![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gonanegoal | Structured version Visualization version GIF version |
Description: The Godel-set for the Sheffer stroke NAND is not equal to the Godel-set of universal quantification. (Contributed by AV, 21-Oct-2023.) |
Ref | Expression |
---|---|
gonanegoal | ⊢ (𝑎⊼𝑔𝑏) ≠ ∀𝑔𝑖𝑢 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1one2o 8671 | . . . 4 ⊢ 1o ≠ 2o | |
2 | 1 | neii 2938 | . . 3 ⊢ ¬ 1o = 2o |
3 | 2 | intnanr 486 | . 2 ⊢ ¬ (1o = 2o ∧ 〈𝑎, 𝑏〉 = 〈𝑖, 𝑢〉) |
4 | gonafv 34965 | . . . . . 6 ⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎⊼𝑔𝑏) = 〈1o, 〈𝑎, 𝑏〉〉) | |
5 | 4 | el2v 3479 | . . . . 5 ⊢ (𝑎⊼𝑔𝑏) = 〈1o, 〈𝑎, 𝑏〉〉 |
6 | df-goal 34957 | . . . . 5 ⊢ ∀𝑔𝑖𝑢 = 〈2o, 〈𝑖, 𝑢〉〉 | |
7 | 5, 6 | eqeq12i 2745 | . . . 4 ⊢ ((𝑎⊼𝑔𝑏) = ∀𝑔𝑖𝑢 ↔ 〈1o, 〈𝑎, 𝑏〉〉 = 〈2o, 〈𝑖, 𝑢〉〉) |
8 | 1oex 8501 | . . . . 5 ⊢ 1o ∈ V | |
9 | opex 5468 | . . . . 5 ⊢ 〈𝑎, 𝑏〉 ∈ V | |
10 | 8, 9 | opth 5480 | . . . 4 ⊢ (〈1o, 〈𝑎, 𝑏〉〉 = 〈2o, 〈𝑖, 𝑢〉〉 ↔ (1o = 2o ∧ 〈𝑎, 𝑏〉 = 〈𝑖, 𝑢〉)) |
11 | 7, 10 | bitri 274 | . . 3 ⊢ ((𝑎⊼𝑔𝑏) = ∀𝑔𝑖𝑢 ↔ (1o = 2o ∧ 〈𝑎, 𝑏〉 = 〈𝑖, 𝑢〉)) |
12 | 11 | necon3abii 2983 | . 2 ⊢ ((𝑎⊼𝑔𝑏) ≠ ∀𝑔𝑖𝑢 ↔ ¬ (1o = 2o ∧ 〈𝑎, 𝑏〉 = 〈𝑖, 𝑢〉)) |
13 | 3, 12 | mpbir 230 | 1 ⊢ (𝑎⊼𝑔𝑏) ≠ ∀𝑔𝑖𝑢 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 394 = wceq 1533 ≠ wne 2936 Vcvv 3471 〈cop 4636 (class class class)co 7424 1oc1o 8484 2oc2o 8485 ⊼𝑔cgna 34949 ∀𝑔cgol 34950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fv 6559 df-ov 7427 df-om 7875 df-1o 8491 df-2o 8492 df-gona 34956 df-goal 34957 |
This theorem is referenced by: gonarlem 35009 gonar 35010 goalrlem 35011 goalr 35012 fmlasucdisj 35014 |
Copyright terms: Public domain | W3C validator |