| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nemtbir | Structured version Visualization version GIF version | ||
| Description: An inference from an inequality, related to modus tollens. (Contributed by NM, 13-Apr-2007.) |
| Ref | Expression |
|---|---|
| nemtbir.1 | ⊢ 𝐴 ≠ 𝐵 |
| nemtbir.2 | ⊢ (𝜑 ↔ 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| nemtbir | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nemtbir.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | 1 | neii 2930 | . 2 ⊢ ¬ 𝐴 = 𝐵 |
| 3 | nemtbir.2 | . 2 ⊢ (𝜑 ↔ 𝐴 = 𝐵) | |
| 4 | 2, 3 | mtbir 323 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2929 |
| This theorem is referenced by: opthwiener 5452 opthprc 5678 ord2eln012 8412 0sdom1dom 9130 cfpwsdom 10475 fprodn0f 15898 m1exp1 16287 pmtrsn 19431 gzrngunitlem 21369 logbmpt 26725 sltval2 27595 sltsolem1 27614 nolt02o 27634 ex-id 30414 ex-mod 30429 coss0 38580 ensucne0 43621 clsk1indlem4 44136 clsk1indlem1 44137 etransc 46380 |
| Copyright terms: Public domain | W3C validator |