![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gonanegoal | Structured version Visualization version GIF version |
Description: The Godel-set for the Sheffer stroke NAND is not equal to the Godel-set of universal quantification. (Contributed by AV, 21-Oct-2023.) |
Ref | Expression |
---|---|
gonanegoal | ⊢ (𝑎⊼𝑔𝑏) ≠ ∀𝑔𝑖𝑢 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1one2o 8683 | . . . 4 ⊢ 1o ≠ 2o | |
2 | 1 | neii 2940 | . . 3 ⊢ ¬ 1o = 2o |
3 | 2 | intnanr 487 | . 2 ⊢ ¬ (1o = 2o ∧ 〈𝑎, 𝑏〉 = 〈𝑖, 𝑢〉) |
4 | gonafv 35335 | . . . . . 6 ⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎⊼𝑔𝑏) = 〈1o, 〈𝑎, 𝑏〉〉) | |
5 | 4 | el2v 3485 | . . . . 5 ⊢ (𝑎⊼𝑔𝑏) = 〈1o, 〈𝑎, 𝑏〉〉 |
6 | df-goal 35327 | . . . . 5 ⊢ ∀𝑔𝑖𝑢 = 〈2o, 〈𝑖, 𝑢〉〉 | |
7 | 5, 6 | eqeq12i 2753 | . . . 4 ⊢ ((𝑎⊼𝑔𝑏) = ∀𝑔𝑖𝑢 ↔ 〈1o, 〈𝑎, 𝑏〉〉 = 〈2o, 〈𝑖, 𝑢〉〉) |
8 | 1oex 8515 | . . . . 5 ⊢ 1o ∈ V | |
9 | opex 5475 | . . . . 5 ⊢ 〈𝑎, 𝑏〉 ∈ V | |
10 | 8, 9 | opth 5487 | . . . 4 ⊢ (〈1o, 〈𝑎, 𝑏〉〉 = 〈2o, 〈𝑖, 𝑢〉〉 ↔ (1o = 2o ∧ 〈𝑎, 𝑏〉 = 〈𝑖, 𝑢〉)) |
11 | 7, 10 | bitri 275 | . . 3 ⊢ ((𝑎⊼𝑔𝑏) = ∀𝑔𝑖𝑢 ↔ (1o = 2o ∧ 〈𝑎, 𝑏〉 = 〈𝑖, 𝑢〉)) |
12 | 11 | necon3abii 2985 | . 2 ⊢ ((𝑎⊼𝑔𝑏) ≠ ∀𝑔𝑖𝑢 ↔ ¬ (1o = 2o ∧ 〈𝑎, 𝑏〉 = 〈𝑖, 𝑢〉)) |
13 | 3, 12 | mpbir 231 | 1 ⊢ (𝑎⊼𝑔𝑏) ≠ ∀𝑔𝑖𝑢 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1537 ≠ wne 2938 Vcvv 3478 〈cop 4637 (class class class)co 7431 1oc1o 8498 2oc2o 8499 ⊼𝑔cgna 35319 ∀𝑔cgol 35320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-om 7888 df-1o 8505 df-2o 8506 df-gona 35326 df-goal 35327 |
This theorem is referenced by: gonarlem 35379 gonar 35380 goalrlem 35381 goalr 35382 fmlasucdisj 35384 |
Copyright terms: Public domain | W3C validator |