MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nemtbir Structured version   Visualization version   GIF version

Theorem nemtbir 3040
Description: An inference from an inequality, related to modus tollens. (Contributed by NM, 13-Apr-2007.)
Hypotheses
Ref Expression
nemtbir.1 𝐴𝐵
nemtbir.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
nemtbir ¬ 𝜑

Proof of Theorem nemtbir
StepHypRef Expression
1 nemtbir.1 . . 3 𝐴𝐵
21neii 2945 . 2 ¬ 𝐴 = 𝐵
3 nemtbir.2 . 2 (𝜑𝐴 = 𝐵)
42, 3mtbir 323 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1539  wne 2943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2944
This theorem is referenced by:  opthwiener  5428  opthprc  5651  ord2eln012  8327  snnen2oOLD  9010  cfpwsdom  10340  fprodn0f  15701  m1exp1  16085  pmtrsn  19127  gzrngunitlem  20663  logbmpt  25938  ex-id  28798  ex-mod  28813  sltval2  33859  sltsolem1  33878  nolt02o  33898  coss0  36597  ensucne0  41136  clsk1indlem4  41654  clsk1indlem1  41655  etransc  43824
  Copyright terms: Public domain W3C validator