MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1exp1 Structured version   Visualization version   GIF version

Theorem m1exp1 16154
Description: Exponentiation of negative one is one iff the exponent is even. (Contributed by AV, 20-Jun-2021.)
Assertion
Ref Expression
m1exp1 (𝑁 ∈ ℤ → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))

Proof of Theorem m1exp1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 2z 12422 . . . . . 6 2 ∈ ℤ
2 divides 16034 . . . . . 6 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁))
31, 2mpan 687 . . . . 5 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁))
4 oveq2 7321 . . . . . . . 8 (𝑁 = (𝑛 · 2) → (-1↑𝑁) = (-1↑(𝑛 · 2)))
54eqcoms 2745 . . . . . . 7 ((𝑛 · 2) = 𝑁 → (-1↑𝑁) = (-1↑(𝑛 · 2)))
6 zcn 12394 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
7 2cnd 12121 . . . . . . . . . 10 (𝑛 ∈ ℤ → 2 ∈ ℂ)
86, 7mulcomd 11066 . . . . . . . . 9 (𝑛 ∈ ℤ → (𝑛 · 2) = (2 · 𝑛))
98oveq2d 7329 . . . . . . . 8 (𝑛 ∈ ℤ → (-1↑(𝑛 · 2)) = (-1↑(2 · 𝑛)))
10 m1expeven 13900 . . . . . . . 8 (𝑛 ∈ ℤ → (-1↑(2 · 𝑛)) = 1)
119, 10eqtrd 2777 . . . . . . 7 (𝑛 ∈ ℤ → (-1↑(𝑛 · 2)) = 1)
125, 11sylan9eqr 2799 . . . . . 6 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝑁) → (-1↑𝑁) = 1)
1312rexlimiva 3141 . . . . 5 (∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁 → (-1↑𝑁) = 1)
143, 13syl6bi 252 . . . 4 (𝑁 ∈ ℤ → (2 ∥ 𝑁 → (-1↑𝑁) = 1))
1514impcom 408 . . 3 ((2 ∥ 𝑁𝑁 ∈ ℤ) → (-1↑𝑁) = 1)
16 simpl 483 . . 3 ((2 ∥ 𝑁𝑁 ∈ ℤ) → 2 ∥ 𝑁)
1715, 162thd 264 . 2 ((2 ∥ 𝑁𝑁 ∈ ℤ) → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))
18 ax-1ne0 11010 . . . . 5 1 ≠ 0
19 eqcom 2744 . . . . . 6 (-1 = 1 ↔ 1 = -1)
20 ax-1cn 10999 . . . . . . 7 1 ∈ ℂ
2120eqnegi 11774 . . . . . 6 (1 = -1 ↔ 1 = 0)
2219, 21bitri 274 . . . . 5 (-1 = 1 ↔ 1 = 0)
2318, 22nemtbir 3038 . . . 4 ¬ -1 = 1
24 odd2np1 16119 . . . . . . 7 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
25 oveq2 7321 . . . . . . . . . 10 (𝑁 = ((2 · 𝑛) + 1) → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1)))
2625eqcoms 2745 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1)))
27 neg1cn 12157 . . . . . . . . . . . 12 -1 ∈ ℂ
2827a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℤ → -1 ∈ ℂ)
29 neg1ne0 12159 . . . . . . . . . . . 12 -1 ≠ 0
3029a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℤ → -1 ≠ 0)
311a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 2 ∈ ℤ)
32 id 22 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℤ)
3331, 32zmulcld 12502 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ)
3428, 30, 33expp1zd 13943 . . . . . . . . . 10 (𝑛 ∈ ℤ → (-1↑((2 · 𝑛) + 1)) = ((-1↑(2 · 𝑛)) · -1))
3510oveq1d 7328 . . . . . . . . . . 11 (𝑛 ∈ ℤ → ((-1↑(2 · 𝑛)) · -1) = (1 · -1))
3627mulid2i 11050 . . . . . . . . . . 11 (1 · -1) = -1
3735, 36eqtrdi 2793 . . . . . . . . . 10 (𝑛 ∈ ℤ → ((-1↑(2 · 𝑛)) · -1) = -1)
3834, 37eqtrd 2777 . . . . . . . . 9 (𝑛 ∈ ℤ → (-1↑((2 · 𝑛) + 1)) = -1)
3926, 38sylan9eqr 2799 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁) → (-1↑𝑁) = -1)
4039rexlimiva 3141 . . . . . . 7 (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = -1)
4124, 40syl6bi 252 . . . . . 6 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 → (-1↑𝑁) = -1))
4241impcom 408 . . . . 5 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → (-1↑𝑁) = -1)
4342eqeq1d 2739 . . . 4 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → ((-1↑𝑁) = 1 ↔ -1 = 1))
4423, 43mtbiri 326 . . 3 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → ¬ (-1↑𝑁) = 1)
45 simpl 483 . . 3 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → ¬ 2 ∥ 𝑁)
4644, 452falsed 376 . 2 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))
4717, 46pm2.61ian 809 1 (𝑁 ∈ ℤ → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wne 2941  wrex 3071   class class class wbr 5085  (class class class)co 7313  cc 10939  0cc0 10941  1c1 10942   + caddc 10944   · cmul 10946  -cneg 11276  2c2 12098  cz 12389  cexp 13852  cdvds 16032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-er 8544  df-en 8780  df-dom 8781  df-sdom 8782  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-div 11703  df-nn 12044  df-2 12106  df-n0 12304  df-z 12390  df-uz 12653  df-seq 13792  df-exp 13853  df-dvds 16033
This theorem is referenced by:  2lgs  26626  2lgsoddprm  26635  cyc3genpm  31527
  Copyright terms: Public domain W3C validator