Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ensucne0 Structured version   Visualization version   GIF version

Theorem ensucne0 42990
Description: A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023.) (Proof shortened by SN, 16-Nov-2023.)
Assertion
Ref Expression
ensucne0 (𝐴 ≈ suc 𝐵𝐴 ≠ ∅)

Proof of Theorem ensucne0
StepHypRef Expression
1 nsuceq0 6457 . . . 4 suc 𝐵 ≠ ∅
2 en0r 9047 . . . 4 (∅ ≈ suc 𝐵 ↔ suc 𝐵 = ∅)
31, 2nemtbir 3035 . . 3 ¬ ∅ ≈ suc 𝐵
4 breq1 5155 . . 3 (𝐴 = ∅ → (𝐴 ≈ suc 𝐵 ↔ ∅ ≈ suc 𝐵))
53, 4mtbiri 326 . 2 (𝐴 = ∅ → ¬ 𝐴 ≈ suc 𝐵)
65necon2ai 2967 1 (𝐴 ≈ suc 𝐵𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wne 2937  c0 4326   class class class wbr 5152  suc csuc 6376  cen 8967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-mo 2529  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-suc 6380  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-en 8971
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator