|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nemtbir | Structured version Visualization version GIF version | ||
| Description: An inference from an inequality, related to modus tollens. (Contributed by NM, 13-Apr-2007.) | 
| Ref | Expression | 
|---|---|
| nemtbir.1 | ⊢ 𝐴 ≠ 𝐵 | 
| nemtbir.2 | ⊢ (𝜑 ↔ 𝐴 = 𝐵) | 
| Ref | Expression | 
|---|---|
| nemtbir | ⊢ ¬ 𝜑 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nemtbir.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | 1 | neii 2941 | . 2 ⊢ ¬ 𝐴 = 𝐵 | 
| 3 | nemtbir.2 | . 2 ⊢ (𝜑 ↔ 𝐴 = 𝐵) | |
| 4 | 2, 3 | mtbir 323 | 1 ⊢ ¬ 𝜑 | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1539 ≠ wne 2939 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-ne 2940 | 
| This theorem is referenced by: opthwiener 5518 opthprc 5748 ord2eln012 8536 snnen2oOLD 9265 0sdom1dom 9275 cfpwsdom 10625 fprodn0f 16028 m1exp1 16414 pmtrsn 19538 gzrngunitlem 21451 logbmpt 26832 sltval2 27702 sltsolem1 27721 nolt02o 27741 ex-id 30454 ex-mod 30469 coss0 38481 ensucne0 43547 clsk1indlem4 44062 clsk1indlem1 44063 etransc 46303 | 
| Copyright terms: Public domain | W3C validator |