Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gonanegoal Structured version   Visualization version   GIF version

Theorem gonanegoal 35374
Description: The Godel-set for the Sheffer stroke NAND is not equal to the Godel-set of universal quantification. (Contributed by AV, 21-Oct-2023.)
Assertion
Ref Expression
gonanegoal (𝑎𝑔𝑏) ≠ ∀𝑔𝑖𝑢

Proof of Theorem gonanegoal
StepHypRef Expression
1 1one2o 8658 . . . 4 1o ≠ 2o
21neii 2934 . . 3 ¬ 1o = 2o
32intnanr 487 . 2 ¬ (1o = 2o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑖, 𝑢⟩)
4 gonafv 35372 . . . . . 6 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
54el2v 3466 . . . . 5 (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩
6 df-goal 35364 . . . . 5 𝑔𝑖𝑢 = ⟨2o, ⟨𝑖, 𝑢⟩⟩
75, 6eqeq12i 2753 . . . 4 ((𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 ↔ ⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩)
8 1oex 8490 . . . . 5 1o ∈ V
9 opex 5439 . . . . 5 𝑎, 𝑏⟩ ∈ V
108, 9opth 5451 . . . 4 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩ ↔ (1o = 2o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑖, 𝑢⟩))
117, 10bitri 275 . . 3 ((𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 ↔ (1o = 2o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑖, 𝑢⟩))
1211necon3abii 2978 . 2 ((𝑎𝑔𝑏) ≠ ∀𝑔𝑖𝑢 ↔ ¬ (1o = 2o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑖, 𝑢⟩))
133, 12mpbir 231 1 (𝑎𝑔𝑏) ≠ ∀𝑔𝑖𝑢
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wne 2932  Vcvv 3459  cop 4607  (class class class)co 7405  1oc1o 8473  2oc2o 8474  𝑔cgna 35356  𝑔cgol 35357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-om 7862  df-1o 8480  df-2o 8481  df-gona 35363  df-goal 35364
This theorem is referenced by:  gonarlem  35416  gonar  35417  goalrlem  35418  goalr  35419  fmlasucdisj  35421
  Copyright terms: Public domain W3C validator