Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > gonanegoal | Structured version Visualization version GIF version |
Description: The Godel-set for the Sheffer stroke NAND is not equal to the Godel-set of universal quantification. (Contributed by AV, 21-Oct-2023.) |
Ref | Expression |
---|---|
gonanegoal | ⊢ (𝑎⊼𝑔𝑏) ≠ ∀𝑔𝑖𝑢 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1one2o 8436 | . . . 4 ⊢ 1o ≠ 2o | |
2 | 1 | neii 2944 | . . 3 ⊢ ¬ 1o = 2o |
3 | 2 | intnanr 487 | . 2 ⊢ ¬ (1o = 2o ∧ 〈𝑎, 𝑏〉 = 〈𝑖, 𝑢〉) |
4 | gonafv 33212 | . . . . . 6 ⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎⊼𝑔𝑏) = 〈1o, 〈𝑎, 𝑏〉〉) | |
5 | 4 | el2v 3430 | . . . . 5 ⊢ (𝑎⊼𝑔𝑏) = 〈1o, 〈𝑎, 𝑏〉〉 |
6 | df-goal 33204 | . . . . 5 ⊢ ∀𝑔𝑖𝑢 = 〈2o, 〈𝑖, 𝑢〉〉 | |
7 | 5, 6 | eqeq12i 2756 | . . . 4 ⊢ ((𝑎⊼𝑔𝑏) = ∀𝑔𝑖𝑢 ↔ 〈1o, 〈𝑎, 𝑏〉〉 = 〈2o, 〈𝑖, 𝑢〉〉) |
8 | 1oex 8280 | . . . . 5 ⊢ 1o ∈ V | |
9 | opex 5373 | . . . . 5 ⊢ 〈𝑎, 𝑏〉 ∈ V | |
10 | 8, 9 | opth 5385 | . . . 4 ⊢ (〈1o, 〈𝑎, 𝑏〉〉 = 〈2o, 〈𝑖, 𝑢〉〉 ↔ (1o = 2o ∧ 〈𝑎, 𝑏〉 = 〈𝑖, 𝑢〉)) |
11 | 7, 10 | bitri 274 | . . 3 ⊢ ((𝑎⊼𝑔𝑏) = ∀𝑔𝑖𝑢 ↔ (1o = 2o ∧ 〈𝑎, 𝑏〉 = 〈𝑖, 𝑢〉)) |
12 | 11 | necon3abii 2989 | . 2 ⊢ ((𝑎⊼𝑔𝑏) ≠ ∀𝑔𝑖𝑢 ↔ ¬ (1o = 2o ∧ 〈𝑎, 𝑏〉 = 〈𝑖, 𝑢〉)) |
13 | 3, 12 | mpbir 230 | 1 ⊢ (𝑎⊼𝑔𝑏) ≠ ∀𝑔𝑖𝑢 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1539 ≠ wne 2942 Vcvv 3422 〈cop 4564 (class class class)co 7255 1oc1o 8260 2oc2o 8261 ⊼𝑔cgna 33196 ∀𝑔cgol 33197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-om 7688 df-1o 8267 df-2o 8268 df-gona 33203 df-goal 33204 |
This theorem is referenced by: gonarlem 33256 gonar 33257 goalrlem 33258 goalr 33259 fmlasucdisj 33261 |
Copyright terms: Public domain | W3C validator |