![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabn0 | Structured version Visualization version GIF version |
Description: Nonempty restricted class abstraction. (Contributed by NM, 29-Aug-1999.) (Revised by BJ, 16-Jul-2021.) |
Ref | Expression |
---|---|
rabn0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq0 4385 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
2 | 1 | necon3abii 2988 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
3 | dfrex2 3074 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
4 | 2, 3 | bitr4i 278 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 {crab 3433 ∅c0 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-dif 3952 df-nul 4324 |
This theorem is referenced by: class2set 5354 reusv2 5402 exss 5464 frminex 5657 weniso 7351 onminesb 7781 onminsb 7782 onminex 7790 oeeulem 8601 supval2 9450 ordtypelem3 9515 card2on 9549 tz9.12lem3 9784 rankf 9789 scott0 9881 karden 9890 cardf2 9938 cardval3 9947 cardmin2 9994 acni3 10042 kmlem3 10147 cofsmo 10264 coftr 10268 fin23lem7 10311 enfin2i 10316 axcc4 10434 axdc3lem4 10448 ac6num 10474 pwfseqlem3 10655 wuncval 10737 wunccl 10739 tskmcl 10836 infm3 12173 nnwos 12899 zsupss 12921 zmin 12928 rpnnen1lem2 12961 rpnnen1lem1 12962 rpnnen1lem3 12963 rpnnen1lem5 12965 ioo0 13349 ico0 13370 ioc0 13371 icc0 13372 bitsfzolem 16375 lcmcllem 16533 fissn0dvdsn0 16557 odzcllem 16725 vdwnn 16931 ram0 16955 ramsey 16963 sylow2blem3 19490 iscyg2 19750 pgpfac1lem5 19949 ablfaclem2 19956 ablfaclem3 19957 ablfac 19958 lspf 20585 ordtrest2lem 22707 ordthauslem 22887 1stcfb 22949 2ndcdisj 22960 ptclsg 23119 txconn 23193 txflf 23510 tsmsfbas 23632 iscmet3 24810 minveclem3b 24945 iundisj 25065 dyadmax 25115 dyadmbllem 25116 elqaalem1 25832 elqaalem3 25834 sgmnncl 26651 musum 26695 conway 27300 incistruhgr 28339 uvtx01vtx 28654 spancl 30589 shsval2i 30640 ococin 30661 iundisjf 31820 iundisjfi 32007 ordtrest2NEWlem 32902 esumrnmpt2 33066 esumpinfval 33071 dmsigagen 33142 ballotlemfc0 33491 ballotlemfcc 33492 ballotlemiex 33500 ballotlemsup 33503 bnj110 33869 bnj1204 34023 bnj1253 34028 connpconn 34226 iscvm 34250 wsuclem 34797 poimirlem28 36516 sstotbnd2 36642 igenval 36929 igenidl 36931 pmap0 38636 aks4d1p4 40944 aks4d1p5 40945 aks4d1p7 40948 aks4d1p8 40952 fsuppind 41162 pellfundre 41619 pellfundge 41620 pellfundglb 41623 dgraalem 41887 rgspncl 41911 uzwo4 43740 ioodvbdlimc1lem1 44647 fourierdlem31 44854 fourierdlem64 44886 etransclem48 44998 subsaliuncl 45074 smflimlem6 45492 smfpimcc 45524 prmdvdsfmtnof1lem1 46252 prmdvdsfmtnof 46254 |
Copyright terms: Public domain | W3C validator |