Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldepspr Structured version   Visualization version   GIF version

Theorem ldepspr 48466
Description: If a vector is a scalar multiple of another vector, the (unordered pair containing the) two vectors are linearly dependent. (Contributed by AV, 16-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
snlindsntor.b 𝐵 = (Base‘𝑀)
snlindsntor.r 𝑅 = (Scalar‘𝑀)
snlindsntor.s 𝑆 = (Base‘𝑅)
snlindsntor.0 0 = (0g𝑅)
snlindsntor.z 𝑍 = (0g𝑀)
snlindsntor.t · = ( ·𝑠𝑀)
Assertion
Ref Expression
ldepspr ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → {𝑋, 𝑌} linDepS 𝑀))

Proof of Theorem ldepspr
Dummy variables 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpa 1148 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑋𝐵𝑌𝐵))
21ad2antlr 727 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (𝑋𝐵𝑌𝐵))
3 fvex 6874 . . . . . . . 8 (1r𝑅) ∈ V
4 fvex 6874 . . . . . . . 8 ((invg𝑅)‘𝐴) ∈ V
53, 4pm3.2i 470 . . . . . . 7 ((1r𝑅) ∈ V ∧ ((invg𝑅)‘𝐴) ∈ V)
65a1i 11 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ((1r𝑅) ∈ V ∧ ((invg𝑅)‘𝐴) ∈ V))
7 simp3 1138 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑋𝑌) → 𝑋𝑌)
87ad2antlr 727 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 𝑋𝑌)
9 fprg 7130 . . . . . 6 (((𝑋𝐵𝑌𝐵) ∧ ((1r𝑅) ∈ V ∧ ((invg𝑅)‘𝐴) ∈ V) ∧ 𝑋𝑌) → {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}:{𝑋, 𝑌}⟶{(1r𝑅), ((invg𝑅)‘𝐴)})
102, 6, 8, 9syl3anc 1373 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}:{𝑋, 𝑌}⟶{(1r𝑅), ((invg𝑅)‘𝐴)})
11 prfi 9281 . . . . . 6 {𝑋, 𝑌} ∈ Fin
1211a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → {𝑋, 𝑌} ∈ Fin)
13 snlindsntor.0 . . . . . . 7 0 = (0g𝑅)
1413fvexi 6875 . . . . . 6 0 ∈ V
1514a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 0 ∈ V)
1610, 12, 15fdmfifsupp 9333 . . . 4 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} finSupp 0 )
177anim2i 617 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (𝑀 ∈ LMod ∧ 𝑋𝑌))
1817adantr 480 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (𝑀 ∈ LMod ∧ 𝑋𝑌))
19 snlindsntor.r . . . . . . . . 9 𝑅 = (Scalar‘𝑀)
20 snlindsntor.s . . . . . . . . 9 𝑆 = (Base‘𝑅)
21 eqid 2730 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
2219, 20, 21lmod1cl 20802 . . . . . . . 8 (𝑀 ∈ LMod → (1r𝑅) ∈ 𝑆)
23 simp1 1136 . . . . . . . 8 ((𝑋𝐵𝑌𝐵𝑋𝑌) → 𝑋𝐵)
2422, 23anim12ci 614 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (𝑋𝐵 ∧ (1r𝑅) ∈ 𝑆))
2524adantr 480 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (𝑋𝐵 ∧ (1r𝑅) ∈ 𝑆))
26 simp2 1137 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑋𝑌) → 𝑌𝐵)
2726ad2antlr 727 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 𝑌𝐵)
2819lmodfgrp 20782 . . . . . . . 8 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
2928adantr 480 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → 𝑅 ∈ Grp)
30 simpl 482 . . . . . . 7 ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → 𝐴𝑆)
31 eqid 2730 . . . . . . . 8 (invg𝑅) = (invg𝑅)
3220, 31grpinvcl 18926 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝐴𝑆) → ((invg𝑅)‘𝐴) ∈ 𝑆)
3329, 30, 32syl2an 596 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ((invg𝑅)‘𝐴) ∈ 𝑆)
34 snlindsntor.b . . . . . . 7 𝐵 = (Base‘𝑀)
35 snlindsntor.t . . . . . . 7 · = ( ·𝑠𝑀)
36 eqid 2730 . . . . . . 7 (+g𝑀) = (+g𝑀)
37 eqid 2730 . . . . . . 7 {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}
3834, 19, 20, 35, 36, 37lincvalpr 48411 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝑌) ∧ (𝑋𝐵 ∧ (1r𝑅) ∈ 𝑆) ∧ (𝑌𝐵 ∧ ((invg𝑅)‘𝐴) ∈ 𝑆)) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = (((1r𝑅) · 𝑋)(+g𝑀)(((invg𝑅)‘𝐴) · 𝑌)))
3918, 25, 27, 33, 38syl112anc 1376 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = (((1r𝑅) · 𝑋)(+g𝑀)(((invg𝑅)‘𝐴) · 𝑌)))
40 simpll 766 . . . . . . 7 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 𝑀 ∈ LMod)
4123ad2antlr 727 . . . . . . . 8 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 𝑋𝐵)
4230adantl 481 . . . . . . . 8 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 𝐴𝑆)
4341, 27, 423jca 1128 . . . . . . 7 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (𝑋𝐵𝑌𝐵𝐴𝑆))
4440, 43jca 511 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)))
45 simprr 772 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 𝑋 = (𝐴 · 𝑌))
46 snlindsntor.z . . . . . . 7 𝑍 = (0g𝑀)
4734, 19, 20, 13, 46, 35, 21, 31ldepsprlem 48465 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (𝑋 = (𝐴 · 𝑌) → (((1r𝑅) · 𝑋)(+g𝑀)(((invg𝑅)‘𝐴) · 𝑌)) = 𝑍))
4844, 45, 47sylc 65 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (((1r𝑅) · 𝑋)(+g𝑀)(((invg𝑅)‘𝐴) · 𝑌)) = 𝑍)
4939, 48eqtrd 2765 . . . 4 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = 𝑍)
5019lmodring 20781 . . . . . . . . . 10 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
51 eqcom 2737 . . . . . . . . . . . 12 ((1r𝑅) = (0g𝑅) ↔ (0g𝑅) = (1r𝑅))
52 eqid 2730 . . . . . . . . . . . . . . 15 (0g𝑅) = (0g𝑅)
5320, 52, 2101eq0ring 20446 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → 𝑆 = {(0g𝑅)})
54 sneq 4602 . . . . . . . . . . . . . . . . 17 ((0g𝑅) = (1r𝑅) → {(0g𝑅)} = {(1r𝑅)})
5554eqeq2d 2741 . . . . . . . . . . . . . . . 16 ((0g𝑅) = (1r𝑅) → (𝑆 = {(0g𝑅)} ↔ 𝑆 = {(1r𝑅)}))
56 eleq2 2818 . . . . . . . . . . . . . . . . . . 19 (𝑆 = {(1r𝑅)} → (𝐴𝑆𝐴 ∈ {(1r𝑅)}))
57 elsni 4609 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ {(1r𝑅)} → 𝐴 = (1r𝑅))
58 oveq1 7397 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 = (1r𝑅) → (𝐴 · 𝑌) = ((1r𝑅) · 𝑌))
5958eqeq2d 2741 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 = (1r𝑅) → (𝑋 = (𝐴 · 𝑌) ↔ 𝑋 = ((1r𝑅) · 𝑌)))
6026anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑋𝐵𝑌𝐵𝑋𝑌) ∧ 𝑀 ∈ LMod) → (𝑌𝐵𝑀 ∈ LMod))
6160ancomd 461 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑋𝐵𝑌𝐵𝑋𝑌) ∧ 𝑀 ∈ LMod) → (𝑀 ∈ LMod ∧ 𝑌𝐵))
6234, 19, 35, 21lmodvs1 20803 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ LMod ∧ 𝑌𝐵) → ((1r𝑅) · 𝑌) = 𝑌)
6361, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑋𝐵𝑌𝐵𝑋𝑌) ∧ 𝑀 ∈ LMod) → ((1r𝑅) · 𝑌) = 𝑌)
6463eqeq2d 2741 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑋𝐵𝑌𝐵𝑋𝑌) ∧ 𝑀 ∈ LMod) → (𝑋 = ((1r𝑅) · 𝑌) ↔ 𝑋 = 𝑌))
65 eqneqall 2937 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑋 = 𝑌 → (𝑋𝑌 → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
6665com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑋𝑌 → (𝑋 = 𝑌 → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
67663ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑋 = 𝑌 → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
6867adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑋𝐵𝑌𝐵𝑋𝑌) ∧ 𝑀 ∈ LMod) → (𝑋 = 𝑌 → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
6964, 68sylbid 240 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑋𝐵𝑌𝐵𝑋𝑌) ∧ 𝑀 ∈ LMod) → (𝑋 = ((1r𝑅) · 𝑌) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
7069ex 412 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑀 ∈ LMod → (𝑋 = ((1r𝑅) · 𝑌) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))
7170com3r 87 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 = ((1r𝑅) · 𝑌) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))
7259, 71biimtrdi 253 . . . . . . . . . . . . . . . . . . . 20 (𝐴 = (1r𝑅) → (𝑋 = (𝐴 · 𝑌) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))))
7357, 72syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ {(1r𝑅)} → (𝑋 = (𝐴 · 𝑌) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))))
7456, 73biimtrdi 253 . . . . . . . . . . . . . . . . . 18 (𝑆 = {(1r𝑅)} → (𝐴𝑆 → (𝑋 = (𝐴 · 𝑌) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))))
7574impd 410 . . . . . . . . . . . . . . . . 17 (𝑆 = {(1r𝑅)} → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))))
7675com23 86 . . . . . . . . . . . . . . . 16 (𝑆 = {(1r𝑅)} → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))))
7755, 76biimtrdi 253 . . . . . . . . . . . . . . 15 ((0g𝑅) = (1r𝑅) → (𝑆 = {(0g𝑅)} → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))))
7877adantl 481 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → (𝑆 = {(0g𝑅)} → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))))
7953, 78mpd 15 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))))
8079ex 412 . . . . . . . . . . . 12 (𝑅 ∈ Ring → ((0g𝑅) = (1r𝑅) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))))
8151, 80biimtrid 242 . . . . . . . . . . 11 (𝑅 ∈ Ring → ((1r𝑅) = (0g𝑅) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))))
8281com25 99 . . . . . . . . . 10 (𝑅 ∈ Ring → (𝑀 ∈ LMod → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → ((1r𝑅) = (0g𝑅) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))))
8350, 82mpcom 38 . . . . . . . . 9 (𝑀 ∈ LMod → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → ((1r𝑅) = (0g𝑅) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))))
8483imp31 417 . . . . . . . 8 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ((1r𝑅) = (0g𝑅) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
85 orc 867 . . . . . . . 8 (¬ (1r𝑅) = (0g𝑅) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))
8684, 85pm2.61d1 180 . . . . . . 7 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))
8713eqeq2i 2743 . . . . . . . . 9 ((1r𝑅) = 0 ↔ (1r𝑅) = (0g𝑅))
8887necon3abii 2972 . . . . . . . 8 ((1r𝑅) ≠ 0 ↔ ¬ (1r𝑅) = (0g𝑅))
8988orbi1i 913 . . . . . . 7 (((1r𝑅) ≠ 0 ∨ ((invg𝑅)‘𝐴) ≠ 0 ) ↔ (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))
9086, 89sylibr 234 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ((1r𝑅) ≠ 0 ∨ ((invg𝑅)‘𝐴) ≠ 0 ))
91 fvexd 6876 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (1r𝑅) ∈ V)
92 fvpr1g 7167 . . . . . . . . 9 ((𝑋𝐵 ∧ (1r𝑅) ∈ V ∧ 𝑋𝑌) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) = (1r𝑅))
9341, 91, 8, 92syl3anc 1373 . . . . . . . 8 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) = (1r𝑅))
9493neeq1d 2985 . . . . . . 7 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) ≠ 0 ↔ (1r𝑅) ≠ 0 ))
95 fvexd 6876 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ((invg𝑅)‘𝐴) ∈ V)
96 fvpr2g 7168 . . . . . . . . 9 ((𝑌𝐵 ∧ ((invg𝑅)‘𝐴) ∈ V ∧ 𝑋𝑌) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) = ((invg𝑅)‘𝐴))
9727, 95, 8, 96syl3anc 1373 . . . . . . . 8 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) = ((invg𝑅)‘𝐴))
9897neeq1d 2985 . . . . . . 7 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) ≠ 0 ↔ ((invg𝑅)‘𝐴) ≠ 0 ))
9994, 98orbi12d 918 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ((({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) ≠ 0 ∨ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) ≠ 0 ) ↔ ((1r𝑅) ≠ 0 ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
10090, 99mpbird 257 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) ≠ 0 ∨ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) ≠ 0 ))
101 fveq2 6861 . . . . . . . 8 (𝑣 = 𝑋 → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) = ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋))
102101neeq1d 2985 . . . . . . 7 (𝑣 = 𝑋 → (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ↔ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) ≠ 0 ))
103 fveq2 6861 . . . . . . . 8 (𝑣 = 𝑌 → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) = ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌))
104103neeq1d 2985 . . . . . . 7 (𝑣 = 𝑌 → (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ↔ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) ≠ 0 ))
105102, 104rexprg 4664 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ↔ (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) ≠ 0 ∨ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) ≠ 0 )))
1062, 105syl 17 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ↔ (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) ≠ 0 ∨ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) ≠ 0 )))
107100, 106mpbird 257 . . . 4 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 )
10822adantr 480 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (1r𝑅) ∈ 𝑆)
109108adantr 480 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (1r𝑅) ∈ 𝑆)
11020fvexi 6875 . . . . . . 7 𝑆 ∈ V
1118, 110jctir 520 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (𝑋𝑌𝑆 ∈ V))
11237mapprop 48338 . . . . . 6 (((𝑋𝐵 ∧ (1r𝑅) ∈ 𝑆) ∧ (𝑌𝐵 ∧ ((invg𝑅)‘𝐴) ∈ 𝑆) ∧ (𝑋𝑌𝑆 ∈ V)) → {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ∈ (𝑆m {𝑋, 𝑌}))
11341, 109, 27, 33, 111, 112syl221anc 1383 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ∈ (𝑆m {𝑋, 𝑌}))
114 breq1 5113 . . . . . . 7 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → (𝑓 finSupp 0 ↔ {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} finSupp 0 ))
115 oveq1 7397 . . . . . . . 8 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → (𝑓( linC ‘𝑀){𝑋, 𝑌}) = ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}))
116115eqeq1d 2732 . . . . . . 7 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → ((𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ↔ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = 𝑍))
117 fveq1 6860 . . . . . . . . 9 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → (𝑓𝑣) = ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣))
118117neeq1d 2985 . . . . . . . 8 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → ((𝑓𝑣) ≠ 0 ↔ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ))
119118rexbidv 3158 . . . . . . 7 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → (∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 ↔ ∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ))
120114, 116, 1193anbi123d 1438 . . . . . 6 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 ) ↔ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} finSupp 0 ∧ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 )))
121120adantl 481 . . . . 5 ((((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) ∧ 𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 ) ↔ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} finSupp 0 ∧ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 )))
122113, 121rspcedv 3584 . . . 4 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} finSupp 0 ∧ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ) → ∃𝑓 ∈ (𝑆m {𝑋, 𝑌})(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 )))
12316, 49, 107, 122mp3and 1466 . . 3 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ∃𝑓 ∈ (𝑆m {𝑋, 𝑌})(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 ))
124 prelpwi 5410 . . . . . 6 ((𝑋𝐵𝑌𝐵) → {𝑋, 𝑌} ∈ 𝒫 𝐵)
1251243adant3 1132 . . . . 5 ((𝑋𝐵𝑌𝐵𝑋𝑌) → {𝑋, 𝑌} ∈ 𝒫 𝐵)
126125ad2antlr 727 . . . 4 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → {𝑋, 𝑌} ∈ 𝒫 𝐵)
12734, 46, 19, 20, 13islindeps 48446 . . . 4 ((𝑀 ∈ LMod ∧ {𝑋, 𝑌} ∈ 𝒫 𝐵) → ({𝑋, 𝑌} linDepS 𝑀 ↔ ∃𝑓 ∈ (𝑆m {𝑋, 𝑌})(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 )))
12840, 126, 127syl2anc 584 . . 3 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ({𝑋, 𝑌} linDepS 𝑀 ↔ ∃𝑓 ∈ (𝑆m {𝑋, 𝑌})(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 )))
129123, 128mpbird 257 . 2 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → {𝑋, 𝑌} linDepS 𝑀)
130129ex 412 1 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → {𝑋, 𝑌} linDepS 𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  Vcvv 3450  𝒫 cpw 4566  {csn 4592  {cpr 4594  cop 4598   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  Fincfn 8921   finSupp cfsupp 9319  Basecbs 17186  +gcplusg 17227  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409  Grpcgrp 18872  invgcminusg 18873  1rcur 20097  Ringcrg 20149  LModclmod 20773   linC clinc 48397   linDepS clindeps 48434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-gsum 17412  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-lmod 20775  df-linc 48399  df-lininds 48435  df-lindeps 48437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator