![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-mod | Structured version Visualization version GIF version |
Description: Example for df-mod 12993. (Contributed by AV, 3-Sep-2021.) |
Ref | Expression |
---|---|
ex-mod | ⊢ ((5 mod 3) = 2 ∧ (-7 mod 2) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3p2e5 11538 | . . . . 5 ⊢ (3 + 2) = 5 | |
2 | 1 | eqcomi 2787 | . . . 4 ⊢ 5 = (3 + 2) |
3 | 2 | oveq1i 6934 | . . 3 ⊢ (5 mod 3) = ((3 + 2) mod 3) |
4 | 2nn0 11666 | . . . 4 ⊢ 2 ∈ ℕ0 | |
5 | 3nn 11459 | . . . 4 ⊢ 3 ∈ ℕ | |
6 | 2lt3 11559 | . . . 4 ⊢ 2 < 3 | |
7 | addmodid 13042 | . . . 4 ⊢ ((2 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 2 < 3) → ((3 + 2) mod 3) = 2) | |
8 | 4, 5, 6, 7 | mp3an 1534 | . . 3 ⊢ ((3 + 2) mod 3) = 2 |
9 | 3, 8 | eqtri 2802 | . 2 ⊢ (5 mod 3) = 2 |
10 | 2re 11454 | . . . . . 6 ⊢ 2 ∈ ℝ | |
11 | 2lt7 11577 | . . . . . 6 ⊢ 2 < 7 | |
12 | 10, 11 | ltneii 10491 | . . . . 5 ⊢ 2 ≠ 7 |
13 | 2nn 11453 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
14 | 1lt2 11558 | . . . . . . . 8 ⊢ 1 < 2 | |
15 | 13, 14 | pm3.2i 464 | . . . . . . 7 ⊢ (2 ∈ ℕ ∧ 1 < 2) |
16 | eluz2b2 12073 | . . . . . . 7 ⊢ (2 ∈ (ℤ≥‘2) ↔ (2 ∈ ℕ ∧ 1 < 2)) | |
17 | 15, 16 | mpbir 223 | . . . . . 6 ⊢ 2 ∈ (ℤ≥‘2) |
18 | 7prm 16227 | . . . . . 6 ⊢ 7 ∈ ℙ | |
19 | dvdsprm 15830 | . . . . . 6 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 7 ∈ ℙ) → (2 ∥ 7 ↔ 2 = 7)) | |
20 | 17, 18, 19 | mp2an 682 | . . . . 5 ⊢ (2 ∥ 7 ↔ 2 = 7) |
21 | 12, 20 | nemtbir 3065 | . . . 4 ⊢ ¬ 2 ∥ 7 |
22 | 2z 11766 | . . . . 5 ⊢ 2 ∈ ℤ | |
23 | 7nn 11476 | . . . . . 6 ⊢ 7 ∈ ℕ | |
24 | 23 | nnzi 11758 | . . . . 5 ⊢ 7 ∈ ℤ |
25 | dvdsnegb 15416 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 7 ∈ ℤ) → (2 ∥ 7 ↔ 2 ∥ -7)) | |
26 | 22, 24, 25 | mp2an 682 | . . . 4 ⊢ (2 ∥ 7 ↔ 2 ∥ -7) |
27 | 21, 26 | mtbi 314 | . . 3 ⊢ ¬ 2 ∥ -7 |
28 | znegcl 11769 | . . . 4 ⊢ (7 ∈ ℤ → -7 ∈ ℤ) | |
29 | mod2eq1n2dvds 15485 | . . . 4 ⊢ (-7 ∈ ℤ → ((-7 mod 2) = 1 ↔ ¬ 2 ∥ -7)) | |
30 | 24, 28, 29 | mp2b 10 | . . 3 ⊢ ((-7 mod 2) = 1 ↔ ¬ 2 ∥ -7) |
31 | 27, 30 | mpbir 223 | . 2 ⊢ (-7 mod 2) = 1 |
32 | 9, 31 | pm3.2i 464 | 1 ⊢ ((5 mod 3) = 2 ∧ (-7 mod 2) = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 class class class wbr 4888 ‘cfv 6137 (class class class)co 6924 1c1 10275 + caddc 10277 < clt 10413 -cneg 10609 ℕcn 11379 2c2 11435 3c3 11436 5c5 11438 7c7 11440 ℕ0cn0 11647 ℤcz 11733 ℤ≥cuz 11997 mod cmo 12992 ∥ cdvds 15396 ℙcprime 15800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-2o 7846 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-sup 8638 df-inf 8639 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11036 df-nn 11380 df-2 11443 df-3 11444 df-4 11445 df-5 11446 df-6 11447 df-7 11448 df-8 11449 df-9 11450 df-n0 11648 df-z 11734 df-dec 11851 df-uz 11998 df-rp 12143 df-ico 12498 df-fz 12649 df-fl 12917 df-mod 12993 df-seq 13125 df-exp 13184 df-cj 14252 df-re 14253 df-im 14254 df-sqrt 14388 df-abs 14389 df-dvds 15397 df-prm 15801 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |