| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-mod | Structured version Visualization version GIF version | ||
| Description: Example for df-mod 13780. (Contributed by AV, 3-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-mod | ⊢ ((5 mod 3) = 2 ∧ (-7 mod 2) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3p2e5 12277 | . . . . 5 ⊢ (3 + 2) = 5 | |
| 2 | 1 | eqcomi 2740 | . . . 4 ⊢ 5 = (3 + 2) |
| 3 | 2 | oveq1i 7362 | . . 3 ⊢ (5 mod 3) = ((3 + 2) mod 3) |
| 4 | 2nn0 12404 | . . . 4 ⊢ 2 ∈ ℕ0 | |
| 5 | 3nn 12210 | . . . 4 ⊢ 3 ∈ ℕ | |
| 6 | 2lt3 12298 | . . . 4 ⊢ 2 < 3 | |
| 7 | addmodid 13832 | . . . 4 ⊢ ((2 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 2 < 3) → ((3 + 2) mod 3) = 2) | |
| 8 | 4, 5, 6, 7 | mp3an 1463 | . . 3 ⊢ ((3 + 2) mod 3) = 2 |
| 9 | 3, 8 | eqtri 2754 | . 2 ⊢ (5 mod 3) = 2 |
| 10 | 2re 12205 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 11 | 2lt7 12316 | . . . . . 6 ⊢ 2 < 7 | |
| 12 | 10, 11 | ltneii 11232 | . . . . 5 ⊢ 2 ≠ 7 |
| 13 | 2nn 12204 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 14 | 1lt2 12297 | . . . . . . 7 ⊢ 1 < 2 | |
| 15 | eluz2b2 12825 | . . . . . . 7 ⊢ (2 ∈ (ℤ≥‘2) ↔ (2 ∈ ℕ ∧ 1 < 2)) | |
| 16 | 13, 14, 15 | mpbir2an 711 | . . . . . 6 ⊢ 2 ∈ (ℤ≥‘2) |
| 17 | 7prm 17028 | . . . . . 6 ⊢ 7 ∈ ℙ | |
| 18 | dvdsprm 16620 | . . . . . 6 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 7 ∈ ℙ) → (2 ∥ 7 ↔ 2 = 7)) | |
| 19 | 16, 17, 18 | mp2an 692 | . . . . 5 ⊢ (2 ∥ 7 ↔ 2 = 7) |
| 20 | 12, 19 | nemtbir 3024 | . . . 4 ⊢ ¬ 2 ∥ 7 |
| 21 | 2z 12510 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 22 | 7nn 12223 | . . . . . 6 ⊢ 7 ∈ ℕ | |
| 23 | 22 | nnzi 12502 | . . . . 5 ⊢ 7 ∈ ℤ |
| 24 | dvdsnegb 16190 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 7 ∈ ℤ) → (2 ∥ 7 ↔ 2 ∥ -7)) | |
| 25 | 21, 23, 24 | mp2an 692 | . . . 4 ⊢ (2 ∥ 7 ↔ 2 ∥ -7) |
| 26 | 20, 25 | mtbi 322 | . . 3 ⊢ ¬ 2 ∥ -7 |
| 27 | znegcl 12513 | . . . 4 ⊢ (7 ∈ ℤ → -7 ∈ ℤ) | |
| 28 | mod2eq1n2dvds 16264 | . . . 4 ⊢ (-7 ∈ ℤ → ((-7 mod 2) = 1 ↔ ¬ 2 ∥ -7)) | |
| 29 | 23, 27, 28 | mp2b 10 | . . 3 ⊢ ((-7 mod 2) = 1 ↔ ¬ 2 ∥ -7) |
| 30 | 26, 29 | mpbir 231 | . 2 ⊢ (-7 mod 2) = 1 |
| 31 | 9, 30 | pm3.2i 470 | 1 ⊢ ((5 mod 3) = 2 ∧ (-7 mod 2) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5093 ‘cfv 6487 (class class class)co 7352 1c1 11013 + caddc 11015 < clt 11152 -cneg 11351 ℕcn 12131 2c2 12186 3c3 12187 5c5 12189 7c7 12191 ℕ0cn0 12387 ℤcz 12474 ℤ≥cuz 12738 mod cmo 13779 ∥ cdvds 16169 ℙcprime 16588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-pre-sup 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9332 df-inf 9333 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-z 12475 df-dec 12595 df-uz 12739 df-rp 12897 df-ico 13257 df-fz 13414 df-fl 13702 df-mod 13780 df-seq 13915 df-exp 13975 df-cj 15012 df-re 15013 df-im 15014 df-sqrt 15148 df-abs 15149 df-dvds 16170 df-prm 16589 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |