| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gonanegoal | Structured version Visualization version GIF version | ||
| Description: The Godel-set for the Sheffer stroke NAND is not equal to the Godel-set of universal quantification. (Contributed by AV, 21-Oct-2023.) |
| Ref | Expression |
|---|---|
| gonanegoal | ⊢ (𝑎⊼𝑔𝑏) ≠ ∀𝑔𝑖𝑢 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1one2o 8610 | . . . 4 ⊢ 1o ≠ 2o | |
| 2 | 1 | neii 2927 | . . 3 ⊢ ¬ 1o = 2o |
| 3 | 2 | intnanr 487 | . 2 ⊢ ¬ (1o = 2o ∧ 〈𝑎, 𝑏〉 = 〈𝑖, 𝑢〉) |
| 4 | gonafv 35337 | . . . . . 6 ⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎⊼𝑔𝑏) = 〈1o, 〈𝑎, 𝑏〉〉) | |
| 5 | 4 | el2v 3454 | . . . . 5 ⊢ (𝑎⊼𝑔𝑏) = 〈1o, 〈𝑎, 𝑏〉〉 |
| 6 | df-goal 35329 | . . . . 5 ⊢ ∀𝑔𝑖𝑢 = 〈2o, 〈𝑖, 𝑢〉〉 | |
| 7 | 5, 6 | eqeq12i 2747 | . . . 4 ⊢ ((𝑎⊼𝑔𝑏) = ∀𝑔𝑖𝑢 ↔ 〈1o, 〈𝑎, 𝑏〉〉 = 〈2o, 〈𝑖, 𝑢〉〉) |
| 8 | 1oex 8444 | . . . . 5 ⊢ 1o ∈ V | |
| 9 | opex 5424 | . . . . 5 ⊢ 〈𝑎, 𝑏〉 ∈ V | |
| 10 | 8, 9 | opth 5436 | . . . 4 ⊢ (〈1o, 〈𝑎, 𝑏〉〉 = 〈2o, 〈𝑖, 𝑢〉〉 ↔ (1o = 2o ∧ 〈𝑎, 𝑏〉 = 〈𝑖, 𝑢〉)) |
| 11 | 7, 10 | bitri 275 | . . 3 ⊢ ((𝑎⊼𝑔𝑏) = ∀𝑔𝑖𝑢 ↔ (1o = 2o ∧ 〈𝑎, 𝑏〉 = 〈𝑖, 𝑢〉)) |
| 12 | 11 | necon3abii 2971 | . 2 ⊢ ((𝑎⊼𝑔𝑏) ≠ ∀𝑔𝑖𝑢 ↔ ¬ (1o = 2o ∧ 〈𝑎, 𝑏〉 = 〈𝑖, 𝑢〉)) |
| 13 | 3, 12 | mpbir 231 | 1 ⊢ (𝑎⊼𝑔𝑏) ≠ ∀𝑔𝑖𝑢 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ≠ wne 2925 Vcvv 3447 〈cop 4595 (class class class)co 7387 1oc1o 8427 2oc2o 8428 ⊼𝑔cgna 35321 ∀𝑔cgol 35322 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-om 7843 df-1o 8434 df-2o 8435 df-gona 35328 df-goal 35329 |
| This theorem is referenced by: gonarlem 35381 gonar 35382 goalrlem 35383 goalr 35384 fmlasucdisj 35386 |
| Copyright terms: Public domain | W3C validator |