MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfpwsdom Structured version   Visualization version   GIF version

Theorem cfpwsdom 10478
Description: A corollary of Konig's Theorem konigth 10463. Theorem 11.29 of [TakeutiZaring] p. 108. (Contributed by Mario Carneiro, 20-Mar-2013.)
Hypothesis
Ref Expression
cfpwsdom.1 𝐵 ∈ V
Assertion
Ref Expression
cfpwsdom (2o𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))))

Proof of Theorem cfpwsdom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7382 . . . . . . . . 9 (𝐵m (ℵ‘𝐴)) ∈ V
21cardid 10441 . . . . . . . 8 (card‘(𝐵m (ℵ‘𝐴))) ≈ (𝐵m (ℵ‘𝐴))
32ensymi 8929 . . . . . . 7 (𝐵m (ℵ‘𝐴)) ≈ (card‘(𝐵m (ℵ‘𝐴)))
4 fvex 6835 . . . . . . . . . . . . . 14 (ℵ‘𝐴) ∈ V
54canth2 9047 . . . . . . . . . . . . 13 (ℵ‘𝐴) ≺ 𝒫 (ℵ‘𝐴)
64pw2en 9001 . . . . . . . . . . . . 13 𝒫 (ℵ‘𝐴) ≈ (2om (ℵ‘𝐴))
7 sdomentr 9028 . . . . . . . . . . . . 13 (((ℵ‘𝐴) ≺ 𝒫 (ℵ‘𝐴) ∧ 𝒫 (ℵ‘𝐴) ≈ (2om (ℵ‘𝐴))) → (ℵ‘𝐴) ≺ (2om (ℵ‘𝐴)))
85, 6, 7mp2an 692 . . . . . . . . . . . 12 (ℵ‘𝐴) ≺ (2om (ℵ‘𝐴))
9 mapdom1 9059 . . . . . . . . . . . 12 (2o𝐵 → (2om (ℵ‘𝐴)) ≼ (𝐵m (ℵ‘𝐴)))
10 sdomdomtr 9027 . . . . . . . . . . . 12 (((ℵ‘𝐴) ≺ (2om (ℵ‘𝐴)) ∧ (2om (ℵ‘𝐴)) ≼ (𝐵m (ℵ‘𝐴))) → (ℵ‘𝐴) ≺ (𝐵m (ℵ‘𝐴)))
118, 9, 10sylancr 587 . . . . . . . . . . 11 (2o𝐵 → (ℵ‘𝐴) ≺ (𝐵m (ℵ‘𝐴)))
12 ficard 10459 . . . . . . . . . . . . . . . . 17 ((𝐵m (ℵ‘𝐴)) ∈ V → ((𝐵m (ℵ‘𝐴)) ∈ Fin ↔ (card‘(𝐵m (ℵ‘𝐴))) ∈ ω))
131, 12ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝐵m (ℵ‘𝐴)) ∈ Fin ↔ (card‘(𝐵m (ℵ‘𝐴))) ∈ ω)
14 fict 9549 . . . . . . . . . . . . . . . 16 ((𝐵m (ℵ‘𝐴)) ∈ Fin → (𝐵m (ℵ‘𝐴)) ≼ ω)
1513, 14sylbir 235 . . . . . . . . . . . . . . 15 ((card‘(𝐵m (ℵ‘𝐴))) ∈ ω → (𝐵m (ℵ‘𝐴)) ≼ ω)
16 alephgeom 9976 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
17 alephon 9963 . . . . . . . . . . . . . . . . 17 (ℵ‘𝐴) ∈ On
18 ssdomg 8925 . . . . . . . . . . . . . . . . 17 ((ℵ‘𝐴) ∈ On → (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴)))
1917, 18ax-mp 5 . . . . . . . . . . . . . . . 16 (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴))
2016, 19sylbi 217 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → ω ≼ (ℵ‘𝐴))
21 domtr 8932 . . . . . . . . . . . . . . 15 (((𝐵m (ℵ‘𝐴)) ≼ ω ∧ ω ≼ (ℵ‘𝐴)) → (𝐵m (ℵ‘𝐴)) ≼ (ℵ‘𝐴))
2215, 20, 21syl2an 596 . . . . . . . . . . . . . 14 (((card‘(𝐵m (ℵ‘𝐴))) ∈ ω ∧ 𝐴 ∈ On) → (𝐵m (ℵ‘𝐴)) ≼ (ℵ‘𝐴))
23 domnsym 9020 . . . . . . . . . . . . . 14 ((𝐵m (ℵ‘𝐴)) ≼ (ℵ‘𝐴) → ¬ (ℵ‘𝐴) ≺ (𝐵m (ℵ‘𝐴)))
2422, 23syl 17 . . . . . . . . . . . . 13 (((card‘(𝐵m (ℵ‘𝐴))) ∈ ω ∧ 𝐴 ∈ On) → ¬ (ℵ‘𝐴) ≺ (𝐵m (ℵ‘𝐴)))
2524expcom 413 . . . . . . . . . . . 12 (𝐴 ∈ On → ((card‘(𝐵m (ℵ‘𝐴))) ∈ ω → ¬ (ℵ‘𝐴) ≺ (𝐵m (ℵ‘𝐴))))
2625con2d 134 . . . . . . . . . . 11 (𝐴 ∈ On → ((ℵ‘𝐴) ≺ (𝐵m (ℵ‘𝐴)) → ¬ (card‘(𝐵m (ℵ‘𝐴))) ∈ ω))
27 cardidm 9855 . . . . . . . . . . . 12 (card‘(card‘(𝐵m (ℵ‘𝐴)))) = (card‘(𝐵m (ℵ‘𝐴)))
28 iscard3 9987 . . . . . . . . . . . . 13 ((card‘(card‘(𝐵m (ℵ‘𝐴)))) = (card‘(𝐵m (ℵ‘𝐴))) ↔ (card‘(𝐵m (ℵ‘𝐴))) ∈ (ω ∪ ran ℵ))
29 elun 4104 . . . . . . . . . . . . 13 ((card‘(𝐵m (ℵ‘𝐴))) ∈ (ω ∪ ran ℵ) ↔ ((card‘(𝐵m (ℵ‘𝐴))) ∈ ω ∨ (card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ))
30 df-or 848 . . . . . . . . . . . . 13 (((card‘(𝐵m (ℵ‘𝐴))) ∈ ω ∨ (card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ) ↔ (¬ (card‘(𝐵m (ℵ‘𝐴))) ∈ ω → (card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ))
3128, 29, 303bitri 297 . . . . . . . . . . . 12 ((card‘(card‘(𝐵m (ℵ‘𝐴)))) = (card‘(𝐵m (ℵ‘𝐴))) ↔ (¬ (card‘(𝐵m (ℵ‘𝐴))) ∈ ω → (card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ))
3227, 31mpbi 230 . . . . . . . . . . 11 (¬ (card‘(𝐵m (ℵ‘𝐴))) ∈ ω → (card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ)
3311, 26, 32syl56 36 . . . . . . . . . 10 (𝐴 ∈ On → (2o𝐵 → (card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ))
34 alephfnon 9959 . . . . . . . . . . 11 ℵ Fn On
35 fvelrnb 6883 . . . . . . . . . . 11 (ℵ Fn On → ((card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴)))))
3634, 35ax-mp 5 . . . . . . . . . 10 ((card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))))
3733, 36imbitrdi 251 . . . . . . . . 9 (𝐴 ∈ On → (2o𝐵 → ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴)))))
38 eqid 2729 . . . . . . . . . . . 12 (𝑦 ∈ (cf‘(ℵ‘𝑥)) ↦ (har‘(𝑧𝑦))) = (𝑦 ∈ (cf‘(ℵ‘𝑥)) ↦ (har‘(𝑧𝑦)))
3938pwcfsdom 10477 . . . . . . . . . . 11 (ℵ‘𝑥) ≺ ((ℵ‘𝑥) ↑m (cf‘(ℵ‘𝑥)))
40 id 22 . . . . . . . . . . . 12 ((ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))) → (ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))))
41 fveq2 6822 . . . . . . . . . . . . 13 ((ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))) → (cf‘(ℵ‘𝑥)) = (cf‘(card‘(𝐵m (ℵ‘𝐴)))))
4240, 41oveq12d 7367 . . . . . . . . . . . 12 ((ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))) → ((ℵ‘𝑥) ↑m (cf‘(ℵ‘𝑥))) = ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
4340, 42breq12d 5105 . . . . . . . . . . 11 ((ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))) → ((ℵ‘𝑥) ≺ ((ℵ‘𝑥) ↑m (cf‘(ℵ‘𝑥))) ↔ (card‘(𝐵m (ℵ‘𝐴))) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
4439, 43mpbii 233 . . . . . . . . . 10 ((ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))) → (card‘(𝐵m (ℵ‘𝐴))) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
4544rexlimivw 3126 . . . . . . . . 9 (∃𝑥 ∈ On (ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))) → (card‘(𝐵m (ℵ‘𝐴))) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
4637, 45syl6 35 . . . . . . . 8 (𝐴 ∈ On → (2o𝐵 → (card‘(𝐵m (ℵ‘𝐴))) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
4746imp 406 . . . . . . 7 ((𝐴 ∈ On ∧ 2o𝐵) → (card‘(𝐵m (ℵ‘𝐴))) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
48 ensdomtr 9030 . . . . . . 7 (((𝐵m (ℵ‘𝐴)) ≈ (card‘(𝐵m (ℵ‘𝐴))) ∧ (card‘(𝐵m (ℵ‘𝐴))) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴)))))) → (𝐵m (ℵ‘𝐴)) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
493, 47, 48sylancr 587 . . . . . 6 ((𝐴 ∈ On ∧ 2o𝐵) → (𝐵m (ℵ‘𝐴)) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
50 fvex 6835 . . . . . . . . 9 (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ∈ V
5150enref 8910 . . . . . . . 8 (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≈ (cf‘(card‘(𝐵m (ℵ‘𝐴))))
52 mapen 9058 . . . . . . . 8 (((card‘(𝐵m (ℵ‘𝐴))) ≈ (𝐵m (ℵ‘𝐴)) ∧ (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≈ (cf‘(card‘(𝐵m (ℵ‘𝐴))))) → ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≈ ((𝐵m (ℵ‘𝐴)) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
532, 51, 52mp2an 692 . . . . . . 7 ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≈ ((𝐵m (ℵ‘𝐴)) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴)))))
54 cfpwsdom.1 . . . . . . . 8 𝐵 ∈ V
55 mapxpen 9060 . . . . . . . 8 ((𝐵 ∈ V ∧ (ℵ‘𝐴) ∈ On ∧ (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ∈ V) → ((𝐵m (ℵ‘𝐴)) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≈ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
5654, 17, 50, 55mp3an 1463 . . . . . . 7 ((𝐵m (ℵ‘𝐴)) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≈ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
5753, 56entri 8933 . . . . . 6 ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≈ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
58 sdomentr 9028 . . . . . 6 (((𝐵m (ℵ‘𝐴)) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ∧ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≈ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))))) → (𝐵m (ℵ‘𝐴)) ≺ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
5949, 57, 58sylancl 586 . . . . 5 ((𝐴 ∈ On ∧ 2o𝐵) → (𝐵m (ℵ‘𝐴)) ≺ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
604xpdom2 8989 . . . . . . . . . 10 ((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) → ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≼ ((ℵ‘𝐴) × (ℵ‘𝐴)))
6116biimpi 216 . . . . . . . . . . 11 (𝐴 ∈ On → ω ⊆ (ℵ‘𝐴))
62 infxpen 9908 . . . . . . . . . . 11 (((ℵ‘𝐴) ∈ On ∧ ω ⊆ (ℵ‘𝐴)) → ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴))
6317, 61, 62sylancr 587 . . . . . . . . . 10 (𝐴 ∈ On → ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴))
64 domentr 8938 . . . . . . . . . 10 ((((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≼ ((ℵ‘𝐴) × (ℵ‘𝐴)) ∧ ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴)) → ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≼ (ℵ‘𝐴))
6560, 63, 64syl2an 596 . . . . . . . . 9 (((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) ∧ 𝐴 ∈ On) → ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≼ (ℵ‘𝐴))
66 nsuceq0 6392 . . . . . . . . . . 11 suc 1o ≠ ∅
67 dom0 9022 . . . . . . . . . . 11 (suc 1o ≼ ∅ ↔ suc 1o = ∅)
6866, 67nemtbir 3021 . . . . . . . . . 10 ¬ suc 1o ≼ ∅
69 df-2o 8389 . . . . . . . . . . . . . 14 2o = suc 1o
7069breq1i 5099 . . . . . . . . . . . . 13 (2o𝐵 ↔ suc 1o𝐵)
71 breq2 5096 . . . . . . . . . . . . 13 (𝐵 = ∅ → (suc 1o𝐵 ↔ suc 1o ≼ ∅))
7270, 71bitrid 283 . . . . . . . . . . . 12 (𝐵 = ∅ → (2o𝐵 ↔ suc 1o ≼ ∅))
7372biimpcd 249 . . . . . . . . . . 11 (2o𝐵 → (𝐵 = ∅ → suc 1o ≼ ∅))
7473adantld 490 . . . . . . . . . 10 (2o𝐵 → ((((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) = ∅ ∧ 𝐵 = ∅) → suc 1o ≼ ∅))
7568, 74mtoi 199 . . . . . . . . 9 (2o𝐵 → ¬ (((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) = ∅ ∧ 𝐵 = ∅))
76 mapdom2 9065 . . . . . . . . 9 ((((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≼ (ℵ‘𝐴) ∧ ¬ (((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) = ∅ ∧ 𝐵 = ∅)) → (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))) ≼ (𝐵m (ℵ‘𝐴)))
7765, 75, 76syl2an 596 . . . . . . . 8 ((((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) ∧ 𝐴 ∈ On) ∧ 2o𝐵) → (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))) ≼ (𝐵m (ℵ‘𝐴)))
78 domnsym 9020 . . . . . . . 8 ((𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))) ≼ (𝐵m (ℵ‘𝐴)) → ¬ (𝐵m (ℵ‘𝐴)) ≺ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
7977, 78syl 17 . . . . . . 7 ((((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) ∧ 𝐴 ∈ On) ∧ 2o𝐵) → ¬ (𝐵m (ℵ‘𝐴)) ≺ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
8079expl 457 . . . . . 6 ((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) → ((𝐴 ∈ On ∧ 2o𝐵) → ¬ (𝐵m (ℵ‘𝐴)) ≺ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))))))
8180com12 32 . . . . 5 ((𝐴 ∈ On ∧ 2o𝐵) → ((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) → ¬ (𝐵m (ℵ‘𝐴)) ≺ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))))))
8259, 81mt2d 136 . . . 4 ((𝐴 ∈ On ∧ 2o𝐵) → ¬ (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴))
83 domtri 10450 . . . . . 6 (((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ∈ V ∧ (ℵ‘𝐴) ∈ V) → ((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) ↔ ¬ (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
8450, 4, 83mp2an 692 . . . . 5 ((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) ↔ ¬ (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))))
8584biimpri 228 . . . 4 (¬ (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))) → (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴))
8682, 85nsyl2 141 . . 3 ((𝐴 ∈ On ∧ 2o𝐵) → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))))
8786ex 412 . 2 (𝐴 ∈ On → (2o𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
88 fndm 6585 . . . . . 6 (ℵ Fn On → dom ℵ = On)
8934, 88ax-mp 5 . . . . 5 dom ℵ = On
9089eleq2i 2820 . . . 4 (𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On)
91 ndmfv 6855 . . . 4 𝐴 ∈ dom ℵ → (ℵ‘𝐴) = ∅)
9290, 91sylnbir 331 . . 3 𝐴 ∈ On → (ℵ‘𝐴) = ∅)
93 1n0 8406 . . . . . 6 1o ≠ ∅
94 1oex 8398 . . . . . . 7 1o ∈ V
95940sdom 9025 . . . . . 6 (∅ ≺ 1o ↔ 1o ≠ ∅)
9693, 95mpbir 231 . . . . 5 ∅ ≺ 1o
97 id 22 . . . . . 6 ((ℵ‘𝐴) = ∅ → (ℵ‘𝐴) = ∅)
98 oveq2 7357 . . . . . . . . . . 11 ((ℵ‘𝐴) = ∅ → (𝐵m (ℵ‘𝐴)) = (𝐵m ∅))
99 map0e 8809 . . . . . . . . . . . 12 (𝐵 ∈ V → (𝐵m ∅) = 1o)
10054, 99ax-mp 5 . . . . . . . . . . 11 (𝐵m ∅) = 1o
10198, 100eqtrdi 2780 . . . . . . . . . 10 ((ℵ‘𝐴) = ∅ → (𝐵m (ℵ‘𝐴)) = 1o)
102101fveq2d 6826 . . . . . . . . 9 ((ℵ‘𝐴) = ∅ → (card‘(𝐵m (ℵ‘𝐴))) = (card‘1o))
103 1onn 8558 . . . . . . . . . 10 1o ∈ ω
104 cardnn 9859 . . . . . . . . . 10 (1o ∈ ω → (card‘1o) = 1o)
105103, 104ax-mp 5 . . . . . . . . 9 (card‘1o) = 1o
106102, 105eqtrdi 2780 . . . . . . . 8 ((ℵ‘𝐴) = ∅ → (card‘(𝐵m (ℵ‘𝐴))) = 1o)
107106fveq2d 6826 . . . . . . 7 ((ℵ‘𝐴) = ∅ → (cf‘(card‘(𝐵m (ℵ‘𝐴)))) = (cf‘1o))
108 df-1o 8388 . . . . . . . . 9 1o = suc ∅
109108fveq2i 6825 . . . . . . . 8 (cf‘1o) = (cf‘suc ∅)
110 0elon 6362 . . . . . . . . 9 ∅ ∈ On
111 cfsuc 10151 . . . . . . . . 9 (∅ ∈ On → (cf‘suc ∅) = 1o)
112110, 111ax-mp 5 . . . . . . . 8 (cf‘suc ∅) = 1o
113109, 112eqtri 2752 . . . . . . 7 (cf‘1o) = 1o
114107, 113eqtrdi 2780 . . . . . 6 ((ℵ‘𝐴) = ∅ → (cf‘(card‘(𝐵m (ℵ‘𝐴)))) = 1o)
11597, 114breq12d 5105 . . . . 5 ((ℵ‘𝐴) = ∅ → ((ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ↔ ∅ ≺ 1o))
11696, 115mpbiri 258 . . . 4 ((ℵ‘𝐴) = ∅ → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))))
117116a1d 25 . . 3 ((ℵ‘𝐴) = ∅ → (2o𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
11892, 117syl 17 . 2 𝐴 ∈ On → (2o𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
11987, 118pm2.61i 182 1 (2o𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3436  cun 3901  wss 3903  c0 4284  𝒫 cpw 4551   class class class wbr 5092  cmpt 5173   × cxp 5617  dom cdm 5619  ran crn 5620  Oncon0 6307  suc csuc 6309   Fn wfn 6477  cfv 6482  (class class class)co 7349  ωcom 7799  1oc1o 8381  2oc2o 8382  m cmap 8753  cen 8869  cdom 8870  csdm 8871  Fincfn 8872  harchar 9448  cardccrd 9831  cale 9832  cfccf 9833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-ac2 10357
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-smo 8269  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-oi 9402  df-har 9449  df-card 9835  df-aleph 9836  df-cf 9837  df-acn 9838  df-ac 10010
This theorem is referenced by:  alephom  10479
  Copyright terms: Public domain W3C validator