MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nemtbir Structured version   Visualization version   GIF version

Theorem nemtbir 3029
Description: An inference from an inequality, related to modus tollens. (Contributed by NM, 13-Apr-2007.)
Hypotheses
Ref Expression
nemtbir.1 𝐴𝐵
nemtbir.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
nemtbir ¬ 𝜑

Proof of Theorem nemtbir
StepHypRef Expression
1 nemtbir.1 . . 3 𝐴𝐵
21neii 2935 . 2 ¬ 𝐴 = 𝐵
3 nemtbir.2 . 2 (𝜑𝐴 = 𝐵)
42, 3mtbir 323 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wne 2933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2934
This theorem is referenced by:  opthwiener  5494  opthprc  5723  ord2eln012  8514  snnen2oOLD  9241  0sdom1dom  9251  cfpwsdom  10603  fprodn0f  16012  m1exp1  16400  pmtrsn  19505  gzrngunitlem  21405  logbmpt  26755  sltval2  27625  sltsolem1  27644  nolt02o  27664  ex-id  30420  ex-mod  30435  coss0  38502  ensucne0  43520  clsk1indlem4  44035  clsk1indlem1  44036  etransc  46279
  Copyright terms: Public domain W3C validator