| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabn0 | Structured version Visualization version GIF version | ||
| Description: Nonempty restricted class abstraction. (Contributed by NM, 29-Aug-1999.) (Revised by BJ, 16-Jul-2021.) |
| Ref | Expression |
|---|---|
| rabn0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq0 4351 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 2 | 1 | necon3abii 2971 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| 3 | dfrex2 3056 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3405 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-dif 3917 df-nul 4297 |
| This theorem is referenced by: class2set 5310 reusv2 5358 exss 5423 frminex 5617 weniso 7329 onminesb 7769 onminsb 7770 onminex 7778 oeeulem 8565 supval2 9406 ordtypelem3 9473 card2on 9507 tz9.12lem3 9742 rankf 9747 scott0 9839 karden 9848 cardf2 9896 cardval3 9905 cardmin2 9952 acni3 10000 kmlem3 10106 cofsmo 10222 coftr 10226 fin23lem7 10269 enfin2i 10274 axcc4 10392 axdc3lem4 10406 ac6num 10432 pwfseqlem3 10613 wuncval 10695 wunccl 10697 tskmcl 10794 infm3 12142 nnwos 12874 zsupss 12896 zmin 12903 rpnnen1lem2 12936 rpnnen1lem1 12937 rpnnen1lem3 12938 rpnnen1lem5 12940 ioo0 13331 ico0 13352 ioc0 13353 icc0 13354 bitsfzolem 16404 lcmcllem 16566 fissn0dvdsn0 16590 odzcllem 16763 vdwnn 16969 ram0 16993 ramsey 17001 sylow2blem3 19552 iscyg2 19812 pgpfac1lem5 20011 ablfaclem2 20018 ablfaclem3 20019 ablfac 20020 rgspncl 20522 lspf 20880 ordtrest2lem 23090 ordthauslem 23270 1stcfb 23332 2ndcdisj 23343 ptclsg 23502 txconn 23576 txflf 23893 tsmsfbas 24015 iscmet3 25193 minveclem3b 25328 iundisj 25449 dyadmax 25499 dyadmbllem 25500 elqaalem1 26227 elqaalem3 26229 sgmnncl 27057 musum 27101 conway 27711 incistruhgr 29006 uvtx01vtx 29324 spancl 31265 shsval2i 31316 ococin 31337 iundisjf 32518 iundisjfi 32719 ordtrest2NEWlem 33912 esumrnmpt2 34058 esumpinfval 34063 dmsigagen 34134 ballotlemfc0 34484 ballotlemfcc 34485 ballotlemiex 34493 ballotlemsup 34496 bnj110 34848 bnj1204 35002 bnj1253 35007 connpconn 35222 iscvm 35246 wsuclem 35813 weiunlem2 36451 poimirlem28 37642 sstotbnd2 37768 igenval 38055 igenidl 38057 pmap0 39759 aks4d1p4 42067 aks4d1p5 42068 aks4d1p7 42071 aks4d1p8 42075 grpods 42182 unitscyglem3 42185 unitscyglem4 42186 fsuppind 42578 pellfundre 42869 pellfundge 42870 pellfundglb 42873 dgraalem 43134 uzwo4 45047 ioodvbdlimc1lem1 45929 fourierdlem31 46136 fourierdlem64 46168 etransclem48 46280 subsaliuncl 46356 smflimlem6 46774 smfpimcc 46806 prmdvdsfmtnof1lem1 47585 prmdvdsfmtnof 47587 |
| Copyright terms: Public domain | W3C validator |