| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabn0 | Structured version Visualization version GIF version | ||
| Description: Nonempty restricted class abstraction. (Contributed by NM, 29-Aug-1999.) (Revised by BJ, 16-Jul-2021.) |
| Ref | Expression |
|---|---|
| rabn0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq0 4335 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 2 | 1 | necon3abii 2974 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| 3 | dfrex2 3059 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 {crab 3395 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-dif 3900 df-nul 4281 |
| This theorem is referenced by: class2set 5291 reusv2 5339 exss 5401 frminex 5593 weniso 7288 onminesb 7726 onminsb 7727 onminex 7735 oeeulem 8516 supval2 9339 ordtypelem3 9406 card2on 9440 tz9.12lem3 9682 rankf 9687 scott0 9779 karden 9788 cardf2 9836 cardval3 9845 cardmin2 9892 acni3 9938 kmlem3 10044 cofsmo 10160 coftr 10164 fin23lem7 10207 enfin2i 10212 axcc4 10330 axdc3lem4 10344 ac6num 10370 pwfseqlem3 10551 wuncval 10633 wunccl 10635 tskmcl 10732 infm3 12081 nnwos 12813 zsupss 12835 zmin 12842 rpnnen1lem2 12875 rpnnen1lem1 12876 rpnnen1lem3 12877 rpnnen1lem5 12879 ioo0 13270 ico0 13291 ioc0 13292 icc0 13293 bitsfzolem 16345 lcmcllem 16507 fissn0dvdsn0 16531 odzcllem 16704 vdwnn 16910 ram0 16934 ramsey 16942 sylow2blem3 19534 iscyg2 19794 pgpfac1lem5 19993 ablfaclem2 20000 ablfaclem3 20001 ablfac 20002 rgspncl 20528 lspf 20907 ordtrest2lem 23118 ordthauslem 23298 1stcfb 23360 2ndcdisj 23371 ptclsg 23530 txconn 23604 txflf 23921 tsmsfbas 24043 iscmet3 25220 minveclem3b 25355 iundisj 25476 dyadmax 25526 dyadmbllem 25527 elqaalem1 26254 elqaalem3 26256 sgmnncl 27084 musum 27128 conway 27740 incistruhgr 29057 uvtx01vtx 29375 spancl 31316 shsval2i 31367 ococin 31388 iundisjf 32569 iundisjfi 32778 ordtrest2NEWlem 33935 esumrnmpt2 34081 esumpinfval 34086 dmsigagen 34157 ballotlemfc0 34506 ballotlemfcc 34507 ballotlemiex 34515 ballotlemsup 34518 bnj110 34870 bnj1204 35024 bnj1253 35029 connpconn 35279 iscvm 35303 wsuclem 35867 weiunlem2 36505 poimirlem28 37696 sstotbnd2 37822 igenval 38109 igenidl 38111 pmap0 39812 aks4d1p4 42120 aks4d1p5 42121 aks4d1p7 42124 aks4d1p8 42128 grpods 42235 unitscyglem3 42238 unitscyglem4 42239 fsuppind 42631 pellfundre 42922 pellfundge 42923 pellfundglb 42926 dgraalem 43186 uzwo4 45098 ioodvbdlimc1lem1 45977 fourierdlem31 46184 fourierdlem64 46216 etransclem48 46328 subsaliuncl 46404 smflimlem6 46822 smfpimcc 46854 prmdvdsfmtnof1lem1 47623 prmdvdsfmtnof 47625 |
| Copyright terms: Public domain | W3C validator |