)
∨ ((invg‘𝑅)‘𝐴) ≠ 0 )))))) |
83 | 50, 82 | mpcom 38 |
. . . . . . . . 9
⊢ (𝑀 ∈ LMod → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → ((𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌)) → ((1r‘𝑅) = (0g‘𝑅) → (¬
(1r‘𝑅) =
(0g‘𝑅)
∨ ((invg‘𝑅)‘𝐴) ≠ 0 ))))) |
84 | 83 | imp31 417 |
. . . . . . . 8
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → ((1r‘𝑅) = (0g‘𝑅) → (¬
(1r‘𝑅) =
(0g‘𝑅)
∨ ((invg‘𝑅)‘𝐴) ≠ 0 ))) |
85 | | orc 863 |
. . . . . . . 8
⊢ (¬
(1r‘𝑅) =
(0g‘𝑅)
→ (¬ (1r‘𝑅) = (0g‘𝑅) ∨ ((invg‘𝑅)‘𝐴) ≠ 0 )) |
86 | 84, 85 | pm2.61d1 180 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → (¬ (1r‘𝑅) = (0g‘𝑅) ∨
((invg‘𝑅)‘𝐴) ≠ 0 )) |
87 | 13 | eqeq2i 2751 |
. . . . . . . . 9
⊢
((1r‘𝑅) = 0 ↔
(1r‘𝑅) =
(0g‘𝑅)) |
88 | 87 | necon3abii 2989 |
. . . . . . . 8
⊢
((1r‘𝑅) ≠ 0 ↔ ¬
(1r‘𝑅) =
(0g‘𝑅)) |
89 | 88 | orbi1i 910 |
. . . . . . 7
⊢
(((1r‘𝑅) ≠ 0 ∨
((invg‘𝑅)‘𝐴) ≠ 0 ) ↔ (¬
(1r‘𝑅) =
(0g‘𝑅)
∨ ((invg‘𝑅)‘𝐴) ≠ 0 )) |
90 | 86, 89 | sylibr 233 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → ((1r‘𝑅) ≠ 0 ∨
((invg‘𝑅)‘𝐴) ≠ 0 )) |
91 | | fvexd 6771 |
. . . . . . . . 9
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → (1r‘𝑅) ∈ V) |
92 | | fvpr1g 7044 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐵 ∧ (1r‘𝑅) ∈ V ∧ 𝑋 ≠ 𝑌) → ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑋) = (1r‘𝑅)) |
93 | 41, 91, 8, 92 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑋) = (1r‘𝑅)) |
94 | 93 | neeq1d 3002 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → (({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑋) ≠ 0 ↔
(1r‘𝑅)
≠ 0
)) |
95 | | fvexd 6771 |
. . . . . . . . 9
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → ((invg‘𝑅)‘𝐴) ∈ V) |
96 | | fvpr2g 7045 |
. . . . . . . . 9
⊢ ((𝑌 ∈ 𝐵 ∧ ((invg‘𝑅)‘𝐴) ∈ V ∧ 𝑋 ≠ 𝑌) → ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑌) = ((invg‘𝑅)‘𝐴)) |
97 | 27, 95, 8, 96 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑌) = ((invg‘𝑅)‘𝐴)) |
98 | 97 | neeq1d 3002 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → (({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑌) ≠ 0 ↔
((invg‘𝑅)‘𝐴) ≠ 0 )) |
99 | 94, 98 | orbi12d 915 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → ((({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑋) ≠ 0 ∨ ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑌) ≠ 0 ) ↔
((1r‘𝑅)
≠ 0
∨ ((invg‘𝑅)‘𝐴) ≠ 0 ))) |
100 | 90, 99 | mpbird 256 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → (({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑋) ≠ 0 ∨ ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑌) ≠ 0 )) |
101 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑣 = 𝑋 → ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑣) = ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑋)) |
102 | 101 | neeq1d 3002 |
. . . . . . 7
⊢ (𝑣 = 𝑋 → (({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑣) ≠ 0 ↔ ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑋) ≠ 0 )) |
103 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑣 = 𝑌 → ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑣) = ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑌)) |
104 | 103 | neeq1d 3002 |
. . . . . . 7
⊢ (𝑣 = 𝑌 → (({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑣) ≠ 0 ↔ ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑌) ≠ 0 )) |
105 | 102, 104 | rexprg 4629 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∃𝑣 ∈ {𝑋, 𝑌} ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑣) ≠ 0 ↔ (({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑋) ≠ 0 ∨ ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑌) ≠ 0 ))) |
106 | 2, 105 | syl 17 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → (∃𝑣 ∈ {𝑋, 𝑌} ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑣) ≠ 0 ↔ (({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑋) ≠ 0 ∨ ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑌) ≠ 0 ))) |
107 | 100, 106 | mpbird 256 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → ∃𝑣 ∈ {𝑋, 𝑌} ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑣) ≠ 0 ) |
108 | 22 | adantr 480 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) → (1r‘𝑅) ∈ 𝑆) |
109 | 108 | adantr 480 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → (1r‘𝑅) ∈ 𝑆) |
110 | 20 | fvexi 6770 |
. . . . . . 7
⊢ 𝑆 ∈ V |
111 | 8, 110 | jctir 520 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → (𝑋 ≠ 𝑌 ∧ 𝑆 ∈ V)) |
112 | 37 | mapprop 45570 |
. . . . . 6
⊢ (((𝑋 ∈ 𝐵 ∧ (1r‘𝑅) ∈ 𝑆) ∧ (𝑌 ∈ 𝐵 ∧ ((invg‘𝑅)‘𝐴) ∈ 𝑆) ∧ (𝑋 ≠ 𝑌 ∧ 𝑆 ∈ V)) → {〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉} ∈ (𝑆 ↑m {𝑋, 𝑌})) |
113 | 41, 109, 27, 33, 111, 112 | syl221anc 1379 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → {〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉} ∈ (𝑆 ↑m {𝑋, 𝑌})) |
114 | | breq1 5073 |
. . . . . . 7
⊢ (𝑓 = {〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉} → (𝑓 finSupp 0 ↔ {〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉} finSupp 0 )) |
115 | | oveq1 7262 |
. . . . . . . 8
⊢ (𝑓 = {〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉} → (𝑓( linC ‘𝑀){𝑋, 𝑌}) = ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉} ( linC ‘𝑀){𝑋, 𝑌})) |
116 | 115 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑓 = {〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉} → ((𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ↔ ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉} ( linC ‘𝑀){𝑋, 𝑌}) = 𝑍)) |
117 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑓 = {〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉} → (𝑓‘𝑣) = ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑣)) |
118 | 117 | neeq1d 3002 |
. . . . . . . 8
⊢ (𝑓 = {〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉} → ((𝑓‘𝑣) ≠ 0 ↔ ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑣) ≠ 0 )) |
119 | 118 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑓 = {〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉} → (∃𝑣 ∈ {𝑋, 𝑌} (𝑓‘𝑣) ≠ 0 ↔ ∃𝑣 ∈ {𝑋, 𝑌} ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑣) ≠ 0 )) |
120 | 114, 116,
119 | 3anbi123d 1434 |
. . . . . 6
⊢ (𝑓 = {〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉} → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓‘𝑣) ≠ 0 ) ↔ ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉} finSupp 0 ∧ ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉} ( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑣) ≠ 0 ))) |
121 | 120 | adantl 481 |
. . . . 5
⊢ ((((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) ∧ 𝑓 = {〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓‘𝑣) ≠ 0 ) ↔ ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉} finSupp 0 ∧ ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉} ( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑣) ≠ 0 ))) |
122 | 113, 121 | rspcedv 3544 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → (({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉} finSupp 0 ∧ ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉} ( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} ({〈𝑋, (1r‘𝑅)〉, 〈𝑌, ((invg‘𝑅)‘𝐴)〉}‘𝑣) ≠ 0 ) → ∃𝑓 ∈ (𝑆 ↑m {𝑋, 𝑌})(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓‘𝑣) ≠ 0 ))) |
123 | 16, 49, 107, 122 | mp3and 1462 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → ∃𝑓 ∈ (𝑆 ↑m {𝑋, 𝑌})(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓‘𝑣) ≠ 0 )) |
124 | | prelpwi 5357 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → {𝑋, 𝑌} ∈ 𝒫 𝐵) |
125 | 124 | 3adant3 1130 |
. . . . 5
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ∈ 𝒫 𝐵) |
126 | 125 | ad2antlr 723 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → {𝑋, 𝑌} ∈ 𝒫 𝐵) |
127 | 34, 46, 19, 20, 13 | islindeps 45682 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ {𝑋, 𝑌} ∈ 𝒫 𝐵) → ({𝑋, 𝑌} linDepS 𝑀 ↔ ∃𝑓 ∈ (𝑆 ↑m {𝑋, 𝑌})(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓‘𝑣) ≠ 0 ))) |
128 | 40, 126, 127 | syl2anc 583 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → ({𝑋, 𝑌} linDepS 𝑀 ↔ ∃𝑓 ∈ (𝑆 ↑m {𝑋, 𝑌})(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓‘𝑣) ≠ 0 ))) |
129 | 123, 128 | mpbird 256 |
. 2
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) ∧ (𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌))) → {𝑋, 𝑌} linDepS 𝑀) |
130 | 129 | ex 412 |
1
⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) → ((𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌)) → {𝑋, 𝑌} linDepS 𝑀)) |