| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-mod | Structured version Visualization version GIF version | ||
| Description: Example for df-mod 13766. (Contributed by AV, 3-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-mod | ⊢ ((5 mod 3) = 2 ∧ (-7 mod 2) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3p2e5 12263 | . . . . 5 ⊢ (3 + 2) = 5 | |
| 2 | 1 | eqcomi 2739 | . . . 4 ⊢ 5 = (3 + 2) |
| 3 | 2 | oveq1i 7351 | . . 3 ⊢ (5 mod 3) = ((3 + 2) mod 3) |
| 4 | 2nn0 12390 | . . . 4 ⊢ 2 ∈ ℕ0 | |
| 5 | 3nn 12196 | . . . 4 ⊢ 3 ∈ ℕ | |
| 6 | 2lt3 12284 | . . . 4 ⊢ 2 < 3 | |
| 7 | addmodid 13818 | . . . 4 ⊢ ((2 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 2 < 3) → ((3 + 2) mod 3) = 2) | |
| 8 | 4, 5, 6, 7 | mp3an 1463 | . . 3 ⊢ ((3 + 2) mod 3) = 2 |
| 9 | 3, 8 | eqtri 2753 | . 2 ⊢ (5 mod 3) = 2 |
| 10 | 2re 12191 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 11 | 2lt7 12302 | . . . . . 6 ⊢ 2 < 7 | |
| 12 | 10, 11 | ltneii 11218 | . . . . 5 ⊢ 2 ≠ 7 |
| 13 | 2nn 12190 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 14 | 1lt2 12283 | . . . . . . 7 ⊢ 1 < 2 | |
| 15 | eluz2b2 12811 | . . . . . . 7 ⊢ (2 ∈ (ℤ≥‘2) ↔ (2 ∈ ℕ ∧ 1 < 2)) | |
| 16 | 13, 14, 15 | mpbir2an 711 | . . . . . 6 ⊢ 2 ∈ (ℤ≥‘2) |
| 17 | 7prm 17014 | . . . . . 6 ⊢ 7 ∈ ℙ | |
| 18 | dvdsprm 16606 | . . . . . 6 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 7 ∈ ℙ) → (2 ∥ 7 ↔ 2 = 7)) | |
| 19 | 16, 17, 18 | mp2an 692 | . . . . 5 ⊢ (2 ∥ 7 ↔ 2 = 7) |
| 20 | 12, 19 | nemtbir 3022 | . . . 4 ⊢ ¬ 2 ∥ 7 |
| 21 | 2z 12496 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 22 | 7nn 12209 | . . . . . 6 ⊢ 7 ∈ ℕ | |
| 23 | 22 | nnzi 12488 | . . . . 5 ⊢ 7 ∈ ℤ |
| 24 | dvdsnegb 16176 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 7 ∈ ℤ) → (2 ∥ 7 ↔ 2 ∥ -7)) | |
| 25 | 21, 23, 24 | mp2an 692 | . . . 4 ⊢ (2 ∥ 7 ↔ 2 ∥ -7) |
| 26 | 20, 25 | mtbi 322 | . . 3 ⊢ ¬ 2 ∥ -7 |
| 27 | znegcl 12499 | . . . 4 ⊢ (7 ∈ ℤ → -7 ∈ ℤ) | |
| 28 | mod2eq1n2dvds 16250 | . . . 4 ⊢ (-7 ∈ ℤ → ((-7 mod 2) = 1 ↔ ¬ 2 ∥ -7)) | |
| 29 | 23, 27, 28 | mp2b 10 | . . 3 ⊢ ((-7 mod 2) = 1 ↔ ¬ 2 ∥ -7) |
| 30 | 26, 29 | mpbir 231 | . 2 ⊢ (-7 mod 2) = 1 |
| 31 | 9, 30 | pm3.2i 470 | 1 ⊢ ((5 mod 3) = 2 ∧ (-7 mod 2) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 class class class wbr 5089 ‘cfv 6477 (class class class)co 7341 1c1 10999 + caddc 11001 < clt 11138 -cneg 11337 ℕcn 12117 2c2 12172 3c3 12173 5c5 12175 7c7 12177 ℕ0cn0 12373 ℤcz 12460 ℤ≥cuz 12724 mod cmo 13765 ∥ cdvds 16155 ℙcprime 16574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-rp 12883 df-ico 13243 df-fz 13400 df-fl 13688 df-mod 13766 df-seq 13901 df-exp 13961 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-dvds 16156 df-prm 16575 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |