| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabn0 | Structured version Visualization version GIF version | ||
| Description: Nonempty restricted class abstraction. (Contributed by NM, 29-Aug-1999.) (Revised by BJ, 16-Jul-2021.) |
| Ref | Expression |
|---|---|
| rabn0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq0 4347 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 2 | 1 | necon3abii 2971 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| 3 | dfrex2 3056 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3402 ∅c0 4292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-dif 3914 df-nul 4293 |
| This theorem is referenced by: class2set 5305 reusv2 5353 exss 5418 frminex 5610 weniso 7311 onminesb 7749 onminsb 7750 onminex 7758 oeeulem 8542 supval2 9382 ordtypelem3 9449 card2on 9483 tz9.12lem3 9718 rankf 9723 scott0 9815 karden 9824 cardf2 9872 cardval3 9881 cardmin2 9928 acni3 9976 kmlem3 10082 cofsmo 10198 coftr 10202 fin23lem7 10245 enfin2i 10250 axcc4 10368 axdc3lem4 10382 ac6num 10408 pwfseqlem3 10589 wuncval 10671 wunccl 10673 tskmcl 10770 infm3 12118 nnwos 12850 zsupss 12872 zmin 12879 rpnnen1lem2 12912 rpnnen1lem1 12913 rpnnen1lem3 12914 rpnnen1lem5 12916 ioo0 13307 ico0 13328 ioc0 13329 icc0 13330 bitsfzolem 16380 lcmcllem 16542 fissn0dvdsn0 16566 odzcllem 16739 vdwnn 16945 ram0 16969 ramsey 16977 sylow2blem3 19528 iscyg2 19788 pgpfac1lem5 19987 ablfaclem2 19994 ablfaclem3 19995 ablfac 19996 rgspncl 20498 lspf 20856 ordtrest2lem 23066 ordthauslem 23246 1stcfb 23308 2ndcdisj 23319 ptclsg 23478 txconn 23552 txflf 23869 tsmsfbas 23991 iscmet3 25169 minveclem3b 25304 iundisj 25425 dyadmax 25475 dyadmbllem 25476 elqaalem1 26203 elqaalem3 26205 sgmnncl 27033 musum 27077 conway 27687 incistruhgr 28982 uvtx01vtx 29300 spancl 31238 shsval2i 31289 ococin 31310 iundisjf 32491 iundisjfi 32692 ordtrest2NEWlem 33885 esumrnmpt2 34031 esumpinfval 34036 dmsigagen 34107 ballotlemfc0 34457 ballotlemfcc 34458 ballotlemiex 34466 ballotlemsup 34469 bnj110 34821 bnj1204 34975 bnj1253 34980 connpconn 35195 iscvm 35219 wsuclem 35786 weiunlem2 36424 poimirlem28 37615 sstotbnd2 37741 igenval 38028 igenidl 38030 pmap0 39732 aks4d1p4 42040 aks4d1p5 42041 aks4d1p7 42044 aks4d1p8 42048 grpods 42155 unitscyglem3 42158 unitscyglem4 42159 fsuppind 42551 pellfundre 42842 pellfundge 42843 pellfundglb 42846 dgraalem 43107 uzwo4 45020 ioodvbdlimc1lem1 45902 fourierdlem31 46109 fourierdlem64 46141 etransclem48 46253 subsaliuncl 46329 smflimlem6 46747 smfpimcc 46779 prmdvdsfmtnof1lem1 47558 prmdvdsfmtnof 47560 |
| Copyright terms: Public domain | W3C validator |