Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabn0 | Structured version Visualization version GIF version |
Description: Nonempty restricted class abstraction. (Contributed by NM, 29-Aug-1999.) (Revised by BJ, 16-Jul-2021.) |
Ref | Expression |
---|---|
rabn0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq0 4319 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
2 | 1 | necon3abii 2991 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
3 | dfrex2 3171 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
4 | 2, 3 | bitr4i 277 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ≠ wne 2944 ∀wral 3065 ∃wrex 3066 {crab 3069 ∅c0 4257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2717 df-cleq 2731 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-dif 3891 df-nul 4258 |
This theorem is referenced by: class2set 5277 reusv2 5327 exss 5379 frminex 5570 weniso 7234 onminesb 7652 onminsb 7653 onminex 7661 oeeulem 8441 supval2 9223 ordtypelem3 9288 card2on 9322 tz9.12lem3 9556 rankf 9561 scott0 9653 karden 9662 cardf2 9710 cardval3 9719 cardmin2 9766 acni3 9812 kmlem3 9917 cofsmo 10034 coftr 10038 fin23lem7 10081 enfin2i 10086 axcc4 10204 axdc3lem4 10218 ac6num 10244 pwfseqlem3 10425 wuncval 10507 wunccl 10509 tskmcl 10606 infm3 11943 nnwos 12664 zsupss 12686 zmin 12693 rpnnen1lem2 12726 rpnnen1lem1 12727 rpnnen1lem3 12728 rpnnen1lem5 12730 ioo0 13113 ico0 13134 ioc0 13135 icc0 13136 bitsfzolem 16150 lcmcllem 16310 fissn0dvdsn0 16334 odzcllem 16502 vdwnn 16708 ram0 16732 ramsey 16740 sylow2blem3 19236 iscyg2 19491 pgpfac1lem5 19691 ablfaclem2 19698 ablfaclem3 19699 ablfac 19700 lspf 20245 ordtrest2lem 22363 ordthauslem 22543 1stcfb 22605 2ndcdisj 22616 ptclsg 22775 txconn 22849 txflf 23166 tsmsfbas 23288 iscmet3 24466 minveclem3b 24601 iundisj 24721 dyadmax 24771 dyadmbllem 24772 elqaalem1 25488 elqaalem3 25490 sgmnncl 26305 musum 26349 incistruhgr 27458 uvtx01vtx 27773 spancl 29707 shsval2i 29758 ococin 29779 iundisjf 30937 iundisjfi 31126 ordtrest2NEWlem 31881 esumrnmpt2 32045 esumpinfval 32050 dmsigagen 32121 ballotlemfc0 32468 ballotlemfcc 32469 ballotlemiex 32477 ballotlemsup 32480 bnj110 32847 bnj1204 33001 bnj1253 33006 connpconn 33206 iscvm 33230 wsuclem 33828 conway 34002 poimirlem28 35814 sstotbnd2 35941 igenval 36228 igenidl 36230 pmap0 37786 aks4d1p4 40094 aks4d1p5 40095 aks4d1p7 40098 aks4d1p8 40102 fsuppind 40286 pellfundre 40710 pellfundge 40711 pellfundglb 40714 dgraalem 40977 rgspncl 41001 uzwo4 42608 ioodvbdlimc1lem1 43479 fourierdlem31 43686 fourierdlem64 43718 etransclem48 43830 subsaliuncl 43904 smflimlem6 44321 smfpimcc 44352 prmdvdsfmtnof1lem1 45047 prmdvdsfmtnof 45049 |
Copyright terms: Public domain | W3C validator |