| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabn0 | Structured version Visualization version GIF version | ||
| Description: Nonempty restricted class abstraction. (Contributed by NM, 29-Aug-1999.) (Revised by BJ, 16-Jul-2021.) |
| Ref | Expression |
|---|---|
| rabn0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq0 4387 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 2 | 1 | necon3abii 2986 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| 3 | dfrex2 3072 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 {crab 3435 ∅c0 4332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-dif 3953 df-nul 4333 |
| This theorem is referenced by: class2set 5354 reusv2 5402 exss 5467 frminex 5663 weniso 7375 onminesb 7814 onminsb 7815 onminex 7823 oeeulem 8640 supval2 9496 ordtypelem3 9561 card2on 9595 tz9.12lem3 9830 rankf 9835 scott0 9927 karden 9936 cardf2 9984 cardval3 9993 cardmin2 10040 acni3 10088 kmlem3 10194 cofsmo 10310 coftr 10314 fin23lem7 10357 enfin2i 10362 axcc4 10480 axdc3lem4 10494 ac6num 10520 pwfseqlem3 10701 wuncval 10783 wunccl 10785 tskmcl 10882 infm3 12228 nnwos 12958 zsupss 12980 zmin 12987 rpnnen1lem2 13020 rpnnen1lem1 13021 rpnnen1lem3 13022 rpnnen1lem5 13024 ioo0 13413 ico0 13434 ioc0 13435 icc0 13436 bitsfzolem 16472 lcmcllem 16634 fissn0dvdsn0 16658 odzcllem 16831 vdwnn 17037 ram0 17061 ramsey 17069 sylow2blem3 19641 iscyg2 19901 pgpfac1lem5 20100 ablfaclem2 20107 ablfaclem3 20108 ablfac 20109 rgspncl 20614 lspf 20973 ordtrest2lem 23212 ordthauslem 23392 1stcfb 23454 2ndcdisj 23465 ptclsg 23624 txconn 23698 txflf 24015 tsmsfbas 24137 iscmet3 25328 minveclem3b 25463 iundisj 25584 dyadmax 25634 dyadmbllem 25635 elqaalem1 26362 elqaalem3 26364 sgmnncl 27191 musum 27235 conway 27845 incistruhgr 29097 uvtx01vtx 29415 spancl 31356 shsval2i 31407 ococin 31428 iundisjf 32603 iundisjfi 32799 ordtrest2NEWlem 33922 esumrnmpt2 34070 esumpinfval 34075 dmsigagen 34146 ballotlemfc0 34496 ballotlemfcc 34497 ballotlemiex 34505 ballotlemsup 34508 bnj110 34873 bnj1204 35027 bnj1253 35032 connpconn 35241 iscvm 35265 wsuclem 35827 weiunlem2 36465 poimirlem28 37656 sstotbnd2 37782 igenval 38069 igenidl 38071 pmap0 39768 aks4d1p4 42081 aks4d1p5 42082 aks4d1p7 42085 aks4d1p8 42089 grpods 42196 unitscyglem3 42199 unitscyglem4 42200 fsuppind 42605 pellfundre 42897 pellfundge 42898 pellfundglb 42901 dgraalem 43162 uzwo4 45063 ioodvbdlimc1lem1 45951 fourierdlem31 46158 fourierdlem64 46190 etransclem48 46302 subsaliuncl 46378 smflimlem6 46796 smfpimcc 46828 prmdvdsfmtnof1lem1 47576 prmdvdsfmtnof 47578 |
| Copyright terms: Public domain | W3C validator |