![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabn0 | Structured version Visualization version GIF version |
Description: Nonempty restricted class abstraction. (Contributed by NM, 29-Aug-1999.) (Revised by BJ, 16-Jul-2021.) |
Ref | Expression |
---|---|
rabn0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq0 4394 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
2 | 1 | necon3abii 2985 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
3 | dfrex2 3071 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
4 | 2, 3 | bitr4i 278 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 {crab 3433 ∅c0 4339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-dif 3966 df-nul 4340 |
This theorem is referenced by: class2set 5361 reusv2 5409 exss 5474 frminex 5668 weniso 7374 onminesb 7813 onminsb 7814 onminex 7822 oeeulem 8638 supval2 9493 ordtypelem3 9558 card2on 9592 tz9.12lem3 9827 rankf 9832 scott0 9924 karden 9933 cardf2 9981 cardval3 9990 cardmin2 10037 acni3 10085 kmlem3 10191 cofsmo 10307 coftr 10311 fin23lem7 10354 enfin2i 10359 axcc4 10477 axdc3lem4 10491 ac6num 10517 pwfseqlem3 10698 wuncval 10780 wunccl 10782 tskmcl 10879 infm3 12225 nnwos 12955 zsupss 12977 zmin 12984 rpnnen1lem2 13017 rpnnen1lem1 13018 rpnnen1lem3 13019 rpnnen1lem5 13021 ioo0 13409 ico0 13430 ioc0 13431 icc0 13432 bitsfzolem 16468 lcmcllem 16630 fissn0dvdsn0 16654 odzcllem 16826 vdwnn 17032 ram0 17056 ramsey 17064 sylow2blem3 19655 iscyg2 19915 pgpfac1lem5 20114 ablfaclem2 20121 ablfaclem3 20122 ablfac 20123 rgspncl 20630 lspf 20990 ordtrest2lem 23227 ordthauslem 23407 1stcfb 23469 2ndcdisj 23480 ptclsg 23639 txconn 23713 txflf 24030 tsmsfbas 24152 iscmet3 25341 minveclem3b 25476 iundisj 25597 dyadmax 25647 dyadmbllem 25648 elqaalem1 26376 elqaalem3 26378 sgmnncl 27205 musum 27249 conway 27859 incistruhgr 29111 uvtx01vtx 29429 spancl 31365 shsval2i 31416 ococin 31437 iundisjf 32609 iundisjfi 32804 ordtrest2NEWlem 33883 esumrnmpt2 34049 esumpinfval 34054 dmsigagen 34125 ballotlemfc0 34474 ballotlemfcc 34475 ballotlemiex 34483 ballotlemsup 34486 bnj110 34851 bnj1204 35005 bnj1253 35010 connpconn 35220 iscvm 35244 wsuclem 35807 weiunlem2 36446 poimirlem28 37635 sstotbnd2 37761 igenval 38048 igenidl 38050 pmap0 39748 aks4d1p4 42061 aks4d1p5 42062 aks4d1p7 42065 aks4d1p8 42069 grpods 42176 unitscyglem3 42179 unitscyglem4 42180 fsuppind 42577 pellfundre 42869 pellfundge 42870 pellfundglb 42873 dgraalem 43134 uzwo4 44993 ioodvbdlimc1lem1 45887 fourierdlem31 46094 fourierdlem64 46126 etransclem48 46238 subsaliuncl 46314 smflimlem6 46732 smfpimcc 46764 prmdvdsfmtnof1lem1 47509 prmdvdsfmtnof 47511 |
Copyright terms: Public domain | W3C validator |