Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ensucne0 Structured version   Visualization version   GIF version

Theorem ensucne0 41034
Description: A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023.) (Proof shortened by SN, 16-Nov-2023.)
Assertion
Ref Expression
ensucne0 (𝐴 ≈ suc 𝐵𝐴 ≠ ∅)

Proof of Theorem ensucne0
StepHypRef Expression
1 nsuceq0 6331 . . . 4 suc 𝐵 ≠ ∅
2 ensymb 8743 . . . . 5 (∅ ≈ suc 𝐵 ↔ suc 𝐵 ≈ ∅)
3 en0 8758 . . . . 5 (suc 𝐵 ≈ ∅ ↔ suc 𝐵 = ∅)
42, 3bitri 274 . . . 4 (∅ ≈ suc 𝐵 ↔ suc 𝐵 = ∅)
51, 4nemtbir 3039 . . 3 ¬ ∅ ≈ suc 𝐵
6 breq1 5073 . . 3 (𝐴 = ∅ → (𝐴 ≈ suc 𝐵 ↔ ∅ ≈ suc 𝐵))
75, 6mtbiri 326 . 2 (𝐴 = ∅ → ¬ 𝐴 ≈ suc 𝐵)
87necon2ai 2972 1 (𝐴 ≈ suc 𝐵𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wne 2942  c0 4253   class class class wbr 5070  suc csuc 6253  cen 8688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-suc 6257  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-er 8456  df-en 8692
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator