MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nemtbir Structured version   Visualization version   GIF version

Theorem nemtbir 3036
Description: An inference from an inequality, related to modus tollens. (Contributed by NM, 13-Apr-2007.)
Hypotheses
Ref Expression
nemtbir.1 𝐴𝐵
nemtbir.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
nemtbir ¬ 𝜑

Proof of Theorem nemtbir
StepHypRef Expression
1 nemtbir.1 . . 3 𝐴𝐵
21neii 2940 . 2 ¬ 𝐴 = 𝐵
3 nemtbir.2 . 2 (𝜑𝐴 = 𝐵)
42, 3mtbir 323 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1537  wne 2938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2939
This theorem is referenced by:  opthwiener  5524  opthprc  5753  ord2eln012  8534  snnen2oOLD  9262  0sdom1dom  9272  cfpwsdom  10622  fprodn0f  16024  m1exp1  16410  pmtrsn  19552  gzrngunitlem  21468  logbmpt  26846  sltval2  27716  sltsolem1  27735  nolt02o  27755  ex-id  30463  ex-mod  30478  coss0  38461  ensucne0  43519  clsk1indlem4  44034  clsk1indlem1  44035  etransc  46239
  Copyright terms: Public domain W3C validator