Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ensucne0 Structured version   Visualization version   GIF version

Theorem ensucne0 43518
Description: A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023.) (Proof shortened by SN, 16-Nov-2023.)
Assertion
Ref Expression
ensucne0 (𝐴 ≈ suc 𝐵𝐴 ≠ ∅)

Proof of Theorem ensucne0
StepHypRef Expression
1 nsuceq0 6417 . . . 4 suc 𝐵 ≠ ∅
2 en0r 8991 . . . 4 (∅ ≈ suc 𝐵 ↔ suc 𝐵 = ∅)
31, 2nemtbir 3021 . . 3 ¬ ∅ ≈ suc 𝐵
4 breq1 5110 . . 3 (𝐴 = ∅ → (𝐴 ≈ suc 𝐵 ↔ ∅ ≈ suc 𝐵))
53, 4mtbiri 327 . 2 (𝐴 = ∅ → ¬ 𝐴 ≈ suc 𝐵)
65necon2ai 2954 1 (𝐴 ≈ suc 𝐵𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2925  c0 4296   class class class wbr 5107  suc csuc 6334  cen 8915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-suc 6338  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-en 8919
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator