![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gonanegoal | Structured version Visualization version GIF version |
Description: The Godel-set for the Sheffer stroke NAND is not equal to the Godel-set of universal quantification. (Contributed by AV, 21-Oct-2023.) |
Ref | Expression |
---|---|
gonanegoal | ⊢ (𝑎⊼𝑔𝑏) ≠ ∀𝑔𝑖𝑢 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1one2o 8647 | . . . 4 ⊢ 1o ≠ 2o | |
2 | 1 | neii 2942 | . . 3 ⊢ ¬ 1o = 2o |
3 | 2 | intnanr 488 | . 2 ⊢ ¬ (1o = 2o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑖, 𝑢⟩) |
4 | gonafv 34410 | . . . . . 6 ⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎⊼𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩) | |
5 | 4 | el2v 3482 | . . . . 5 ⊢ (𝑎⊼𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩ |
6 | df-goal 34402 | . . . . 5 ⊢ ∀𝑔𝑖𝑢 = ⟨2o, ⟨𝑖, 𝑢⟩⟩ | |
7 | 5, 6 | eqeq12i 2750 | . . . 4 ⊢ ((𝑎⊼𝑔𝑏) = ∀𝑔𝑖𝑢 ↔ ⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩) |
8 | 1oex 8478 | . . . . 5 ⊢ 1o ∈ V | |
9 | opex 5464 | . . . . 5 ⊢ ⟨𝑎, 𝑏⟩ ∈ V | |
10 | 8, 9 | opth 5476 | . . . 4 ⊢ (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩ ↔ (1o = 2o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑖, 𝑢⟩)) |
11 | 7, 10 | bitri 274 | . . 3 ⊢ ((𝑎⊼𝑔𝑏) = ∀𝑔𝑖𝑢 ↔ (1o = 2o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑖, 𝑢⟩)) |
12 | 11 | necon3abii 2987 | . 2 ⊢ ((𝑎⊼𝑔𝑏) ≠ ∀𝑔𝑖𝑢 ↔ ¬ (1o = 2o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑖, 𝑢⟩)) |
13 | 3, 12 | mpbir 230 | 1 ⊢ (𝑎⊼𝑔𝑏) ≠ ∀𝑔𝑖𝑢 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1541 ≠ wne 2940 Vcvv 3474 ⟨cop 4634 (class class class)co 7411 1oc1o 8461 2oc2o 8462 ⊼𝑔cgna 34394 ∀𝑔cgol 34395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7414 df-om 7858 df-1o 8468 df-2o 8469 df-gona 34401 df-goal 34402 |
This theorem is referenced by: gonarlem 34454 gonar 34455 goalrlem 34456 goalr 34457 fmlasucdisj 34459 |
Copyright terms: Public domain | W3C validator |