| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-mod | Structured version Visualization version GIF version | ||
| Description: Example for df-mod 13839. (Contributed by AV, 3-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-mod | ⊢ ((5 mod 3) = 2 ∧ (-7 mod 2) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3p2e5 12339 | . . . . 5 ⊢ (3 + 2) = 5 | |
| 2 | 1 | eqcomi 2739 | . . . 4 ⊢ 5 = (3 + 2) |
| 3 | 2 | oveq1i 7400 | . . 3 ⊢ (5 mod 3) = ((3 + 2) mod 3) |
| 4 | 2nn0 12466 | . . . 4 ⊢ 2 ∈ ℕ0 | |
| 5 | 3nn 12272 | . . . 4 ⊢ 3 ∈ ℕ | |
| 6 | 2lt3 12360 | . . . 4 ⊢ 2 < 3 | |
| 7 | addmodid 13891 | . . . 4 ⊢ ((2 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 2 < 3) → ((3 + 2) mod 3) = 2) | |
| 8 | 4, 5, 6, 7 | mp3an 1463 | . . 3 ⊢ ((3 + 2) mod 3) = 2 |
| 9 | 3, 8 | eqtri 2753 | . 2 ⊢ (5 mod 3) = 2 |
| 10 | 2re 12267 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 11 | 2lt7 12378 | . . . . . 6 ⊢ 2 < 7 | |
| 12 | 10, 11 | ltneii 11294 | . . . . 5 ⊢ 2 ≠ 7 |
| 13 | 2nn 12266 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 14 | 1lt2 12359 | . . . . . . 7 ⊢ 1 < 2 | |
| 15 | eluz2b2 12887 | . . . . . . 7 ⊢ (2 ∈ (ℤ≥‘2) ↔ (2 ∈ ℕ ∧ 1 < 2)) | |
| 16 | 13, 14, 15 | mpbir2an 711 | . . . . . 6 ⊢ 2 ∈ (ℤ≥‘2) |
| 17 | 7prm 17088 | . . . . . 6 ⊢ 7 ∈ ℙ | |
| 18 | dvdsprm 16680 | . . . . . 6 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 7 ∈ ℙ) → (2 ∥ 7 ↔ 2 = 7)) | |
| 19 | 16, 17, 18 | mp2an 692 | . . . . 5 ⊢ (2 ∥ 7 ↔ 2 = 7) |
| 20 | 12, 19 | nemtbir 3022 | . . . 4 ⊢ ¬ 2 ∥ 7 |
| 21 | 2z 12572 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 22 | 7nn 12285 | . . . . . 6 ⊢ 7 ∈ ℕ | |
| 23 | 22 | nnzi 12564 | . . . . 5 ⊢ 7 ∈ ℤ |
| 24 | dvdsnegb 16250 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 7 ∈ ℤ) → (2 ∥ 7 ↔ 2 ∥ -7)) | |
| 25 | 21, 23, 24 | mp2an 692 | . . . 4 ⊢ (2 ∥ 7 ↔ 2 ∥ -7) |
| 26 | 20, 25 | mtbi 322 | . . 3 ⊢ ¬ 2 ∥ -7 |
| 27 | znegcl 12575 | . . . 4 ⊢ (7 ∈ ℤ → -7 ∈ ℤ) | |
| 28 | mod2eq1n2dvds 16324 | . . . 4 ⊢ (-7 ∈ ℤ → ((-7 mod 2) = 1 ↔ ¬ 2 ∥ -7)) | |
| 29 | 23, 27, 28 | mp2b 10 | . . 3 ⊢ ((-7 mod 2) = 1 ↔ ¬ 2 ∥ -7) |
| 30 | 26, 29 | mpbir 231 | . 2 ⊢ (-7 mod 2) = 1 |
| 31 | 9, 30 | pm3.2i 470 | 1 ⊢ ((5 mod 3) = 2 ∧ (-7 mod 2) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 1c1 11076 + caddc 11078 < clt 11215 -cneg 11413 ℕcn 12193 2c2 12248 3c3 12249 5c5 12251 7c7 12253 ℕ0cn0 12449 ℤcz 12536 ℤ≥cuz 12800 mod cmo 13838 ∥ cdvds 16229 ℙcprime 16648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-ico 13319 df-fz 13476 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-prm 16649 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |