| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabn0 | Structured version Visualization version GIF version | ||
| Description: Nonempty restricted class abstraction. (Contributed by NM, 29-Aug-1999.) (Revised by BJ, 16-Jul-2021.) |
| Ref | Expression |
|---|---|
| rabn0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq0 4368 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 2 | 1 | necon3abii 2979 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| 3 | dfrex2 3064 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 {crab 3420 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-dif 3934 df-nul 4314 |
| This theorem is referenced by: class2set 5330 reusv2 5378 exss 5443 frminex 5638 weniso 7352 onminesb 7792 onminsb 7793 onminex 7801 oeeulem 8618 supval2 9472 ordtypelem3 9539 card2on 9573 tz9.12lem3 9808 rankf 9813 scott0 9905 karden 9914 cardf2 9962 cardval3 9971 cardmin2 10018 acni3 10066 kmlem3 10172 cofsmo 10288 coftr 10292 fin23lem7 10335 enfin2i 10340 axcc4 10458 axdc3lem4 10472 ac6num 10498 pwfseqlem3 10679 wuncval 10761 wunccl 10763 tskmcl 10860 infm3 12206 nnwos 12936 zsupss 12958 zmin 12965 rpnnen1lem2 12998 rpnnen1lem1 12999 rpnnen1lem3 13000 rpnnen1lem5 13002 ioo0 13392 ico0 13413 ioc0 13414 icc0 13415 bitsfzolem 16458 lcmcllem 16620 fissn0dvdsn0 16644 odzcllem 16817 vdwnn 17023 ram0 17047 ramsey 17055 sylow2blem3 19608 iscyg2 19868 pgpfac1lem5 20067 ablfaclem2 20074 ablfaclem3 20075 ablfac 20076 rgspncl 20578 lspf 20936 ordtrest2lem 23146 ordthauslem 23326 1stcfb 23388 2ndcdisj 23399 ptclsg 23558 txconn 23632 txflf 23949 tsmsfbas 24071 iscmet3 25250 minveclem3b 25385 iundisj 25506 dyadmax 25556 dyadmbllem 25557 elqaalem1 26284 elqaalem3 26286 sgmnncl 27114 musum 27158 conway 27768 incistruhgr 29063 uvtx01vtx 29381 spancl 31322 shsval2i 31373 ococin 31394 iundisjf 32575 iundisjfi 32778 ordtrest2NEWlem 33958 esumrnmpt2 34104 esumpinfval 34109 dmsigagen 34180 ballotlemfc0 34530 ballotlemfcc 34531 ballotlemiex 34539 ballotlemsup 34542 bnj110 34894 bnj1204 35048 bnj1253 35053 connpconn 35262 iscvm 35286 wsuclem 35848 weiunlem2 36486 poimirlem28 37677 sstotbnd2 37803 igenval 38090 igenidl 38092 pmap0 39789 aks4d1p4 42097 aks4d1p5 42098 aks4d1p7 42101 aks4d1p8 42105 grpods 42212 unitscyglem3 42215 unitscyglem4 42216 fsuppind 42588 pellfundre 42879 pellfundge 42880 pellfundglb 42883 dgraalem 43144 uzwo4 45057 ioodvbdlimc1lem1 45940 fourierdlem31 46147 fourierdlem64 46179 etransclem48 46291 subsaliuncl 46367 smflimlem6 46785 smfpimcc 46817 prmdvdsfmtnof1lem1 47578 prmdvdsfmtnof 47580 |
| Copyright terms: Public domain | W3C validator |