Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gonanegoal Structured version   Visualization version   GIF version

Theorem gonanegoal 34967
Description: The Godel-set for the Sheffer stroke NAND is not equal to the Godel-set of universal quantification. (Contributed by AV, 21-Oct-2023.)
Assertion
Ref Expression
gonanegoal (𝑎𝑔𝑏) ≠ ∀𝑔𝑖𝑢

Proof of Theorem gonanegoal
StepHypRef Expression
1 1one2o 8671 . . . 4 1o ≠ 2o
21neii 2938 . . 3 ¬ 1o = 2o
32intnanr 486 . 2 ¬ (1o = 2o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑖, 𝑢⟩)
4 gonafv 34965 . . . . . 6 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
54el2v 3479 . . . . 5 (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩
6 df-goal 34957 . . . . 5 𝑔𝑖𝑢 = ⟨2o, ⟨𝑖, 𝑢⟩⟩
75, 6eqeq12i 2745 . . . 4 ((𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 ↔ ⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩)
8 1oex 8501 . . . . 5 1o ∈ V
9 opex 5468 . . . . 5 𝑎, 𝑏⟩ ∈ V
108, 9opth 5480 . . . 4 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩ ↔ (1o = 2o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑖, 𝑢⟩))
117, 10bitri 274 . . 3 ((𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 ↔ (1o = 2o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑖, 𝑢⟩))
1211necon3abii 2983 . 2 ((𝑎𝑔𝑏) ≠ ∀𝑔𝑖𝑢 ↔ ¬ (1o = 2o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑖, 𝑢⟩))
133, 12mpbir 230 1 (𝑎𝑔𝑏) ≠ ∀𝑔𝑖𝑢
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 394   = wceq 1533  wne 2936  Vcvv 3471  cop 4636  (class class class)co 7424  1oc1o 8484  2oc2o 8485  𝑔cgna 34949  𝑔cgol 34950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fv 6559  df-ov 7427  df-om 7875  df-1o 8491  df-2o 8492  df-gona 34956  df-goal 34957
This theorem is referenced by:  gonarlem  35009  gonar  35010  goalrlem  35011  goalr  35012  fmlasucdisj  35014
  Copyright terms: Public domain W3C validator