Proof of Theorem ord2eln012
| Step | Hyp | Ref
| Expression |
| 1 | | ne0i 4321 |
. . 3
⊢
(2o ∈ 𝐴 → 𝐴 ≠ ∅) |
| 2 | | 2on0 8501 |
. . . . . 6
⊢
2o ≠ ∅ |
| 3 | | el1o 8512 |
. . . . . 6
⊢
(2o ∈ 1o ↔ 2o =
∅) |
| 4 | 2, 3 | nemtbir 3029 |
. . . . 5
⊢ ¬
2o ∈ 1o |
| 5 | | eleq2 2824 |
. . . . 5
⊢ (𝐴 = 1o →
(2o ∈ 𝐴
↔ 2o ∈ 1o)) |
| 6 | 4, 5 | mtbiri 327 |
. . . 4
⊢ (𝐴 = 1o → ¬
2o ∈ 𝐴) |
| 7 | 6 | necon2ai 2962 |
. . 3
⊢
(2o ∈ 𝐴 → 𝐴 ≠ 1o) |
| 8 | | 2on 8499 |
. . . . . 6
⊢
2o ∈ On |
| 9 | 8 | onirri 6472 |
. . . . 5
⊢ ¬
2o ∈ 2o |
| 10 | | eleq2 2824 |
. . . . 5
⊢ (𝐴 = 2o →
(2o ∈ 𝐴
↔ 2o ∈ 2o)) |
| 11 | 9, 10 | mtbiri 327 |
. . . 4
⊢ (𝐴 = 2o → ¬
2o ∈ 𝐴) |
| 12 | 11 | necon2ai 2962 |
. . 3
⊢
(2o ∈ 𝐴 → 𝐴 ≠ 2o) |
| 13 | 1, 7, 12 | 3jca 1128 |
. 2
⊢
(2o ∈ 𝐴 → (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o)) |
| 14 | | nesym 2989 |
. . . . . . 7
⊢ (𝐴 ≠ 2o ↔ ¬
2o = 𝐴) |
| 15 | 14 | biimpi 216 |
. . . . . 6
⊢ (𝐴 ≠ 2o → ¬
2o = 𝐴) |
| 16 | 15 | 3ad2ant3 1135 |
. . . . 5
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o) →
¬ 2o = 𝐴) |
| 17 | | simp1 1136 |
. . . . . . 7
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o) →
𝐴 ≠
∅) |
| 18 | | simp2 1137 |
. . . . . . 7
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o) →
𝐴 ≠
1o) |
| 19 | 17, 18 | nelprd 4638 |
. . . . . 6
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o) →
¬ 𝐴 ∈ {∅,
1o}) |
| 20 | | df2o3 8493 |
. . . . . . 7
⊢
2o = {∅, 1o} |
| 21 | 20 | eleq2i 2827 |
. . . . . 6
⊢ (𝐴 ∈ 2o ↔
𝐴 ∈ {∅,
1o}) |
| 22 | 19, 21 | sylnibr 329 |
. . . . 5
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o) →
¬ 𝐴 ∈
2o) |
| 23 | 16, 22 | jca 511 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o) →
(¬ 2o = 𝐴
∧ ¬ 𝐴 ∈
2o)) |
| 24 | | pm4.56 990 |
. . . 4
⊢ ((¬
2o = 𝐴 ∧
¬ 𝐴 ∈
2o) ↔ ¬ (2o = 𝐴 ∨ 𝐴 ∈ 2o)) |
| 25 | 23, 24 | sylib 218 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o) →
¬ (2o = 𝐴
∨ 𝐴 ∈
2o)) |
| 26 | 8 | onordi 6470 |
. . . 4
⊢ Ord
2o |
| 27 | | ordtri2 6392 |
. . . 4
⊢ ((Ord
2o ∧ Ord 𝐴)
→ (2o ∈ 𝐴 ↔ ¬ (2o = 𝐴 ∨ 𝐴 ∈ 2o))) |
| 28 | 26, 27 | mpan 690 |
. . 3
⊢ (Ord
𝐴 → (2o
∈ 𝐴 ↔ ¬
(2o = 𝐴 ∨
𝐴 ∈
2o))) |
| 29 | 25, 28 | imbitrrid 246 |
. 2
⊢ (Ord
𝐴 → ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o) →
2o ∈ 𝐴)) |
| 30 | 13, 29 | impbid2 226 |
1
⊢ (Ord
𝐴 → (2o
∈ 𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠
2o))) |