Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nemtbir | Structured version Visualization version GIF version |
Description: An inference from an inequality, related to modus tollens. (Contributed by NM, 13-Apr-2007.) |
Ref | Expression |
---|---|
nemtbir.1 | ⊢ 𝐴 ≠ 𝐵 |
nemtbir.2 | ⊢ (𝜑 ↔ 𝐴 = 𝐵) |
Ref | Expression |
---|---|
nemtbir | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nemtbir.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
2 | 1 | neii 2947 | . 2 ⊢ ¬ 𝐴 = 𝐵 |
3 | nemtbir.2 | . 2 ⊢ (𝜑 ↔ 𝐴 = 𝐵) | |
4 | 2, 3 | mtbir 323 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1542 ≠ wne 2945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2946 |
This theorem is referenced by: opthwiener 5432 opthprc 5652 snnen2o 8980 cfpwsdom 10341 fprodn0f 15699 m1exp1 16083 pmtrsn 19125 gzrngunitlem 20661 logbmpt 25936 ex-id 28794 ex-mod 28809 sltval2 33855 sltsolem1 33874 nolt02o 33894 coss0 36593 ensucne0 41115 clsk1indlem4 41624 clsk1indlem1 41625 etransc 43795 |
Copyright terms: Public domain | W3C validator |