MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfpwsdom Structured version   Visualization version   GIF version

Theorem cfpwsdom 10163
Description: A corollary of Konig's Theorem konigth 10148. Theorem 11.29 of [TakeutiZaring] p. 108. (Contributed by Mario Carneiro, 20-Mar-2013.)
Hypothesis
Ref Expression
cfpwsdom.1 𝐵 ∈ V
Assertion
Ref Expression
cfpwsdom (2o𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))))

Proof of Theorem cfpwsdom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7224 . . . . . . . . 9 (𝐵m (ℵ‘𝐴)) ∈ V
21cardid 10126 . . . . . . . 8 (card‘(𝐵m (ℵ‘𝐴))) ≈ (𝐵m (ℵ‘𝐴))
32ensymi 8656 . . . . . . 7 (𝐵m (ℵ‘𝐴)) ≈ (card‘(𝐵m (ℵ‘𝐴)))
4 fvex 6708 . . . . . . . . . . . . . 14 (ℵ‘𝐴) ∈ V
54canth2 8777 . . . . . . . . . . . . 13 (ℵ‘𝐴) ≺ 𝒫 (ℵ‘𝐴)
64pw2en 8730 . . . . . . . . . . . . 13 𝒫 (ℵ‘𝐴) ≈ (2om (ℵ‘𝐴))
7 sdomentr 8758 . . . . . . . . . . . . 13 (((ℵ‘𝐴) ≺ 𝒫 (ℵ‘𝐴) ∧ 𝒫 (ℵ‘𝐴) ≈ (2om (ℵ‘𝐴))) → (ℵ‘𝐴) ≺ (2om (ℵ‘𝐴)))
85, 6, 7mp2an 692 . . . . . . . . . . . 12 (ℵ‘𝐴) ≺ (2om (ℵ‘𝐴))
9 mapdom1 8789 . . . . . . . . . . . 12 (2o𝐵 → (2om (ℵ‘𝐴)) ≼ (𝐵m (ℵ‘𝐴)))
10 sdomdomtr 8757 . . . . . . . . . . . 12 (((ℵ‘𝐴) ≺ (2om (ℵ‘𝐴)) ∧ (2om (ℵ‘𝐴)) ≼ (𝐵m (ℵ‘𝐴))) → (ℵ‘𝐴) ≺ (𝐵m (ℵ‘𝐴)))
118, 9, 10sylancr 590 . . . . . . . . . . 11 (2o𝐵 → (ℵ‘𝐴) ≺ (𝐵m (ℵ‘𝐴)))
12 ficard 10144 . . . . . . . . . . . . . . . . 17 ((𝐵m (ℵ‘𝐴)) ∈ V → ((𝐵m (ℵ‘𝐴)) ∈ Fin ↔ (card‘(𝐵m (ℵ‘𝐴))) ∈ ω))
131, 12ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝐵m (ℵ‘𝐴)) ∈ Fin ↔ (card‘(𝐵m (ℵ‘𝐴))) ∈ ω)
14 fict 9246 . . . . . . . . . . . . . . . 16 ((𝐵m (ℵ‘𝐴)) ∈ Fin → (𝐵m (ℵ‘𝐴)) ≼ ω)
1513, 14sylbir 238 . . . . . . . . . . . . . . 15 ((card‘(𝐵m (ℵ‘𝐴))) ∈ ω → (𝐵m (ℵ‘𝐴)) ≼ ω)
16 alephgeom 9661 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
17 alephon 9648 . . . . . . . . . . . . . . . . 17 (ℵ‘𝐴) ∈ On
18 ssdomg 8652 . . . . . . . . . . . . . . . . 17 ((ℵ‘𝐴) ∈ On → (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴)))
1917, 18ax-mp 5 . . . . . . . . . . . . . . . 16 (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴))
2016, 19sylbi 220 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → ω ≼ (ℵ‘𝐴))
21 domtr 8659 . . . . . . . . . . . . . . 15 (((𝐵m (ℵ‘𝐴)) ≼ ω ∧ ω ≼ (ℵ‘𝐴)) → (𝐵m (ℵ‘𝐴)) ≼ (ℵ‘𝐴))
2215, 20, 21syl2an 599 . . . . . . . . . . . . . 14 (((card‘(𝐵m (ℵ‘𝐴))) ∈ ω ∧ 𝐴 ∈ On) → (𝐵m (ℵ‘𝐴)) ≼ (ℵ‘𝐴))
23 domnsym 8750 . . . . . . . . . . . . . 14 ((𝐵m (ℵ‘𝐴)) ≼ (ℵ‘𝐴) → ¬ (ℵ‘𝐴) ≺ (𝐵m (ℵ‘𝐴)))
2422, 23syl 17 . . . . . . . . . . . . 13 (((card‘(𝐵m (ℵ‘𝐴))) ∈ ω ∧ 𝐴 ∈ On) → ¬ (ℵ‘𝐴) ≺ (𝐵m (ℵ‘𝐴)))
2524expcom 417 . . . . . . . . . . . 12 (𝐴 ∈ On → ((card‘(𝐵m (ℵ‘𝐴))) ∈ ω → ¬ (ℵ‘𝐴) ≺ (𝐵m (ℵ‘𝐴))))
2625con2d 136 . . . . . . . . . . 11 (𝐴 ∈ On → ((ℵ‘𝐴) ≺ (𝐵m (ℵ‘𝐴)) → ¬ (card‘(𝐵m (ℵ‘𝐴))) ∈ ω))
27 cardidm 9540 . . . . . . . . . . . 12 (card‘(card‘(𝐵m (ℵ‘𝐴)))) = (card‘(𝐵m (ℵ‘𝐴)))
28 iscard3 9672 . . . . . . . . . . . . 13 ((card‘(card‘(𝐵m (ℵ‘𝐴)))) = (card‘(𝐵m (ℵ‘𝐴))) ↔ (card‘(𝐵m (ℵ‘𝐴))) ∈ (ω ∪ ran ℵ))
29 elun 4049 . . . . . . . . . . . . 13 ((card‘(𝐵m (ℵ‘𝐴))) ∈ (ω ∪ ran ℵ) ↔ ((card‘(𝐵m (ℵ‘𝐴))) ∈ ω ∨ (card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ))
30 df-or 848 . . . . . . . . . . . . 13 (((card‘(𝐵m (ℵ‘𝐴))) ∈ ω ∨ (card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ) ↔ (¬ (card‘(𝐵m (ℵ‘𝐴))) ∈ ω → (card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ))
3128, 29, 303bitri 300 . . . . . . . . . . . 12 ((card‘(card‘(𝐵m (ℵ‘𝐴)))) = (card‘(𝐵m (ℵ‘𝐴))) ↔ (¬ (card‘(𝐵m (ℵ‘𝐴))) ∈ ω → (card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ))
3227, 31mpbi 233 . . . . . . . . . . 11 (¬ (card‘(𝐵m (ℵ‘𝐴))) ∈ ω → (card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ)
3311, 26, 32syl56 36 . . . . . . . . . 10 (𝐴 ∈ On → (2o𝐵 → (card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ))
34 alephfnon 9644 . . . . . . . . . . 11 ℵ Fn On
35 fvelrnb 6751 . . . . . . . . . . 11 (ℵ Fn On → ((card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴)))))
3634, 35ax-mp 5 . . . . . . . . . 10 ((card‘(𝐵m (ℵ‘𝐴))) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))))
3733, 36syl6ib 254 . . . . . . . . 9 (𝐴 ∈ On → (2o𝐵 → ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴)))))
38 eqid 2736 . . . . . . . . . . . 12 (𝑦 ∈ (cf‘(ℵ‘𝑥)) ↦ (har‘(𝑧𝑦))) = (𝑦 ∈ (cf‘(ℵ‘𝑥)) ↦ (har‘(𝑧𝑦)))
3938pwcfsdom 10162 . . . . . . . . . . 11 (ℵ‘𝑥) ≺ ((ℵ‘𝑥) ↑m (cf‘(ℵ‘𝑥)))
40 id 22 . . . . . . . . . . . 12 ((ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))) → (ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))))
41 fveq2 6695 . . . . . . . . . . . . 13 ((ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))) → (cf‘(ℵ‘𝑥)) = (cf‘(card‘(𝐵m (ℵ‘𝐴)))))
4240, 41oveq12d 7209 . . . . . . . . . . . 12 ((ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))) → ((ℵ‘𝑥) ↑m (cf‘(ℵ‘𝑥))) = ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
4340, 42breq12d 5052 . . . . . . . . . . 11 ((ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))) → ((ℵ‘𝑥) ≺ ((ℵ‘𝑥) ↑m (cf‘(ℵ‘𝑥))) ↔ (card‘(𝐵m (ℵ‘𝐴))) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
4439, 43mpbii 236 . . . . . . . . . 10 ((ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))) → (card‘(𝐵m (ℵ‘𝐴))) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
4544rexlimivw 3191 . . . . . . . . 9 (∃𝑥 ∈ On (ℵ‘𝑥) = (card‘(𝐵m (ℵ‘𝐴))) → (card‘(𝐵m (ℵ‘𝐴))) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
4637, 45syl6 35 . . . . . . . 8 (𝐴 ∈ On → (2o𝐵 → (card‘(𝐵m (ℵ‘𝐴))) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
4746imp 410 . . . . . . 7 ((𝐴 ∈ On ∧ 2o𝐵) → (card‘(𝐵m (ℵ‘𝐴))) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
48 ensdomtr 8760 . . . . . . 7 (((𝐵m (ℵ‘𝐴)) ≈ (card‘(𝐵m (ℵ‘𝐴))) ∧ (card‘(𝐵m (ℵ‘𝐴))) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴)))))) → (𝐵m (ℵ‘𝐴)) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
493, 47, 48sylancr 590 . . . . . 6 ((𝐴 ∈ On ∧ 2o𝐵) → (𝐵m (ℵ‘𝐴)) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
50 fvex 6708 . . . . . . . . 9 (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ∈ V
5150enref 8639 . . . . . . . 8 (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≈ (cf‘(card‘(𝐵m (ℵ‘𝐴))))
52 mapen 8788 . . . . . . . 8 (((card‘(𝐵m (ℵ‘𝐴))) ≈ (𝐵m (ℵ‘𝐴)) ∧ (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≈ (cf‘(card‘(𝐵m (ℵ‘𝐴))))) → ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≈ ((𝐵m (ℵ‘𝐴)) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
532, 51, 52mp2an 692 . . . . . . 7 ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≈ ((𝐵m (ℵ‘𝐴)) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴)))))
54 cfpwsdom.1 . . . . . . . 8 𝐵 ∈ V
55 mapxpen 8790 . . . . . . . 8 ((𝐵 ∈ V ∧ (ℵ‘𝐴) ∈ On ∧ (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ∈ V) → ((𝐵m (ℵ‘𝐴)) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≈ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
5654, 17, 50, 55mp3an 1463 . . . . . . 7 ((𝐵m (ℵ‘𝐴)) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≈ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
5753, 56entri 8660 . . . . . 6 ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≈ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
58 sdomentr 8758 . . . . . 6 (((𝐵m (ℵ‘𝐴)) ≺ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ∧ ((card‘(𝐵m (ℵ‘𝐴))) ↑m (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≈ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))))) → (𝐵m (ℵ‘𝐴)) ≺ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
5949, 57, 58sylancl 589 . . . . 5 ((𝐴 ∈ On ∧ 2o𝐵) → (𝐵m (ℵ‘𝐴)) ≺ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
604xpdom2 8718 . . . . . . . . . 10 ((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) → ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≼ ((ℵ‘𝐴) × (ℵ‘𝐴)))
6116biimpi 219 . . . . . . . . . . 11 (𝐴 ∈ On → ω ⊆ (ℵ‘𝐴))
62 infxpen 9593 . . . . . . . . . . 11 (((ℵ‘𝐴) ∈ On ∧ ω ⊆ (ℵ‘𝐴)) → ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴))
6317, 61, 62sylancr 590 . . . . . . . . . 10 (𝐴 ∈ On → ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴))
64 domentr 8665 . . . . . . . . . 10 ((((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≼ ((ℵ‘𝐴) × (ℵ‘𝐴)) ∧ ((ℵ‘𝐴) × (ℵ‘𝐴)) ≈ (ℵ‘𝐴)) → ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≼ (ℵ‘𝐴))
6560, 63, 64syl2an 599 . . . . . . . . 9 (((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) ∧ 𝐴 ∈ On) → ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≼ (ℵ‘𝐴))
66 nsuceq0 6271 . . . . . . . . . . 11 suc 1o ≠ ∅
67 dom0 8752 . . . . . . . . . . 11 (suc 1o ≼ ∅ ↔ suc 1o = ∅)
6866, 67nemtbir 3027 . . . . . . . . . 10 ¬ suc 1o ≼ ∅
69 df-2o 8181 . . . . . . . . . . . . . 14 2o = suc 1o
7069breq1i 5046 . . . . . . . . . . . . 13 (2o𝐵 ↔ suc 1o𝐵)
71 breq2 5043 . . . . . . . . . . . . 13 (𝐵 = ∅ → (suc 1o𝐵 ↔ suc 1o ≼ ∅))
7270, 71syl5bb 286 . . . . . . . . . . . 12 (𝐵 = ∅ → (2o𝐵 ↔ suc 1o ≼ ∅))
7372biimpcd 252 . . . . . . . . . . 11 (2o𝐵 → (𝐵 = ∅ → suc 1o ≼ ∅))
7473adantld 494 . . . . . . . . . 10 (2o𝐵 → ((((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) = ∅ ∧ 𝐵 = ∅) → suc 1o ≼ ∅))
7568, 74mtoi 202 . . . . . . . . 9 (2o𝐵 → ¬ (((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) = ∅ ∧ 𝐵 = ∅))
76 mapdom2 8795 . . . . . . . . 9 ((((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) ≼ (ℵ‘𝐴) ∧ ¬ (((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))) = ∅ ∧ 𝐵 = ∅)) → (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))) ≼ (𝐵m (ℵ‘𝐴)))
7765, 75, 76syl2an 599 . . . . . . . 8 ((((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) ∧ 𝐴 ∈ On) ∧ 2o𝐵) → (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))) ≼ (𝐵m (ℵ‘𝐴)))
78 domnsym 8750 . . . . . . . 8 ((𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))) ≼ (𝐵m (ℵ‘𝐴)) → ¬ (𝐵m (ℵ‘𝐴)) ≺ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
7977, 78syl 17 . . . . . . 7 ((((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) ∧ 𝐴 ∈ On) ∧ 2o𝐵) → ¬ (𝐵m (ℵ‘𝐴)) ≺ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴)))))))
8079expl 461 . . . . . 6 ((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) → ((𝐴 ∈ On ∧ 2o𝐵) → ¬ (𝐵m (ℵ‘𝐴)) ≺ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))))))
8180com12 32 . . . . 5 ((𝐴 ∈ On ∧ 2o𝐵) → ((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) → ¬ (𝐵m (ℵ‘𝐴)) ≺ (𝐵m ((ℵ‘𝐴) × (cf‘(card‘(𝐵m (ℵ‘𝐴))))))))
8259, 81mt2d 138 . . . 4 ((𝐴 ∈ On ∧ 2o𝐵) → ¬ (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴))
83 domtri 10135 . . . . . 6 (((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ∈ V ∧ (ℵ‘𝐴) ∈ V) → ((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) ↔ ¬ (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
8450, 4, 83mp2an 692 . . . . 5 ((cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴) ↔ ¬ (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))))
8584biimpri 231 . . . 4 (¬ (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))) → (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ≼ (ℵ‘𝐴))
8682, 85nsyl2 143 . . 3 ((𝐴 ∈ On ∧ 2o𝐵) → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))))
8786ex 416 . 2 (𝐴 ∈ On → (2o𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
88 fndm 6459 . . . . . 6 (ℵ Fn On → dom ℵ = On)
8934, 88ax-mp 5 . . . . 5 dom ℵ = On
9089eleq2i 2822 . . . 4 (𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On)
91 ndmfv 6725 . . . 4 𝐴 ∈ dom ℵ → (ℵ‘𝐴) = ∅)
9290, 91sylnbir 334 . . 3 𝐴 ∈ On → (ℵ‘𝐴) = ∅)
93 1n0 8199 . . . . . 6 1o ≠ ∅
94 1oex 8193 . . . . . . 7 1o ∈ V
95940sdom 8755 . . . . . 6 (∅ ≺ 1o ↔ 1o ≠ ∅)
9693, 95mpbir 234 . . . . 5 ∅ ≺ 1o
97 id 22 . . . . . 6 ((ℵ‘𝐴) = ∅ → (ℵ‘𝐴) = ∅)
98 oveq2 7199 . . . . . . . . . . 11 ((ℵ‘𝐴) = ∅ → (𝐵m (ℵ‘𝐴)) = (𝐵m ∅))
99 map0e 8541 . . . . . . . . . . . 12 (𝐵 ∈ V → (𝐵m ∅) = 1o)
10054, 99ax-mp 5 . . . . . . . . . . 11 (𝐵m ∅) = 1o
10198, 100eqtrdi 2787 . . . . . . . . . 10 ((ℵ‘𝐴) = ∅ → (𝐵m (ℵ‘𝐴)) = 1o)
102101fveq2d 6699 . . . . . . . . 9 ((ℵ‘𝐴) = ∅ → (card‘(𝐵m (ℵ‘𝐴))) = (card‘1o))
103 1onn 8345 . . . . . . . . . 10 1o ∈ ω
104 cardnn 9544 . . . . . . . . . 10 (1o ∈ ω → (card‘1o) = 1o)
105103, 104ax-mp 5 . . . . . . . . 9 (card‘1o) = 1o
106102, 105eqtrdi 2787 . . . . . . . 8 ((ℵ‘𝐴) = ∅ → (card‘(𝐵m (ℵ‘𝐴))) = 1o)
107106fveq2d 6699 . . . . . . 7 ((ℵ‘𝐴) = ∅ → (cf‘(card‘(𝐵m (ℵ‘𝐴)))) = (cf‘1o))
108 df-1o 8180 . . . . . . . . 9 1o = suc ∅
109108fveq2i 6698 . . . . . . . 8 (cf‘1o) = (cf‘suc ∅)
110 0elon 6244 . . . . . . . . 9 ∅ ∈ On
111 cfsuc 9836 . . . . . . . . 9 (∅ ∈ On → (cf‘suc ∅) = 1o)
112110, 111ax-mp 5 . . . . . . . 8 (cf‘suc ∅) = 1o
113109, 112eqtri 2759 . . . . . . 7 (cf‘1o) = 1o
114107, 113eqtrdi 2787 . . . . . 6 ((ℵ‘𝐴) = ∅ → (cf‘(card‘(𝐵m (ℵ‘𝐴)))) = 1o)
11597, 114breq12d 5052 . . . . 5 ((ℵ‘𝐴) = ∅ → ((ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))) ↔ ∅ ≺ 1o))
11696, 115mpbiri 261 . . . 4 ((ℵ‘𝐴) = ∅ → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))))
117116a1d 25 . . 3 ((ℵ‘𝐴) = ∅ → (2o𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
11892, 117syl 17 . 2 𝐴 ∈ On → (2o𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴))))))
11987, 118pm2.61i 185 1 (2o𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵m (ℵ‘𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2112  wne 2932  wrex 3052  Vcvv 3398  cun 3851  wss 3853  c0 4223  𝒫 cpw 4499   class class class wbr 5039  cmpt 5120   × cxp 5534  dom cdm 5536  ran crn 5537  Oncon0 6191  suc csuc 6193   Fn wfn 6353  cfv 6358  (class class class)co 7191  ωcom 7622  1oc1o 8173  2oc2o 8174  m cmap 8486  cen 8601  cdom 8602  csdm 8603  Fincfn 8604  harchar 9150  cardccrd 9516  cale 9517  cfccf 9518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-ac2 10042
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-smo 8061  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-map 8488  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-oi 9104  df-har 9151  df-card 9520  df-aleph 9521  df-cf 9522  df-acn 9523  df-ac 9695
This theorem is referenced by:  alephom  10164
  Copyright terms: Public domain W3C validator