MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1exp1 Structured version   Visualization version   GIF version

Theorem m1exp1 16322
Description: Exponentiation of negative one is one iff the exponent is even. (Contributed by AV, 20-Jun-2021.)
Assertion
Ref Expression
m1exp1 (𝑁 ∈ ℤ → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))

Proof of Theorem m1exp1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 2z 12541 . . . . . 6 2 ∈ ℤ
2 divides 16200 . . . . . 6 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁))
31, 2mpan 690 . . . . 5 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁))
4 oveq2 7377 . . . . . . . 8 (𝑁 = (𝑛 · 2) → (-1↑𝑁) = (-1↑(𝑛 · 2)))
54eqcoms 2737 . . . . . . 7 ((𝑛 · 2) = 𝑁 → (-1↑𝑁) = (-1↑(𝑛 · 2)))
6 zcn 12510 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
7 2cnd 12240 . . . . . . . . . 10 (𝑛 ∈ ℤ → 2 ∈ ℂ)
86, 7mulcomd 11171 . . . . . . . . 9 (𝑛 ∈ ℤ → (𝑛 · 2) = (2 · 𝑛))
98oveq2d 7385 . . . . . . . 8 (𝑛 ∈ ℤ → (-1↑(𝑛 · 2)) = (-1↑(2 · 𝑛)))
10 m1expeven 14050 . . . . . . . 8 (𝑛 ∈ ℤ → (-1↑(2 · 𝑛)) = 1)
119, 10eqtrd 2764 . . . . . . 7 (𝑛 ∈ ℤ → (-1↑(𝑛 · 2)) = 1)
125, 11sylan9eqr 2786 . . . . . 6 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝑁) → (-1↑𝑁) = 1)
1312rexlimiva 3126 . . . . 5 (∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁 → (-1↑𝑁) = 1)
143, 13biimtrdi 253 . . . 4 (𝑁 ∈ ℤ → (2 ∥ 𝑁 → (-1↑𝑁) = 1))
1514impcom 407 . . 3 ((2 ∥ 𝑁𝑁 ∈ ℤ) → (-1↑𝑁) = 1)
16 simpl 482 . . 3 ((2 ∥ 𝑁𝑁 ∈ ℤ) → 2 ∥ 𝑁)
1715, 162thd 265 . 2 ((2 ∥ 𝑁𝑁 ∈ ℤ) → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))
18 ax-1ne0 11113 . . . . 5 1 ≠ 0
19 eqcom 2736 . . . . . 6 (-1 = 1 ↔ 1 = -1)
20 ax-1cn 11102 . . . . . . 7 1 ∈ ℂ
2120eqnegi 11887 . . . . . 6 (1 = -1 ↔ 1 = 0)
2219, 21bitri 275 . . . . 5 (-1 = 1 ↔ 1 = 0)
2318, 22nemtbir 3021 . . . 4 ¬ -1 = 1
24 odd2np1 16287 . . . . . . 7 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
25 oveq2 7377 . . . . . . . . . 10 (𝑁 = ((2 · 𝑛) + 1) → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1)))
2625eqcoms 2737 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1)))
27 neg1cn 12147 . . . . . . . . . . . 12 -1 ∈ ℂ
2827a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℤ → -1 ∈ ℂ)
29 neg1ne0 12149 . . . . . . . . . . . 12 -1 ≠ 0
3029a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℤ → -1 ≠ 0)
311a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 2 ∈ ℤ)
32 id 22 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℤ)
3331, 32zmulcld 12620 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ)
3428, 30, 33expp1zd 14096 . . . . . . . . . 10 (𝑛 ∈ ℤ → (-1↑((2 · 𝑛) + 1)) = ((-1↑(2 · 𝑛)) · -1))
3510oveq1d 7384 . . . . . . . . . . 11 (𝑛 ∈ ℤ → ((-1↑(2 · 𝑛)) · -1) = (1 · -1))
3627mullidi 11155 . . . . . . . . . . 11 (1 · -1) = -1
3735, 36eqtrdi 2780 . . . . . . . . . 10 (𝑛 ∈ ℤ → ((-1↑(2 · 𝑛)) · -1) = -1)
3834, 37eqtrd 2764 . . . . . . . . 9 (𝑛 ∈ ℤ → (-1↑((2 · 𝑛) + 1)) = -1)
3926, 38sylan9eqr 2786 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁) → (-1↑𝑁) = -1)
4039rexlimiva 3126 . . . . . . 7 (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = -1)
4124, 40biimtrdi 253 . . . . . 6 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 → (-1↑𝑁) = -1))
4241impcom 407 . . . . 5 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → (-1↑𝑁) = -1)
4342eqeq1d 2731 . . . 4 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → ((-1↑𝑁) = 1 ↔ -1 = 1))
4423, 43mtbiri 327 . . 3 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → ¬ (-1↑𝑁) = 1)
45 simpl 482 . . 3 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → ¬ 2 ∥ 𝑁)
4644, 452falsed 376 . 2 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))
4717, 46pm2.61ian 811 1 (𝑁 ∈ ℤ → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5102  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  -cneg 11382  2c2 12217  cz 12505  cexp 14002  cdvds 16198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-seq 13943  df-exp 14003  df-dvds 16199
This theorem is referenced by:  2lgs  27294  2lgsoddprm  27303  cyc3genpm  33082
  Copyright terms: Public domain W3C validator