MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nemtbir Structured version   Visualization version   GIF version

Theorem nemtbir 3039
Description: An inference from an inequality, related to modus tollens. (Contributed by NM, 13-Apr-2007.)
Hypotheses
Ref Expression
nemtbir.1 𝐴𝐵
nemtbir.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
nemtbir ¬ 𝜑

Proof of Theorem nemtbir
StepHypRef Expression
1 nemtbir.1 . . 3 𝐴𝐵
21neii 2943 . 2 ¬ 𝐴 = 𝐵
3 nemtbir.2 . 2 (𝜑𝐴 = 𝐵)
42, 3mtbir 323 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1542  wne 2941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2942
This theorem is referenced by:  opthwiener  5515  opthprc  5741  ord2eln012  8497  snnen2oOLD  9227  0sdom1dom  9238  cfpwsdom  10579  fprodn0f  15935  m1exp1  16319  pmtrsn  19387  gzrngunitlem  21010  logbmpt  26293  sltval2  27159  sltsolem1  27178  nolt02o  27198  ex-id  29718  ex-mod  29733  coss0  37397  ensucne0  42328  clsk1indlem4  42843  clsk1indlem1  42844  etransc  45047
  Copyright terms: Public domain W3C validator