Step | Hyp | Ref
| Expression |
1 | | 2z 12352 |
. . . . . 6
⊢ 2 ∈
ℤ |
2 | | divides 15965 |
. . . . . 6
⊢ ((2
∈ ℤ ∧ 𝑁
∈ ℤ) → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁)) |
3 | 1, 2 | mpan 687 |
. . . . 5
⊢ (𝑁 ∈ ℤ → (2
∥ 𝑁 ↔
∃𝑛 ∈ ℤ
(𝑛 · 2) = 𝑁)) |
4 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑁 = (𝑛 · 2) → (-1↑𝑁) = (-1↑(𝑛 · 2))) |
5 | 4 | eqcoms 2746 |
. . . . . . 7
⊢ ((𝑛 · 2) = 𝑁 → (-1↑𝑁) = (-1↑(𝑛 · 2))) |
6 | | zcn 12324 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℂ) |
7 | | 2cnd 12051 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℤ → 2 ∈
ℂ) |
8 | 6, 7 | mulcomd 10996 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℤ → (𝑛 · 2) = (2 · 𝑛)) |
9 | 8 | oveq2d 7291 |
. . . . . . . 8
⊢ (𝑛 ∈ ℤ →
(-1↑(𝑛 · 2)) =
(-1↑(2 · 𝑛))) |
10 | | m1expeven 13830 |
. . . . . . . 8
⊢ (𝑛 ∈ ℤ →
(-1↑(2 · 𝑛)) =
1) |
11 | 9, 10 | eqtrd 2778 |
. . . . . . 7
⊢ (𝑛 ∈ ℤ →
(-1↑(𝑛 · 2)) =
1) |
12 | 5, 11 | sylan9eqr 2800 |
. . . . . 6
⊢ ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝑁) → (-1↑𝑁) = 1) |
13 | 12 | rexlimiva 3210 |
. . . . 5
⊢
(∃𝑛 ∈
ℤ (𝑛 · 2) =
𝑁 → (-1↑𝑁) = 1) |
14 | 3, 13 | syl6bi 252 |
. . . 4
⊢ (𝑁 ∈ ℤ → (2
∥ 𝑁 →
(-1↑𝑁) =
1)) |
15 | 14 | impcom 408 |
. . 3
⊢ ((2
∥ 𝑁 ∧ 𝑁 ∈ ℤ) →
(-1↑𝑁) =
1) |
16 | | simpl 483 |
. . 3
⊢ ((2
∥ 𝑁 ∧ 𝑁 ∈ ℤ) → 2
∥ 𝑁) |
17 | 15, 16 | 2thd 264 |
. 2
⊢ ((2
∥ 𝑁 ∧ 𝑁 ∈ ℤ) →
((-1↑𝑁) = 1 ↔ 2
∥ 𝑁)) |
18 | | ax-1ne0 10940 |
. . . . 5
⊢ 1 ≠
0 |
19 | | eqcom 2745 |
. . . . . 6
⊢ (-1 = 1
↔ 1 = -1) |
20 | | ax-1cn 10929 |
. . . . . . 7
⊢ 1 ∈
ℂ |
21 | 20 | eqnegi 11704 |
. . . . . 6
⊢ (1 = -1
↔ 1 = 0) |
22 | 19, 21 | bitri 274 |
. . . . 5
⊢ (-1 = 1
↔ 1 = 0) |
23 | 18, 22 | nemtbir 3040 |
. . . 4
⊢ ¬ -1
= 1 |
24 | | odd2np1 16050 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ → (¬ 2
∥ 𝑁 ↔
∃𝑛 ∈ ℤ ((2
· 𝑛) + 1) = 𝑁)) |
25 | | oveq2 7283 |
. . . . . . . . . 10
⊢ (𝑁 = ((2 · 𝑛) + 1) → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1))) |
26 | 25 | eqcoms 2746 |
. . . . . . . . 9
⊢ (((2
· 𝑛) + 1) = 𝑁 → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1))) |
27 | | neg1cn 12087 |
. . . . . . . . . . . 12
⊢ -1 ∈
ℂ |
28 | 27 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℤ → -1 ∈
ℂ) |
29 | | neg1ne0 12089 |
. . . . . . . . . . . 12
⊢ -1 ≠
0 |
30 | 29 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℤ → -1 ≠
0) |
31 | 1 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℤ → 2 ∈
ℤ) |
32 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℤ) |
33 | 31, 32 | zmulcld 12432 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℤ → (2
· 𝑛) ∈
ℤ) |
34 | 28, 30, 33 | expp1zd 13873 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℤ →
(-1↑((2 · 𝑛) +
1)) = ((-1↑(2 · 𝑛)) · -1)) |
35 | 10 | oveq1d 7290 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℤ →
((-1↑(2 · 𝑛))
· -1) = (1 · -1)) |
36 | 27 | mulid2i 10980 |
. . . . . . . . . . 11
⊢ (1
· -1) = -1 |
37 | 35, 36 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℤ →
((-1↑(2 · 𝑛))
· -1) = -1) |
38 | 34, 37 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℤ →
(-1↑((2 · 𝑛) +
1)) = -1) |
39 | 26, 38 | sylan9eqr 2800 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℤ ∧ ((2
· 𝑛) + 1) = 𝑁) → (-1↑𝑁) = -1) |
40 | 39 | rexlimiva 3210 |
. . . . . . 7
⊢
(∃𝑛 ∈
ℤ ((2 · 𝑛) +
1) = 𝑁 →
(-1↑𝑁) =
-1) |
41 | 24, 40 | syl6bi 252 |
. . . . . 6
⊢ (𝑁 ∈ ℤ → (¬ 2
∥ 𝑁 →
(-1↑𝑁) =
-1)) |
42 | 41 | impcom 408 |
. . . . 5
⊢ ((¬ 2
∥ 𝑁 ∧ 𝑁 ∈ ℤ) →
(-1↑𝑁) =
-1) |
43 | 42 | eqeq1d 2740 |
. . . 4
⊢ ((¬ 2
∥ 𝑁 ∧ 𝑁 ∈ ℤ) →
((-1↑𝑁) = 1 ↔ -1
= 1)) |
44 | 23, 43 | mtbiri 327 |
. . 3
⊢ ((¬ 2
∥ 𝑁 ∧ 𝑁 ∈ ℤ) → ¬
(-1↑𝑁) =
1) |
45 | | simpl 483 |
. . 3
⊢ ((¬ 2
∥ 𝑁 ∧ 𝑁 ∈ ℤ) → ¬ 2
∥ 𝑁) |
46 | 44, 45 | 2falsed 377 |
. 2
⊢ ((¬ 2
∥ 𝑁 ∧ 𝑁 ∈ ℤ) →
((-1↑𝑁) = 1 ↔ 2
∥ 𝑁)) |
47 | 17, 46 | pm2.61ian 809 |
1
⊢ (𝑁 ∈ ℤ →
((-1↑𝑁) = 1 ↔ 2
∥ 𝑁)) |