![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabn0 | Structured version Visualization version GIF version |
Description: Nonempty restricted class abstraction. (Contributed by NM, 29-Aug-1999.) (Revised by BJ, 16-Jul-2021.) |
Ref | Expression |
---|---|
rabn0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq0 4411 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
2 | 1 | necon3abii 2993 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
3 | dfrex2 3079 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
4 | 2, 3 | bitr4i 278 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 {crab 3443 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-dif 3979 df-nul 4353 |
This theorem is referenced by: class2set 5373 reusv2 5421 exss 5483 frminex 5679 weniso 7390 onminesb 7829 onminsb 7830 onminex 7838 oeeulem 8657 supval2 9524 ordtypelem3 9589 card2on 9623 tz9.12lem3 9858 rankf 9863 scott0 9955 karden 9964 cardf2 10012 cardval3 10021 cardmin2 10068 acni3 10116 kmlem3 10222 cofsmo 10338 coftr 10342 fin23lem7 10385 enfin2i 10390 axcc4 10508 axdc3lem4 10522 ac6num 10548 pwfseqlem3 10729 wuncval 10811 wunccl 10813 tskmcl 10910 infm3 12254 nnwos 12980 zsupss 13002 zmin 13009 rpnnen1lem2 13042 rpnnen1lem1 13043 rpnnen1lem3 13044 rpnnen1lem5 13046 ioo0 13432 ico0 13453 ioc0 13454 icc0 13455 bitsfzolem 16480 lcmcllem 16643 fissn0dvdsn0 16667 odzcllem 16839 vdwnn 17045 ram0 17069 ramsey 17077 sylow2blem3 19664 iscyg2 19924 pgpfac1lem5 20123 ablfaclem2 20130 ablfaclem3 20131 ablfac 20132 lspf 20995 ordtrest2lem 23232 ordthauslem 23412 1stcfb 23474 2ndcdisj 23485 ptclsg 23644 txconn 23718 txflf 24035 tsmsfbas 24157 iscmet3 25346 minveclem3b 25481 iundisj 25602 dyadmax 25652 dyadmbllem 25653 elqaalem1 26379 elqaalem3 26381 sgmnncl 27208 musum 27252 conway 27862 incistruhgr 29114 uvtx01vtx 29432 spancl 31368 shsval2i 31419 ococin 31440 iundisjf 32611 iundisjfi 32801 ordtrest2NEWlem 33868 esumrnmpt2 34032 esumpinfval 34037 dmsigagen 34108 ballotlemfc0 34457 ballotlemfcc 34458 ballotlemiex 34466 ballotlemsup 34469 bnj110 34834 bnj1204 34988 bnj1253 34993 connpconn 35203 iscvm 35227 wsuclem 35789 weiunlem2 36429 poimirlem28 37608 sstotbnd2 37734 igenval 38021 igenidl 38023 pmap0 39722 aks4d1p4 42036 aks4d1p5 42037 aks4d1p7 42040 aks4d1p8 42044 grpods 42151 unitscyglem3 42154 unitscyglem4 42155 fsuppind 42545 pellfundre 42837 pellfundge 42838 pellfundglb 42841 dgraalem 43102 rgspncl 43126 uzwo4 44955 ioodvbdlimc1lem1 45852 fourierdlem31 46059 fourierdlem64 46091 etransclem48 46203 subsaliuncl 46279 smflimlem6 46697 smfpimcc 46729 prmdvdsfmtnof1lem1 47458 prmdvdsfmtnof 47460 |
Copyright terms: Public domain | W3C validator |