![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gonanegoal | Structured version Visualization version GIF version |
Description: The Godel-set for the Sheffer stroke NAND is not equal to the Godel-set of universal quantification. (Contributed by AV, 21-Oct-2023.) |
Ref | Expression |
---|---|
gonanegoal | ⊢ (𝑎⊼𝑔𝑏) ≠ ∀𝑔𝑖𝑢 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1one2o 8702 | . . . 4 ⊢ 1o ≠ 2o | |
2 | 1 | neii 2948 | . . 3 ⊢ ¬ 1o = 2o |
3 | 2 | intnanr 487 | . 2 ⊢ ¬ (1o = 2o ∧ 〈𝑎, 𝑏〉 = 〈𝑖, 𝑢〉) |
4 | gonafv 35318 | . . . . . 6 ⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎⊼𝑔𝑏) = 〈1o, 〈𝑎, 𝑏〉〉) | |
5 | 4 | el2v 3495 | . . . . 5 ⊢ (𝑎⊼𝑔𝑏) = 〈1o, 〈𝑎, 𝑏〉〉 |
6 | df-goal 35310 | . . . . 5 ⊢ ∀𝑔𝑖𝑢 = 〈2o, 〈𝑖, 𝑢〉〉 | |
7 | 5, 6 | eqeq12i 2758 | . . . 4 ⊢ ((𝑎⊼𝑔𝑏) = ∀𝑔𝑖𝑢 ↔ 〈1o, 〈𝑎, 𝑏〉〉 = 〈2o, 〈𝑖, 𝑢〉〉) |
8 | 1oex 8532 | . . . . 5 ⊢ 1o ∈ V | |
9 | opex 5484 | . . . . 5 ⊢ 〈𝑎, 𝑏〉 ∈ V | |
10 | 8, 9 | opth 5496 | . . . 4 ⊢ (〈1o, 〈𝑎, 𝑏〉〉 = 〈2o, 〈𝑖, 𝑢〉〉 ↔ (1o = 2o ∧ 〈𝑎, 𝑏〉 = 〈𝑖, 𝑢〉)) |
11 | 7, 10 | bitri 275 | . . 3 ⊢ ((𝑎⊼𝑔𝑏) = ∀𝑔𝑖𝑢 ↔ (1o = 2o ∧ 〈𝑎, 𝑏〉 = 〈𝑖, 𝑢〉)) |
12 | 11 | necon3abii 2993 | . 2 ⊢ ((𝑎⊼𝑔𝑏) ≠ ∀𝑔𝑖𝑢 ↔ ¬ (1o = 2o ∧ 〈𝑎, 𝑏〉 = 〈𝑖, 𝑢〉)) |
13 | 3, 12 | mpbir 231 | 1 ⊢ (𝑎⊼𝑔𝑏) ≠ ∀𝑔𝑖𝑢 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1537 ≠ wne 2946 Vcvv 3488 〈cop 4654 (class class class)co 7448 1oc1o 8515 2oc2o 8516 ⊼𝑔cgna 35302 ∀𝑔cgol 35303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-om 7904 df-1o 8522 df-2o 8523 df-gona 35309 df-goal 35310 |
This theorem is referenced by: gonarlem 35362 gonar 35363 goalrlem 35364 goalr 35365 fmlasucdisj 35367 |
Copyright terms: Public domain | W3C validator |