Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabn0 | Structured version Visualization version GIF version |
Description: Nonempty restricted class abstraction. (Contributed by NM, 29-Aug-1999.) (Revised by BJ, 16-Jul-2021.) |
Ref | Expression |
---|---|
rabn0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq0 4315 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
2 | 1 | necon3abii 2989 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
3 | dfrex2 3166 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
4 | 2, 3 | bitr4i 277 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 {crab 3067 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-dif 3886 df-nul 4254 |
This theorem is referenced by: class2set 5271 reusv2 5321 exss 5372 frminex 5560 weniso 7205 onminesb 7620 onminsb 7621 onminex 7629 oeeulem 8394 supval2 9144 ordtypelem3 9209 card2on 9243 tz9.12lem3 9478 rankf 9483 scott0 9575 karden 9584 cardf2 9632 cardval3 9641 cardmin2 9688 acni3 9734 kmlem3 9839 cofsmo 9956 coftr 9960 fin23lem7 10003 enfin2i 10008 axcc4 10126 axdc3lem4 10140 ac6num 10166 pwfseqlem3 10347 wuncval 10429 wunccl 10431 tskmcl 10528 infm3 11864 nnwos 12584 zsupss 12606 zmin 12613 rpnnen1lem2 12646 rpnnen1lem1 12647 rpnnen1lem3 12648 rpnnen1lem5 12650 ioo0 13033 ico0 13054 ioc0 13055 icc0 13056 bitsfzolem 16069 lcmcllem 16229 fissn0dvdsn0 16253 odzcllem 16421 vdwnn 16627 ram0 16651 ramsey 16659 sylow2blem3 19142 iscyg2 19397 pgpfac1lem5 19597 ablfaclem2 19604 ablfaclem3 19605 ablfac 19606 lspf 20151 ordtrest2lem 22262 ordthauslem 22442 1stcfb 22504 2ndcdisj 22515 ptclsg 22674 txconn 22748 txflf 23065 tsmsfbas 23187 iscmet3 24362 minveclem3b 24497 iundisj 24617 dyadmax 24667 dyadmbllem 24668 elqaalem1 25384 elqaalem3 25386 sgmnncl 26201 musum 26245 incistruhgr 27352 uvtx01vtx 27667 spancl 29599 shsval2i 29650 ococin 29671 iundisjf 30829 iundisjfi 31019 ordtrest2NEWlem 31774 esumrnmpt2 31936 esumpinfval 31941 dmsigagen 32012 ballotlemfc0 32359 ballotlemfcc 32360 ballotlemiex 32368 ballotlemsup 32371 bnj110 32738 bnj1204 32892 bnj1253 32897 connpconn 33097 iscvm 33121 wsuclem 33746 conway 33920 poimirlem28 35732 sstotbnd2 35859 igenval 36146 igenidl 36148 pmap0 37706 aks4d1p4 40015 aks4d1p5 40016 aks4d1p7 40019 aks4d1p8 40023 fsuppind 40202 pellfundre 40619 pellfundge 40620 pellfundglb 40623 dgraalem 40886 rgspncl 40910 uzwo4 42490 ioodvbdlimc1lem1 43362 fourierdlem31 43569 fourierdlem64 43601 etransclem48 43713 subsaliuncl 43787 smflimlem6 44198 smfpimcc 44228 prmdvdsfmtnof1lem1 44924 prmdvdsfmtnof 44926 |
Copyright terms: Public domain | W3C validator |