Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ensucne0 Structured version   Visualization version   GIF version

Theorem ensucne0 43562
Description: A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023.) (Proof shortened by SN, 16-Nov-2023.)
Assertion
Ref Expression
ensucne0 (𝐴 ≈ suc 𝐵𝐴 ≠ ∅)

Proof of Theorem ensucne0
StepHypRef Expression
1 nsuceq0 6386 . . . 4 suc 𝐵 ≠ ∅
2 en0r 8937 . . . 4 (∅ ≈ suc 𝐵 ↔ suc 𝐵 = ∅)
31, 2nemtbir 3024 . . 3 ¬ ∅ ≈ suc 𝐵
4 breq1 5089 . . 3 (𝐴 = ∅ → (𝐴 ≈ suc 𝐵 ↔ ∅ ≈ suc 𝐵))
53, 4mtbiri 327 . 2 (𝐴 = ∅ → ¬ 𝐴 ≈ suc 𝐵)
65necon2ai 2957 1 (𝐴 ≈ suc 𝐵𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wne 2928  c0 4278   class class class wbr 5086  suc csuc 6303  cen 8861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-suc 6307  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-en 8865
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator