Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldepspr Structured version   Visualization version   GIF version

Theorem ldepspr 42824
Description: If a vector is a scalar multiple of another vector, the (unordered pair containing the) two vectors are linearly dependent. (Contributed by AV, 16-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
snlindsntor.b 𝐵 = (Base‘𝑀)
snlindsntor.r 𝑅 = (Scalar‘𝑀)
snlindsntor.s 𝑆 = (Base‘𝑅)
snlindsntor.0 0 = (0g𝑅)
snlindsntor.z 𝑍 = (0g𝑀)
snlindsntor.t · = ( ·𝑠𝑀)
Assertion
Ref Expression
ldepspr ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → {𝑋, 𝑌} linDepS 𝑀))

Proof of Theorem ldepspr
Dummy variables 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpa 1171 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑋𝐵𝑌𝐵))
21ad2antlr 709 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (𝑋𝐵𝑌𝐵))
3 fvex 6415 . . . . . . . 8 (1r𝑅) ∈ V
4 fvex 6415 . . . . . . . 8 ((invg𝑅)‘𝐴) ∈ V
53, 4pm3.2i 458 . . . . . . 7 ((1r𝑅) ∈ V ∧ ((invg𝑅)‘𝐴) ∈ V)
65a1i 11 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ((1r𝑅) ∈ V ∧ ((invg𝑅)‘𝐴) ∈ V))
7 simp3 1161 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑋𝑌) → 𝑋𝑌)
87ad2antlr 709 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 𝑋𝑌)
9 fprg 6640 . . . . . 6 (((𝑋𝐵𝑌𝐵) ∧ ((1r𝑅) ∈ V ∧ ((invg𝑅)‘𝐴) ∈ V) ∧ 𝑋𝑌) → {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}:{𝑋, 𝑌}⟶{(1r𝑅), ((invg𝑅)‘𝐴)})
102, 6, 8, 9syl3anc 1483 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}:{𝑋, 𝑌}⟶{(1r𝑅), ((invg𝑅)‘𝐴)})
11 prfi 8468 . . . . . 6 {𝑋, 𝑌} ∈ Fin
1211a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → {𝑋, 𝑌} ∈ Fin)
13 snlindsntor.0 . . . . . . 7 0 = (0g𝑅)
1413fvexi 6416 . . . . . 6 0 ∈ V
1514a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 0 ∈ V)
1610, 12, 15fdmfifsupp 8518 . . . 4 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} finSupp 0 )
177anim2i 605 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (𝑀 ∈ LMod ∧ 𝑋𝑌))
1817adantr 468 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (𝑀 ∈ LMod ∧ 𝑋𝑌))
19 snlindsntor.r . . . . . . . . 9 𝑅 = (Scalar‘𝑀)
20 snlindsntor.s . . . . . . . . 9 𝑆 = (Base‘𝑅)
21 eqid 2802 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
2219, 20, 21lmod1cl 19088 . . . . . . . 8 (𝑀 ∈ LMod → (1r𝑅) ∈ 𝑆)
23 simp1 1159 . . . . . . . 8 ((𝑋𝐵𝑌𝐵𝑋𝑌) → 𝑋𝐵)
2422, 23anim12ci 603 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (𝑋𝐵 ∧ (1r𝑅) ∈ 𝑆))
2524adantr 468 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (𝑋𝐵 ∧ (1r𝑅) ∈ 𝑆))
26 simp2 1160 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑋𝑌) → 𝑌𝐵)
2726ad2antlr 709 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 𝑌𝐵)
2819lmodfgrp 19070 . . . . . . . 8 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
2928adantr 468 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → 𝑅 ∈ Grp)
30 simpl 470 . . . . . . 7 ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → 𝐴𝑆)
31 eqid 2802 . . . . . . . 8 (invg𝑅) = (invg𝑅)
3220, 31grpinvcl 17666 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝐴𝑆) → ((invg𝑅)‘𝐴) ∈ 𝑆)
3329, 30, 32syl2an 585 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ((invg𝑅)‘𝐴) ∈ 𝑆)
34 snlindsntor.b . . . . . . 7 𝐵 = (Base‘𝑀)
35 snlindsntor.t . . . . . . 7 · = ( ·𝑠𝑀)
36 eqid 2802 . . . . . . 7 (+g𝑀) = (+g𝑀)
37 eqid 2802 . . . . . . 7 {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}
3834, 19, 20, 35, 36, 37lincvalpr 42769 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝑌) ∧ (𝑋𝐵 ∧ (1r𝑅) ∈ 𝑆) ∧ (𝑌𝐵 ∧ ((invg𝑅)‘𝐴) ∈ 𝑆)) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = (((1r𝑅) · 𝑋)(+g𝑀)(((invg𝑅)‘𝐴) · 𝑌)))
3918, 25, 27, 33, 38syl112anc 1486 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = (((1r𝑅) · 𝑋)(+g𝑀)(((invg𝑅)‘𝐴) · 𝑌)))
40 simpll 774 . . . . . . 7 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 𝑀 ∈ LMod)
4123ad2antlr 709 . . . . . . . 8 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 𝑋𝐵)
4230adantl 469 . . . . . . . 8 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 𝐴𝑆)
4341, 27, 423jca 1151 . . . . . . 7 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (𝑋𝐵𝑌𝐵𝐴𝑆))
4440, 43jca 503 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)))
45 simprr 780 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → 𝑋 = (𝐴 · 𝑌))
46 snlindsntor.z . . . . . . 7 𝑍 = (0g𝑀)
4734, 19, 20, 13, 46, 35, 21, 31ldepsprlem 42823 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (𝑋 = (𝐴 · 𝑌) → (((1r𝑅) · 𝑋)(+g𝑀)(((invg𝑅)‘𝐴) · 𝑌)) = 𝑍))
4844, 45, 47sylc 65 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (((1r𝑅) · 𝑋)(+g𝑀)(((invg𝑅)‘𝐴) · 𝑌)) = 𝑍)
4939, 48eqtrd 2836 . . . 4 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = 𝑍)
5019lmodring 19069 . . . . . . . . . 10 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
51 eqcom 2809 . . . . . . . . . . . 12 ((1r𝑅) = (0g𝑅) ↔ (0g𝑅) = (1r𝑅))
52 eqid 2802 . . . . . . . . . . . . . . 15 (0g𝑅) = (0g𝑅)
5320, 52, 2101eq0ring 19475 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → 𝑆 = {(0g𝑅)})
54 sneq 4374 . . . . . . . . . . . . . . . . 17 ((0g𝑅) = (1r𝑅) → {(0g𝑅)} = {(1r𝑅)})
5554eqeq2d 2812 . . . . . . . . . . . . . . . 16 ((0g𝑅) = (1r𝑅) → (𝑆 = {(0g𝑅)} ↔ 𝑆 = {(1r𝑅)}))
56 eleq2 2870 . . . . . . . . . . . . . . . . . . 19 (𝑆 = {(1r𝑅)} → (𝐴𝑆𝐴 ∈ {(1r𝑅)}))
57 elsni 4381 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ {(1r𝑅)} → 𝐴 = (1r𝑅))
58 oveq1 6875 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 = (1r𝑅) → (𝐴 · 𝑌) = ((1r𝑅) · 𝑌))
5958eqeq2d 2812 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 = (1r𝑅) → (𝑋 = (𝐴 · 𝑌) ↔ 𝑋 = ((1r𝑅) · 𝑌)))
6026anim1i 604 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑋𝐵𝑌𝐵𝑋𝑌) ∧ 𝑀 ∈ LMod) → (𝑌𝐵𝑀 ∈ LMod))
6160ancomd 451 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑋𝐵𝑌𝐵𝑋𝑌) ∧ 𝑀 ∈ LMod) → (𝑀 ∈ LMod ∧ 𝑌𝐵))
6234, 19, 35, 21lmodvs1 19089 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ LMod ∧ 𝑌𝐵) → ((1r𝑅) · 𝑌) = 𝑌)
6361, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑋𝐵𝑌𝐵𝑋𝑌) ∧ 𝑀 ∈ LMod) → ((1r𝑅) · 𝑌) = 𝑌)
6463eqeq2d 2812 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑋𝐵𝑌𝐵𝑋𝑌) ∧ 𝑀 ∈ LMod) → (𝑋 = ((1r𝑅) · 𝑌) ↔ 𝑋 = 𝑌))
65 eqneqall 2985 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑋 = 𝑌 → (𝑋𝑌 → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
6665com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑋𝑌 → (𝑋 = 𝑌 → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
67663ad2ant3 1158 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑋 = 𝑌 → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
6867adantr 468 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑋𝐵𝑌𝐵𝑋𝑌) ∧ 𝑀 ∈ LMod) → (𝑋 = 𝑌 → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
6964, 68sylbid 231 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑋𝐵𝑌𝐵𝑋𝑌) ∧ 𝑀 ∈ LMod) → (𝑋 = ((1r𝑅) · 𝑌) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
7069ex 399 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑀 ∈ LMod → (𝑋 = ((1r𝑅) · 𝑌) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))
7170com3r 87 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 = ((1r𝑅) · 𝑌) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))
7259, 71syl6bi 244 . . . . . . . . . . . . . . . . . . . 20 (𝐴 = (1r𝑅) → (𝑋 = (𝐴 · 𝑌) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))))
7357, 72syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ {(1r𝑅)} → (𝑋 = (𝐴 · 𝑌) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))))
7456, 73syl6bi 244 . . . . . . . . . . . . . . . . . 18 (𝑆 = {(1r𝑅)} → (𝐴𝑆 → (𝑋 = (𝐴 · 𝑌) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))))
7574impd 398 . . . . . . . . . . . . . . . . 17 (𝑆 = {(1r𝑅)} → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))))
7675com23 86 . . . . . . . . . . . . . . . 16 (𝑆 = {(1r𝑅)} → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))))
7755, 76syl6bi 244 . . . . . . . . . . . . . . 15 ((0g𝑅) = (1r𝑅) → (𝑆 = {(0g𝑅)} → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))))
7877adantl 469 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → (𝑆 = {(0g𝑅)} → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))))
7953, 78mpd 15 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))))
8079ex 399 . . . . . . . . . . . 12 (𝑅 ∈ Ring → ((0g𝑅) = (1r𝑅) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))))
8151, 80syl5bi 233 . . . . . . . . . . 11 (𝑅 ∈ Ring → ((1r𝑅) = (0g𝑅) → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → (𝑀 ∈ LMod → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))))
8281com25 99 . . . . . . . . . 10 (𝑅 ∈ Ring → (𝑀 ∈ LMod → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → ((1r𝑅) = (0g𝑅) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))))))
8350, 82mpcom 38 . . . . . . . . 9 (𝑀 ∈ LMod → ((𝑋𝐵𝑌𝐵𝑋𝑌) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → ((1r𝑅) = (0g𝑅) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))))
8483imp31 406 . . . . . . . 8 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ((1r𝑅) = (0g𝑅) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
85 orc 885 . . . . . . . 8 (¬ (1r𝑅) = (0g𝑅) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))
8684, 85pm2.61d1 172 . . . . . . 7 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))
8713eqeq2i 2814 . . . . . . . . 9 ((1r𝑅) = 0 ↔ (1r𝑅) = (0g𝑅))
8887necon3abii 3020 . . . . . . . 8 ((1r𝑅) ≠ 0 ↔ ¬ (1r𝑅) = (0g𝑅))
8988orbi1i 928 . . . . . . 7 (((1r𝑅) ≠ 0 ∨ ((invg𝑅)‘𝐴) ≠ 0 ) ↔ (¬ (1r𝑅) = (0g𝑅) ∨ ((invg𝑅)‘𝐴) ≠ 0 ))
9086, 89sylibr 225 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ((1r𝑅) ≠ 0 ∨ ((invg𝑅)‘𝐴) ≠ 0 ))
91 fvexd 6417 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (1r𝑅) ∈ V)
92 fvpr1g 6677 . . . . . . . . 9 ((𝑋𝐵 ∧ (1r𝑅) ∈ V ∧ 𝑋𝑌) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) = (1r𝑅))
9341, 91, 8, 92syl3anc 1483 . . . . . . . 8 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) = (1r𝑅))
9493neeq1d 3033 . . . . . . 7 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) ≠ 0 ↔ (1r𝑅) ≠ 0 ))
95 fvexd 6417 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ((invg𝑅)‘𝐴) ∈ V)
96 fvpr2g 6678 . . . . . . . . 9 ((𝑌𝐵 ∧ ((invg𝑅)‘𝐴) ∈ V ∧ 𝑋𝑌) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) = ((invg𝑅)‘𝐴))
9727, 95, 8, 96syl3anc 1483 . . . . . . . 8 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) = ((invg𝑅)‘𝐴))
9897neeq1d 3033 . . . . . . 7 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) ≠ 0 ↔ ((invg𝑅)‘𝐴) ≠ 0 ))
9994, 98orbi12d 933 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ((({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) ≠ 0 ∨ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) ≠ 0 ) ↔ ((1r𝑅) ≠ 0 ∨ ((invg𝑅)‘𝐴) ≠ 0 )))
10090, 99mpbird 248 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) ≠ 0 ∨ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) ≠ 0 ))
101 fveq2 6402 . . . . . . . 8 (𝑣 = 𝑋 → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) = ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋))
102101neeq1d 3033 . . . . . . 7 (𝑣 = 𝑋 → (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ↔ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) ≠ 0 ))
103 fveq2 6402 . . . . . . . 8 (𝑣 = 𝑌 → ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) = ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌))
104103neeq1d 3033 . . . . . . 7 (𝑣 = 𝑌 → (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ↔ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) ≠ 0 ))
105102, 104rexprg 4421 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ↔ (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) ≠ 0 ∨ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) ≠ 0 )))
1062, 105syl 17 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ↔ (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑋) ≠ 0 ∨ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑌) ≠ 0 )))
107100, 106mpbird 248 . . . 4 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 )
10822adantr 468 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (1r𝑅) ∈ 𝑆)
109108adantr 468 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (1r𝑅) ∈ 𝑆)
11020fvexi 6416 . . . . . . 7 𝑆 ∈ V
1118, 110jctir 512 . . . . . 6 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (𝑋𝑌𝑆 ∈ V))
11237mapprop 42686 . . . . . 6 (((𝑋𝐵 ∧ (1r𝑅) ∈ 𝑆) ∧ (𝑌𝐵 ∧ ((invg𝑅)‘𝐴) ∈ 𝑆) ∧ (𝑋𝑌𝑆 ∈ V)) → {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ∈ (𝑆𝑚 {𝑋, 𝑌}))
11341, 109, 27, 33, 111, 112syl221anc 1493 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ∈ (𝑆𝑚 {𝑋, 𝑌}))
114 breq1 4840 . . . . . . 7 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → (𝑓 finSupp 0 ↔ {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} finSupp 0 ))
115 oveq1 6875 . . . . . . . 8 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → (𝑓( linC ‘𝑀){𝑋, 𝑌}) = ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}))
116115eqeq1d 2804 . . . . . . 7 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → ((𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ↔ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = 𝑍))
117 fveq1 6401 . . . . . . . . 9 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → (𝑓𝑣) = ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣))
118117neeq1d 3033 . . . . . . . 8 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → ((𝑓𝑣) ≠ 0 ↔ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ))
119118rexbidv 3236 . . . . . . 7 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → (∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 ↔ ∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ))
120114, 116, 1193anbi123d 1553 . . . . . 6 (𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 ) ↔ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} finSupp 0 ∧ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 )))
121120adantl 469 . . . . 5 ((((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) ∧ 𝑓 = {⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 ) ↔ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} finSupp 0 ∧ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 )))
122113, 121rspcedv 3502 . . . 4 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → (({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} finSupp 0 ∧ ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩} ( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} ({⟨𝑋, (1r𝑅)⟩, ⟨𝑌, ((invg𝑅)‘𝐴)⟩}‘𝑣) ≠ 0 ) → ∃𝑓 ∈ (𝑆𝑚 {𝑋, 𝑌})(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 )))
12316, 49, 107, 122mp3and 1581 . . 3 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ∃𝑓 ∈ (𝑆𝑚 {𝑋, 𝑌})(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 ))
124 prelpwi 5099 . . . . . 6 ((𝑋𝐵𝑌𝐵) → {𝑋, 𝑌} ∈ 𝒫 𝐵)
1251243adant3 1155 . . . . 5 ((𝑋𝐵𝑌𝐵𝑋𝑌) → {𝑋, 𝑌} ∈ 𝒫 𝐵)
126125ad2antlr 709 . . . 4 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → {𝑋, 𝑌} ∈ 𝒫 𝐵)
12734, 46, 19, 20, 13islindeps 42804 . . . 4 ((𝑀 ∈ LMod ∧ {𝑋, 𝑌} ∈ 𝒫 𝐵) → ({𝑋, 𝑌} linDepS 𝑀 ↔ ∃𝑓 ∈ (𝑆𝑚 {𝑋, 𝑌})(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 )))
12840, 126, 127syl2anc 575 . . 3 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → ({𝑋, 𝑌} linDepS 𝑀 ↔ ∃𝑓 ∈ (𝑆𝑚 {𝑋, 𝑌})(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋, 𝑌}) = 𝑍 ∧ ∃𝑣 ∈ {𝑋, 𝑌} (𝑓𝑣) ≠ 0 )))
129123, 128mpbird 248 . 2 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝐴𝑆𝑋 = (𝐴 · 𝑌))) → {𝑋, 𝑌} linDepS 𝑀)
130129ex 399 1 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → {𝑋, 𝑌} linDepS 𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 865  w3a 1100   = wceq 1637  wcel 2155  wne 2974  wrex 3093  Vcvv 3387  𝒫 cpw 4345  {csn 4364  {cpr 4366  cop 4370   class class class wbr 4837  wf 6091  cfv 6095  (class class class)co 6868  𝑚 cmap 8086  Fincfn 8186   finSupp cfsupp 8508  Basecbs 16062  +gcplusg 16147  Scalarcsca 16150   ·𝑠 cvsca 16151  0gc0g 16299  Grpcgrp 17621  invgcminusg 17622  1rcur 18697  Ringcrg 18743  LModclmod 19061   linC clinc 42755   linDepS clindeps 42792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-rep 4957  ax-sep 4968  ax-nul 4977  ax-pow 5029  ax-pr 5090  ax-un 7173  ax-inf2 8779  ax-cnex 10271  ax-resscn 10272  ax-1cn 10273  ax-icn 10274  ax-addcl 10275  ax-addrcl 10276  ax-mulcl 10277  ax-mulrcl 10278  ax-mulcom 10279  ax-addass 10280  ax-mulass 10281  ax-distr 10282  ax-i2m1 10283  ax-1ne0 10284  ax-1rid 10285  ax-rnegex 10286  ax-rrecex 10287  ax-cnre 10288  ax-pre-lttri 10289  ax-pre-lttrn 10290  ax-pre-ltadd 10291  ax-pre-mulgt0 10292
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-nel 3078  df-ral 3097  df-rex 3098  df-reu 3099  df-rmo 3100  df-rab 3101  df-v 3389  df-sbc 3628  df-csb 3723  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-pss 3779  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-tp 4369  df-op 4371  df-uni 4624  df-int 4663  df-iun 4707  df-iin 4708  df-br 4838  df-opab 4900  df-mpt 4917  df-tr 4940  df-id 5213  df-eprel 5218  df-po 5226  df-so 5227  df-fr 5264  df-se 5265  df-we 5266  df-xp 5311  df-rel 5312  df-cnv 5313  df-co 5314  df-dm 5315  df-rn 5316  df-res 5317  df-ima 5318  df-pred 5887  df-ord 5933  df-on 5934  df-lim 5935  df-suc 5936  df-iota 6058  df-fun 6097  df-fn 6098  df-f 6099  df-f1 6100  df-fo 6101  df-f1o 6102  df-fv 6103  df-isom 6104  df-riota 6829  df-ov 6871  df-oprab 6872  df-mpt2 6873  df-of 7121  df-om 7290  df-1st 7392  df-2nd 7393  df-supp 7524  df-wrecs 7636  df-recs 7698  df-rdg 7736  df-1o 7790  df-oadd 7794  df-er 7973  df-map 8088  df-en 8187  df-dom 8188  df-sdom 8189  df-fin 8190  df-fsupp 8509  df-oi 8648  df-card 9042  df-pnf 10355  df-mnf 10356  df-xr 10357  df-ltxr 10358  df-le 10359  df-sub 10547  df-neg 10548  df-nn 11300  df-2 11358  df-n0 11554  df-xnn0 11624  df-z 11638  df-uz 11899  df-fz 12544  df-fzo 12684  df-seq 13019  df-hash 13332  df-ndx 16065  df-slot 16066  df-base 16068  df-sets 16069  df-ress 16070  df-plusg 16160  df-0g 16301  df-gsum 16302  df-mre 16445  df-mrc 16446  df-acs 16448  df-mgm 17441  df-sgrp 17483  df-mnd 17494  df-submnd 17535  df-grp 17624  df-minusg 17625  df-mulg 17740  df-cntz 17945  df-cmn 18390  df-abl 18391  df-mgp 18686  df-ur 18698  df-ring 18745  df-lmod 19063  df-linc 42757  df-lininds 42793  df-lindeps 42795
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator