| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ensucne0 | Structured version Visualization version GIF version | ||
| Description: A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023.) (Proof shortened by SN, 16-Nov-2023.) |
| Ref | Expression |
|---|---|
| ensucne0 | ⊢ (𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsuceq0 6437 | . . . 4 ⊢ suc 𝐵 ≠ ∅ | |
| 2 | en0r 9034 | . . . 4 ⊢ (∅ ≈ suc 𝐵 ↔ suc 𝐵 = ∅) | |
| 3 | 1, 2 | nemtbir 3028 | . . 3 ⊢ ¬ ∅ ≈ suc 𝐵 |
| 4 | breq1 5122 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≈ suc 𝐵 ↔ ∅ ≈ suc 𝐵)) | |
| 5 | 3, 4 | mtbiri 327 | . 2 ⊢ (𝐴 = ∅ → ¬ 𝐴 ≈ suc 𝐵) |
| 6 | 5 | necon2ai 2961 | 1 ⊢ (𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2932 ∅c0 4308 class class class wbr 5119 suc csuc 6354 ≈ cen 8956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-suc 6358 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-en 8960 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |