| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabn0 | Structured version Visualization version GIF version | ||
| Description: Nonempty restricted class abstraction. (Contributed by NM, 29-Aug-1999.) (Revised by BJ, 16-Jul-2021.) |
| Ref | Expression |
|---|---|
| rabn0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq0 4339 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 2 | 1 | necon3abii 2971 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| 3 | dfrex2 3056 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3394 ∅c0 4284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-dif 3906 df-nul 4285 |
| This theorem is referenced by: class2set 5294 reusv2 5342 exss 5406 frminex 5598 weniso 7291 onminesb 7729 onminsb 7730 onminex 7738 oeeulem 8519 supval2 9345 ordtypelem3 9412 card2on 9446 tz9.12lem3 9685 rankf 9690 scott0 9782 karden 9791 cardf2 9839 cardval3 9848 cardmin2 9895 acni3 9941 kmlem3 10047 cofsmo 10163 coftr 10167 fin23lem7 10210 enfin2i 10215 axcc4 10333 axdc3lem4 10347 ac6num 10373 pwfseqlem3 10554 wuncval 10636 wunccl 10638 tskmcl 10735 infm3 12084 nnwos 12816 zsupss 12838 zmin 12845 rpnnen1lem2 12878 rpnnen1lem1 12879 rpnnen1lem3 12880 rpnnen1lem5 12882 ioo0 13273 ico0 13294 ioc0 13295 icc0 13296 bitsfzolem 16345 lcmcllem 16507 fissn0dvdsn0 16531 odzcllem 16704 vdwnn 16910 ram0 16934 ramsey 16942 sylow2blem3 19501 iscyg2 19761 pgpfac1lem5 19960 ablfaclem2 19967 ablfaclem3 19968 ablfac 19969 rgspncl 20498 lspf 20877 ordtrest2lem 23088 ordthauslem 23268 1stcfb 23330 2ndcdisj 23341 ptclsg 23500 txconn 23574 txflf 23891 tsmsfbas 24013 iscmet3 25191 minveclem3b 25326 iundisj 25447 dyadmax 25497 dyadmbllem 25498 elqaalem1 26225 elqaalem3 26227 sgmnncl 27055 musum 27099 conway 27710 incistruhgr 29024 uvtx01vtx 29342 spancl 31280 shsval2i 31331 ococin 31352 iundisjf 32533 iundisjfi 32739 ordtrest2NEWlem 33889 esumrnmpt2 34035 esumpinfval 34040 dmsigagen 34111 ballotlemfc0 34461 ballotlemfcc 34462 ballotlemiex 34470 ballotlemsup 34473 bnj110 34825 bnj1204 34979 bnj1253 34984 connpconn 35208 iscvm 35232 wsuclem 35799 weiunlem2 36437 poimirlem28 37628 sstotbnd2 37754 igenval 38041 igenidl 38043 pmap0 39744 aks4d1p4 42052 aks4d1p5 42053 aks4d1p7 42056 aks4d1p8 42060 grpods 42167 unitscyglem3 42170 unitscyglem4 42171 fsuppind 42563 pellfundre 42854 pellfundge 42855 pellfundglb 42858 dgraalem 43118 uzwo4 45031 ioodvbdlimc1lem1 45912 fourierdlem31 46119 fourierdlem64 46151 etransclem48 46263 subsaliuncl 46339 smflimlem6 46757 smfpimcc 46789 prmdvdsfmtnof1lem1 47568 prmdvdsfmtnof 47570 |
| Copyright terms: Public domain | W3C validator |