MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfpwsdom Structured version   Visualization version   GIF version

Theorem cfpwsdom 10537
Description: A corollary of Konig's Theorem konigth 10522. Theorem 11.29 of [TakeutiZaring] p. 108. (Contributed by Mario Carneiro, 20-Mar-2013.)
Hypothesis
Ref Expression
cfpwsdom.1 𝐵 ∈ V
Assertion
Ref Expression
cfpwsdom (2o𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))))

Proof of Theorem cfpwsdom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7420 . . . . . . . . 9 (𝐵m (ℵ‘𝐴)) ∈ V
21cardid 10500 . . . . . . . 8 (card‘(𝐵m (ℵ‘𝐴))) ≈ (𝐵m (ℵ‘𝐴))
32ensymi 8975 . . . . . . 7 (𝐵m (ℵ‘𝐴)) ≈ (card‘(𝐵m (ℵ‘𝐴)))
4 fvex 6871 . . . . . . . . . . . . . 14 (ℵ‘𝐴) ∈ V
54canth2 9094 . . . . . . . . . . . . 13 (ℵ‘𝐴) ≺ 𝒫 (ℵ‘𝐴)
64pw2en 9048 . . . . . . . . . . . . 13 𝒫 (ℵ‘𝐴) ≈ (2om (ℵ‘𝐴))
7 sdomentr 9075 . . . . . . . . . . . . 13 (((ℵ‘𝐴) ≺ 𝒫 (ℵ‘𝐴) ∧ 𝒫 (ℵ‘𝐴) ≈ (2om (ℵ‘𝐴))) → (ℵ‘𝐴) ≺ (2om (ℵ‘𝐴)))
85, 6, 7mp2an 692 . . . . . . . . . . . 12 (ℵ‘𝐴) ≺ (2om (ℵ‘𝐴))
9 mapdom1 9106 . . . . . . . . . . . 12 (2o𝐵 → (2om (ℵ‘𝐴)) ≼ (𝐵m (ℵ‘𝐴)))
10 sdomdomtr 9074 . . . . . . . . . . . 12 (((ℵ‘𝐴) ≺ (2om (ℵ‘𝐴)) ∧ (2om (ℵ‘𝐴)) ≼ (𝐵m (ℵ‘𝐴))) → (ℵ‘𝐴) ≺ (𝐵m (ℵ‘𝐴)))
118, 9, 10sylancr 587 . . . . . . . . . . 11 (2o𝐵 → (ℵ‘𝐴) ≺ (𝐵m (ℵ‘𝐴)))
12 ficard 10518 . . . . . . . . . . . . . . . . 17 ((𝐵m (ℵ‘𝐴)) ∈ V → ((𝐵m (ℵ‘𝐴)) ∈ Fin ↔ (card‘(𝐵m (ℵ‘𝐴))) ∈ ω))
131, 12ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝐵m (ℵ‘𝐴)) ∈ Fin ↔ (card‘(𝐵m (ℵ‘𝐴))) ∈ ω)
14 fict 9606 . . . . . . . . . . . . . . . 16 ((𝐵m (ℵ‘𝐴)) ∈ Fin → (𝐵m (ℵ‘𝐴)) ≼ ω)
1513, 14sylbir 235 . . . . . . . . . . . . . . 15 ((card‘(𝐵m (ℵ‘𝐴))) ∈ ω → (𝐵m (ℵ‘𝐴)) ≼ ω)
16 alephgeom 10035 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
17 alephon 10022 . . . . . . . . . . . . . . . . 17 (ℵ‘𝐴) ∈ On
18 ssdomg 8971 . . . . . . . . . . . . . . . . 17 ((ℵ‘𝐴) ∈ On → (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴)))
1917, 18ax-mp 5 . . . . . . . . . . . . . . . 16 (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴))
2016, 19sylbi 217 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → ω ≼ (ℵ‘𝐴))
21 domtr 8978 . . . . . . . . . . . . . . 15 (((𝐵m (ℵ‘𝐴)) ≼ ω ∧ ω ≼ (ℵ‘𝐴)) → (𝐵m (ℵ‘𝐴)) ≼ (ℵ‘𝐴))
2215, 20, 21syl2an 596 . . . . . . . . . . . . . 14 (((card‘(𝐵m (ℵ‘𝐴))) ∈ ω ∧ 𝐴 ∈ On) → (𝐵m (ℵ‘𝐴)) ≼ (ℵ‘𝐴))
23 domnsym 9067 . . . . . . . . . . . . . 14 ((𝐵m (ℵ‘𝐴)) ≼ (ℵ‘𝐴) → ¬ (ℵ‘𝐴) ≺ (𝐵m (ℵ‘𝐴)))
2422, 23syl 17 . . . . . . . . . . . . 13 (((card‘(𝐵m (ℵ‘𝐴))) ∈ ω ∧ 𝐴 ∈ On) → ¬ (ℵ‘𝐴) ≺ (𝐵m (ℵ‘𝐴)))
2524expcom 413 . . . . . . . . . . . 12 (𝐴 ∈ On → ((card‘(𝐵m (ℵ‘𝐴))) ∈ ω → ¬ (ℵ‘𝐴) ≺ (𝐵m (ℵ‘𝐴))))
2625con2d 134 . . . . . . . . . . 11 (𝐴 ∈ On → ((ℵ‘𝐴) ≺ (𝐵m (ℵ‘𝐴)) → ¬ (card‘(𝐵m (ℵ‘𝐴))) ∈ ω))
27 cardidm 9912 . . . . . . . . . . . 12 (card‘(card‘(𝐵m (ℵ‘𝐴)))) = (card‘(𝐵m (ℵ‘𝐴)))
28 iscard3 10046 . . . . . . . . . . . . 13 ((card‘(card‘(𝐵m (ℵ‘𝐴)))) = (card‘(𝐵m (ℵ‘𝐴))) ↔ (card‘(𝐵m (ℵ‘𝐴))) ∈ (ω ∪ ran ℵ))
29 elun 4116 . . . . . . . . . . . . 13 ((card‘(𝐵m (ℵ‘𝐴))) ∈ (ω ∪ ran ℵ) ↔ ((card‘(𝐵m (ℵ‘𝐴))) ∈ ω ∨ (card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ))
30 df-or 848 . . . . . . . . . . . . 13 (((card‘(𝐵m (ℵ‘𝐴))) ∈ ω ∨ (card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ) ↔ (¬ (card‘(𝐵m (ℵ‘𝐴))) ∈ ω → (card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ))
3128, 29, 303bitri 297 . . . . . . . . . . . 12 ((card‘(card‘(𝐵m (ℵ‘𝐴)))) = (card‘(𝐵m (ℵ‘𝐴))) ↔ (¬ (card‘(𝐵m (ℵ‘𝐴))) ∈ ω → (card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ))
3227, 31mpbi 230 . . . . . . . . . . 11 (¬ (card‘(𝐵m (ℵ‘𝐴))) ∈ ω → (card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ)
3311, 26, 32syl56 36 . . . . . . . . . 10 (𝐴 ∈ On → (2o𝐵 → (card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ))
34 alephfnon 10018 . . . . . . . . . . 11 ℵ Fn On
35 fvelrnb 6921 . . . . . . . . . . 11 (ℵ Fn On → ((card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴)))))
3634, 35ax-mp 5 . . . . . . . . . 10 ((card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))))
3733, 36imbitrdi 251 . . . . . . . . 9 (𝐴 ∈ On → (2o𝐵 → ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴)))))
38 eqid 2729 . . . . . . . . . . . 12 (𝑦 ∈ (cf‘(ℵ‘𝑥)) ↦ (har‘(𝑧𝑦))) = (𝑦 ∈ (cf‘(ℵ‘𝑥)) ↦ (har‘(𝑧𝑦)))
3938pwcfsdom 10536 . . . . . . . . . . 11 (ℵ‘𝑥) ≺ ((ℵ‘𝑥) ↑m (cf‘(ℵ‘𝑥)))
40 id 22 . . . . . . . . . . . 12 ((ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))) → (ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))))
41 fveq2 6858 . . . . . . . . . . . . 13 ((ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))) → (cf‘(ℵ‘𝑥)) = (cf‘(card‘(𝐵m (ℵ‘𝐴)))))
4240, 41oveq12d 7405 . . . . . . . . . . . 12 ((ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))) → ((ℵ‘𝑥) ↑m (cf‘(ℵ‘𝑥))) = ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
4340, 42breq12d 5120 . . . . . . . . . . 11 ((ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))) → ((ℵ‘𝑥) ≺ ((ℵ‘𝑥) ↑m (cf‘(ℵ‘𝑥))) ↔ (card‘(𝐵m (ℵ‘𝐴))) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
4439, 43mpbii 233 . . . . . . . . . 10 ((ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))) → (card‘(𝐵m (ℵ‘𝐴))) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
4544rexlimivw 3130 . . . . . . . . 9 (∃𝑥 ∈ On (ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))) → (card‘(𝐵m (ℵ‘𝐴))) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
4637, 45syl6 35 . . . . . . . 8 (𝐴 ∈ On → (2o𝐵 → (card‘(𝐵m (ℵ‘𝐴))) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
4746imp 406 . . . . . . 7 ((𝐴 ∈ On ∧ 2o𝐵) → (card‘(𝐵m (ℵ‘𝐴))) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
48 ensdomtr 9077 . . . . . . 7 (((𝐵m (ℵ‘𝐴)) ≈ (card‘(𝐵m (ℵ‘𝐴))) ∧ (card‘(𝐵m (ℵ‘𝐴))) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴)))))) → (𝐵m (ℵ‘𝐴)) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
493, 47, 48sylancr 587 . . . . . 6 ((𝐴 ∈ On ∧ 2o𝐵) → (𝐵m (ℵ‘𝐴)) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
50 fvex 6871 . . . . . . . . 9 (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ∈ V
5150enref 8956 . . . . . . . 8 (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≈ (cf‘(card‘(𝐵m (ℵ‘𝐴))))
52 mapen 9105 . . . . . . . 8 (((card‘(𝐵m (ℵ‘𝐴))) ≈ (𝐵m (ℵ‘𝐴)) ∧ (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≈ (cf‘(card‘(𝐵m (ℵ‘𝐴))))) → ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≈ ((𝐵m (ℵ‘𝐴)) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
532, 51, 52mp2an 692 . . . . . . 7 ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≈ ((𝐵m (ℵ‘𝐴)) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴)))))
54 cfpwsdom.1 . . . . . . . 8 𝐵 ∈ V
55 mapxpen 9107 . . . . . . . 8 ((𝐵 ∈ V ∧ (ℵ‘𝐴) ∈ On ∧ (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ∈ V) → ((𝐵m (ℵ‘𝐴)) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≈ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
5654, 17, 50, 55mp3an 1463 . . . . . . 7 ((𝐵m (ℵ‘𝐴)) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≈ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
5753, 56entri 8979 . . . . . 6 ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≈ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
58 sdomentr 9075 . . . . . 6 (((𝐵m (ℵ‘𝐴)) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ∧ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≈ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))))) → (𝐵m (ℵ‘𝐴)) ≺ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
5949, 57, 58sylancl 586 . . . . 5 ((𝐴 ∈ On ∧ 2o𝐵) → (𝐵m (ℵ‘𝐴)) ≺ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
604xpdom2 9036 . . . . . . . . . 10 ((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) → ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≼ ((ℵ‘𝐴) × (ℵ‘𝐴)))
6116biimpi 216 . . . . . . . . . . 11 (𝐴 ∈ On → ω ⊆ (ℵ‘𝐴))
62 infxpen 9967 . . . . . . . . . . 11 (((ℵ‘𝐴) ∈ On ∧ ω ⊆ (ℵ‘𝐴)) → ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴))
6317, 61, 62sylancr 587 . . . . . . . . . 10 (𝐴 ∈ On → ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴))
64 domentr 8984 . . . . . . . . . 10 ((((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≼ ((ℵ‘𝐴) × (ℵ‘𝐴)) ∧ ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴)) → ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≼ (ℵ‘𝐴))
6560, 63, 64syl2an 596 . . . . . . . . 9 (((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) ∧ 𝐴 ∈ On) → ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≼ (ℵ‘𝐴))
66 nsuceq0 6417 . . . . . . . . . . 11 suc 1o ≠ ∅
67 dom0 9069 . . . . . . . . . . 11 (suc 1o ≼ ∅ ↔ suc 1o = ∅)
6866, 67nemtbir 3021 . . . . . . . . . 10 ¬ suc 1o ≼ ∅
69 df-2o 8435 . . . . . . . . . . . . . 14 2o = suc 1o
7069breq1i 5114 . . . . . . . . . . . . 13 (2o𝐵 ↔ suc 1o𝐵)
71 breq2 5111 . . . . . . . . . . . . 13 (𝐵 = ∅ → (suc 1o𝐵 ↔ suc 1o ≼ ∅))
7270, 71bitrid 283 . . . . . . . . . . . 12 (𝐵 = ∅ → (2o𝐵 ↔ suc 1o ≼ ∅))
7372biimpcd 249 . . . . . . . . . . 11 (2o𝐵 → (𝐵 = ∅ → suc 1o ≼ ∅))
7473adantld 490 . . . . . . . . . 10 (2o𝐵 → ((((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) = ∅ ∧ 𝐵 = ∅) → suc 1o ≼ ∅))
7568, 74mtoi 199 . . . . . . . . 9 (2o𝐵 → ¬ (((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) = ∅ ∧ 𝐵 = ∅))
76 mapdom2 9112 . . . . . . . . 9 ((((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≼ (ℵ‘𝐴) ∧ ¬ (((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) = ∅ ∧ 𝐵 = ∅)) → (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))) ≼ (𝐵m (ℵ‘𝐴)))
7765, 75, 76syl2an 596 . . . . . . . 8 ((((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) ∧ 𝐴 ∈ On) ∧ 2o𝐵) → (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))) ≼ (𝐵m (ℵ‘𝐴)))
78 domnsym 9067 . . . . . . . 8 ((𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))) ≼ (𝐵m (ℵ‘𝐴)) → ¬ (𝐵m (ℵ‘𝐴)) ≺ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
7977, 78syl 17 . . . . . . 7 ((((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) ∧ 𝐴 ∈ On) ∧ 2o𝐵) → ¬ (𝐵m (ℵ‘𝐴)) ≺ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
8079expl 457 . . . . . 6 ((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) → ((𝐴 ∈ On ∧ 2o𝐵) → ¬ (𝐵m (ℵ‘𝐴)) ≺ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))))))
8180com12 32 . . . . 5 ((𝐴 ∈ On ∧ 2o𝐵) → ((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) → ¬ (𝐵m (ℵ‘𝐴)) ≺ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))))))
8259, 81mt2d 136 . . . 4 ((𝐴 ∈ On ∧ 2o𝐵) → ¬ (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴))
83 domtri 10509 . . . . . 6 (((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ∈ V ∧ (ℵ‘𝐴) ∈ V) → ((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) ↔ ¬ (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
8450, 4, 83mp2an 692 . . . . 5 ((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) ↔ ¬ (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))))
8584biimpri 228 . . . 4 (¬ (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))) → (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴))
8682, 85nsyl2 141 . . 3 ((𝐴 ∈ On ∧ 2o𝐵) → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))))
8786ex 412 . 2 (𝐴 ∈ On → (2o𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
88 fndm 6621 . . . . . 6 (ℵ Fn On → dom ℵ = On)
8934, 88ax-mp 5 . . . . 5 dom ℵ = On
9089eleq2i 2820 . . . 4 (𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On)
91 ndmfv 6893 . . . 4 𝐴 ∈ dom ℵ → (ℵ‘𝐴) = ∅)
9290, 91sylnbir 331 . . 3 𝐴 ∈ On → (ℵ‘𝐴) = ∅)
93 1n0 8452 . . . . . 6 1o ≠ ∅
94 1oex 8444 . . . . . . 7 1o ∈ V
95940sdom 9072 . . . . . 6 (∅ ≺ 1o ↔ 1o ≠ ∅)
9693, 95mpbir 231 . . . . 5 ∅ ≺ 1o
97 id 22 . . . . . 6 ((ℵ‘𝐴) = ∅ → (ℵ‘𝐴) = ∅)
98 oveq2 7395 . . . . . . . . . . 11 ((ℵ‘𝐴) = ∅ → (𝐵m (ℵ‘𝐴)) = (𝐵m ∅))
99 map0e 8855 . . . . . . . . . . . 12 (𝐵 ∈ V → (𝐵m ∅) = 1o)
10054, 99ax-mp 5 . . . . . . . . . . 11 (𝐵m ∅) = 1o
10198, 100eqtrdi 2780 . . . . . . . . . 10 ((ℵ‘𝐴) = ∅ → (𝐵m (ℵ‘𝐴)) = 1o)
102101fveq2d 6862 . . . . . . . . 9 ((ℵ‘𝐴) = ∅ → (card‘(𝐵m (ℵ‘𝐴))) = (card‘1o))
103 1onn 8604 . . . . . . . . . 10 1o ∈ ω
104 cardnn 9916 . . . . . . . . . 10 (1o ∈ ω → (card‘1o) = 1o)
105103, 104ax-mp 5 . . . . . . . . 9 (card‘1o) = 1o
106102, 105eqtrdi 2780 . . . . . . . 8 ((ℵ‘𝐴) = ∅ → (card‘(𝐵m (ℵ‘𝐴))) = 1o)
107106fveq2d 6862 . . . . . . 7 ((ℵ‘𝐴) = ∅ → (cf‘(card‘(𝐵m (ℵ‘𝐴)))) = (cf‘1o))
108 df-1o 8434 . . . . . . . . 9 1o = suc ∅
109108fveq2i 6861 . . . . . . . 8 (cf‘1o) = (cf‘suc ∅)
110 0elon 6387 . . . . . . . . 9 ∅ ∈ On
111 cfsuc 10210 . . . . . . . . 9 (∅ ∈ On → (cf‘suc ∅) = 1o)
112110, 111ax-mp 5 . . . . . . . 8 (cf‘suc ∅) = 1o
113109, 112eqtri 2752 . . . . . . 7 (cf‘1o) = 1o
114107, 113eqtrdi 2780 . . . . . 6 ((ℵ‘𝐴) = ∅ → (cf‘(card‘(𝐵m (ℵ‘𝐴)))) = 1o)
11597, 114breq12d 5120 . . . . 5 ((ℵ‘𝐴) = ∅ → ((ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ↔ ∅ ≺ 1o))
11696, 115mpbiri 258 . . . 4 ((ℵ‘𝐴) = ∅ → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))))
117116a1d 25 . . 3 ((ℵ‘𝐴) = ∅ → (2o𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
11892, 117syl 17 . 2 𝐴 ∈ On → (2o𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
11987, 118pm2.61i 182 1 (2o𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3447  cun 3912  wss 3914  c0 4296  𝒫 cpw 4563   class class class wbr 5107  cmpt 5188   × cxp 5636  dom cdm 5638  ran crn 5639  Oncon0 6332  suc csuc 6334   Fn wfn 6506  cfv 6511  (class class class)co 7387  ωcom 7842  1oc1o 8427  2oc2o 8428  m cmap 8799  cen 8915  cdom 8916  csdm 8917  Fincfn 8918  harchar 9509  cardccrd 9888  cale 9889  cfccf 9890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-ac2 10416
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-smo 8315  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-oi 9463  df-har 9510  df-card 9892  df-aleph 9893  df-cf 9894  df-acn 9895  df-ac 10069
This theorem is referenced by:  alephom  10538
  Copyright terms: Public domain W3C validator