| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nemtbir | Structured version Visualization version GIF version | ||
| Description: An inference from an inequality, related to modus tollens. (Contributed by NM, 13-Apr-2007.) |
| Ref | Expression |
|---|---|
| nemtbir.1 | ⊢ 𝐴 ≠ 𝐵 |
| nemtbir.2 | ⊢ (𝜑 ↔ 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| nemtbir | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nemtbir.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | 1 | neii 2935 | . 2 ⊢ ¬ 𝐴 = 𝐵 |
| 3 | nemtbir.2 | . 2 ⊢ (𝜑 ↔ 𝐴 = 𝐵) | |
| 4 | 2, 3 | mtbir 323 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ≠ wne 2933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2934 |
| This theorem is referenced by: opthwiener 5494 opthprc 5723 ord2eln012 8514 snnen2oOLD 9241 0sdom1dom 9251 cfpwsdom 10603 fprodn0f 16012 m1exp1 16400 pmtrsn 19505 gzrngunitlem 21405 logbmpt 26755 sltval2 27625 sltsolem1 27644 nolt02o 27664 ex-id 30420 ex-mod 30435 coss0 38502 ensucne0 43520 clsk1indlem4 44035 clsk1indlem1 44036 etransc 46279 |
| Copyright terms: Public domain | W3C validator |