![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ensucne0 | Structured version Visualization version GIF version |
Description: A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023.) (Proof shortened by SN, 16-Nov-2023.) |
Ref | Expression |
---|---|
ensucne0 | ⊢ (𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsuceq0 6478 | . . . 4 ⊢ suc 𝐵 ≠ ∅ | |
2 | en0r 9081 | . . . 4 ⊢ (∅ ≈ suc 𝐵 ↔ suc 𝐵 = ∅) | |
3 | 1, 2 | nemtbir 3044 | . . 3 ⊢ ¬ ∅ ≈ suc 𝐵 |
4 | breq1 5169 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≈ suc 𝐵 ↔ ∅ ≈ suc 𝐵)) | |
5 | 3, 4 | mtbiri 327 | . 2 ⊢ (𝐴 = ∅ → ¬ 𝐴 ≈ suc 𝐵) |
6 | 5 | necon2ai 2976 | 1 ⊢ (𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ≠ wne 2946 ∅c0 4352 class class class wbr 5166 suc csuc 6397 ≈ cen 9000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-suc 6401 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-en 9004 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |