![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nemtbir | Structured version Visualization version GIF version |
Description: An inference from an inequality, related to modus tollens. (Contributed by NM, 13-Apr-2007.) |
Ref | Expression |
---|---|
nemtbir.1 | ⊢ 𝐴 ≠ 𝐵 |
nemtbir.2 | ⊢ (𝜑 ↔ 𝐴 = 𝐵) |
Ref | Expression |
---|---|
nemtbir | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nemtbir.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
2 | 1 | neii 3001 | . 2 ⊢ ¬ 𝐴 = 𝐵 |
3 | nemtbir.2 | . 2 ⊢ (𝜑 ↔ 𝐴 = 𝐵) | |
4 | 2, 3 | mtbir 315 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 = wceq 1656 ≠ wne 2999 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-ne 3000 |
This theorem is referenced by: opthwiener 5202 opthprc 5404 snnen2o 8424 cfpwsdom 9728 m1exp1 15474 pmtrsn 18297 gzrngunitlem 20178 logbmpt 24935 ex-id 27845 ex-mod 27860 sltval2 32343 sltsolem1 32360 nolt02o 32379 coss0 34772 clsk1indlem4 39177 clsk1indlem1 39178 etransc 41288 |
Copyright terms: Public domain | W3C validator |