| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | 2z 12649 | . . . . . 6
⊢ 2 ∈
ℤ | 
| 2 |  | divides 16292 | . . . . . 6
⊢ ((2
∈ ℤ ∧ 𝑁
∈ ℤ) → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁)) | 
| 3 | 1, 2 | mpan 690 | . . . . 5
⊢ (𝑁 ∈ ℤ → (2
∥ 𝑁 ↔
∃𝑛 ∈ ℤ
(𝑛 · 2) = 𝑁)) | 
| 4 |  | oveq2 7439 | . . . . . . . 8
⊢ (𝑁 = (𝑛 · 2) → (-1↑𝑁) = (-1↑(𝑛 · 2))) | 
| 5 | 4 | eqcoms 2745 | . . . . . . 7
⊢ ((𝑛 · 2) = 𝑁 → (-1↑𝑁) = (-1↑(𝑛 · 2))) | 
| 6 |  | zcn 12618 | . . . . . . . . . 10
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℂ) | 
| 7 |  | 2cnd 12344 | . . . . . . . . . 10
⊢ (𝑛 ∈ ℤ → 2 ∈
ℂ) | 
| 8 | 6, 7 | mulcomd 11282 | . . . . . . . . 9
⊢ (𝑛 ∈ ℤ → (𝑛 · 2) = (2 · 𝑛)) | 
| 9 | 8 | oveq2d 7447 | . . . . . . . 8
⊢ (𝑛 ∈ ℤ →
(-1↑(𝑛 · 2)) =
(-1↑(2 · 𝑛))) | 
| 10 |  | m1expeven 14150 | . . . . . . . 8
⊢ (𝑛 ∈ ℤ →
(-1↑(2 · 𝑛)) =
1) | 
| 11 | 9, 10 | eqtrd 2777 | . . . . . . 7
⊢ (𝑛 ∈ ℤ →
(-1↑(𝑛 · 2)) =
1) | 
| 12 | 5, 11 | sylan9eqr 2799 | . . . . . 6
⊢ ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝑁) → (-1↑𝑁) = 1) | 
| 13 | 12 | rexlimiva 3147 | . . . . 5
⊢
(∃𝑛 ∈
ℤ (𝑛 · 2) =
𝑁 → (-1↑𝑁) = 1) | 
| 14 | 3, 13 | biimtrdi 253 | . . . 4
⊢ (𝑁 ∈ ℤ → (2
∥ 𝑁 →
(-1↑𝑁) =
1)) | 
| 15 | 14 | impcom 407 | . . 3
⊢ ((2
∥ 𝑁 ∧ 𝑁 ∈ ℤ) →
(-1↑𝑁) =
1) | 
| 16 |  | simpl 482 | . . 3
⊢ ((2
∥ 𝑁 ∧ 𝑁 ∈ ℤ) → 2
∥ 𝑁) | 
| 17 | 15, 16 | 2thd 265 | . 2
⊢ ((2
∥ 𝑁 ∧ 𝑁 ∈ ℤ) →
((-1↑𝑁) = 1 ↔ 2
∥ 𝑁)) | 
| 18 |  | ax-1ne0 11224 | . . . . 5
⊢ 1 ≠
0 | 
| 19 |  | eqcom 2744 | . . . . . 6
⊢ (-1 = 1
↔ 1 = -1) | 
| 20 |  | ax-1cn 11213 | . . . . . . 7
⊢ 1 ∈
ℂ | 
| 21 | 20 | eqnegi 11996 | . . . . . 6
⊢ (1 = -1
↔ 1 = 0) | 
| 22 | 19, 21 | bitri 275 | . . . . 5
⊢ (-1 = 1
↔ 1 = 0) | 
| 23 | 18, 22 | nemtbir 3038 | . . . 4
⊢  ¬ -1
= 1 | 
| 24 |  | odd2np1 16378 | . . . . . . 7
⊢ (𝑁 ∈ ℤ → (¬ 2
∥ 𝑁 ↔
∃𝑛 ∈ ℤ ((2
· 𝑛) + 1) = 𝑁)) | 
| 25 |  | oveq2 7439 | . . . . . . . . . 10
⊢ (𝑁 = ((2 · 𝑛) + 1) → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1))) | 
| 26 | 25 | eqcoms 2745 | . . . . . . . . 9
⊢ (((2
· 𝑛) + 1) = 𝑁 → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1))) | 
| 27 |  | neg1cn 12380 | . . . . . . . . . . . 12
⊢ -1 ∈
ℂ | 
| 28 | 27 | a1i 11 | . . . . . . . . . . 11
⊢ (𝑛 ∈ ℤ → -1 ∈
ℂ) | 
| 29 |  | neg1ne0 12382 | . . . . . . . . . . . 12
⊢ -1 ≠
0 | 
| 30 | 29 | a1i 11 | . . . . . . . . . . 11
⊢ (𝑛 ∈ ℤ → -1 ≠
0) | 
| 31 | 1 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝑛 ∈ ℤ → 2 ∈
ℤ) | 
| 32 |  | id 22 | . . . . . . . . . . . 12
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℤ) | 
| 33 | 31, 32 | zmulcld 12728 | . . . . . . . . . . 11
⊢ (𝑛 ∈ ℤ → (2
· 𝑛) ∈
ℤ) | 
| 34 | 28, 30, 33 | expp1zd 14195 | . . . . . . . . . 10
⊢ (𝑛 ∈ ℤ →
(-1↑((2 · 𝑛) +
1)) = ((-1↑(2 · 𝑛)) · -1)) | 
| 35 | 10 | oveq1d 7446 | . . . . . . . . . . 11
⊢ (𝑛 ∈ ℤ →
((-1↑(2 · 𝑛))
· -1) = (1 · -1)) | 
| 36 | 27 | mullidi 11266 | . . . . . . . . . . 11
⊢ (1
· -1) = -1 | 
| 37 | 35, 36 | eqtrdi 2793 | . . . . . . . . . 10
⊢ (𝑛 ∈ ℤ →
((-1↑(2 · 𝑛))
· -1) = -1) | 
| 38 | 34, 37 | eqtrd 2777 | . . . . . . . . 9
⊢ (𝑛 ∈ ℤ →
(-1↑((2 · 𝑛) +
1)) = -1) | 
| 39 | 26, 38 | sylan9eqr 2799 | . . . . . . . 8
⊢ ((𝑛 ∈ ℤ ∧ ((2
· 𝑛) + 1) = 𝑁) → (-1↑𝑁) = -1) | 
| 40 | 39 | rexlimiva 3147 | . . . . . . 7
⊢
(∃𝑛 ∈
ℤ ((2 · 𝑛) +
1) = 𝑁 →
(-1↑𝑁) =
-1) | 
| 41 | 24, 40 | biimtrdi 253 | . . . . . 6
⊢ (𝑁 ∈ ℤ → (¬ 2
∥ 𝑁 →
(-1↑𝑁) =
-1)) | 
| 42 | 41 | impcom 407 | . . . . 5
⊢ ((¬ 2
∥ 𝑁 ∧ 𝑁 ∈ ℤ) →
(-1↑𝑁) =
-1) | 
| 43 | 42 | eqeq1d 2739 | . . . 4
⊢ ((¬ 2
∥ 𝑁 ∧ 𝑁 ∈ ℤ) →
((-1↑𝑁) = 1 ↔ -1
= 1)) | 
| 44 | 23, 43 | mtbiri 327 | . . 3
⊢ ((¬ 2
∥ 𝑁 ∧ 𝑁 ∈ ℤ) → ¬
(-1↑𝑁) =
1) | 
| 45 |  | simpl 482 | . . 3
⊢ ((¬ 2
∥ 𝑁 ∧ 𝑁 ∈ ℤ) → ¬ 2
∥ 𝑁) | 
| 46 | 44, 45 | 2falsed 376 | . 2
⊢ ((¬ 2
∥ 𝑁 ∧ 𝑁 ∈ ℤ) →
((-1↑𝑁) = 1 ↔ 2
∥ 𝑁)) | 
| 47 | 17, 46 | pm2.61ian 812 | 1
⊢ (𝑁 ∈ ℤ →
((-1↑𝑁) = 1 ↔ 2
∥ 𝑁)) |