MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ord2eln012 Structured version   Visualization version   GIF version

Theorem ord2eln012 8447
Description: An ordinal that is not 0, 1, or 2 contains 2. (Contributed by BTernaryTau, 1-Dec-2024.)
Assertion
Ref Expression
ord2eln012 (Ord 𝐴 → (2o𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o𝐴 ≠ 2o)))

Proof of Theorem ord2eln012
StepHypRef Expression
1 ne0i 4298 . . 3 (2o𝐴𝐴 ≠ ∅)
2 2on0 8432 . . . . . 6 2o ≠ ∅
3 el1o 8445 . . . . . 6 (2o ∈ 1o ↔ 2o = ∅)
42, 3nemtbir 3037 . . . . 5 ¬ 2o ∈ 1o
5 eleq2 2823 . . . . 5 (𝐴 = 1o → (2o𝐴 ↔ 2o ∈ 1o))
64, 5mtbiri 327 . . . 4 (𝐴 = 1o → ¬ 2o𝐴)
76necon2ai 2970 . . 3 (2o𝐴𝐴 ≠ 1o)
8 2on 8430 . . . . . 6 2o ∈ On
98onirri 6434 . . . . 5 ¬ 2o ∈ 2o
10 eleq2 2823 . . . . 5 (𝐴 = 2o → (2o𝐴 ↔ 2o ∈ 2o))
119, 10mtbiri 327 . . . 4 (𝐴 = 2o → ¬ 2o𝐴)
1211necon2ai 2970 . . 3 (2o𝐴𝐴 ≠ 2o)
131, 7, 123jca 1129 . 2 (2o𝐴 → (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o𝐴 ≠ 2o))
14 nesym 2997 . . . . . . 7 (𝐴 ≠ 2o ↔ ¬ 2o = 𝐴)
1514biimpi 215 . . . . . 6 (𝐴 ≠ 2o → ¬ 2o = 𝐴)
16153ad2ant3 1136 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o𝐴 ≠ 2o) → ¬ 2o = 𝐴)
17 simp1 1137 . . . . . . 7 ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o𝐴 ≠ 2o) → 𝐴 ≠ ∅)
18 simp2 1138 . . . . . . 7 ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o𝐴 ≠ 2o) → 𝐴 ≠ 1o)
1917, 18nelprd 4621 . . . . . 6 ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o𝐴 ≠ 2o) → ¬ 𝐴 ∈ {∅, 1o})
20 df2o3 8424 . . . . . . 7 2o = {∅, 1o}
2120eleq2i 2826 . . . . . 6 (𝐴 ∈ 2o𝐴 ∈ {∅, 1o})
2219, 21sylnibr 329 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o𝐴 ≠ 2o) → ¬ 𝐴 ∈ 2o)
2316, 22jca 513 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o𝐴 ≠ 2o) → (¬ 2o = 𝐴 ∧ ¬ 𝐴 ∈ 2o))
24 pm4.56 988 . . . 4 ((¬ 2o = 𝐴 ∧ ¬ 𝐴 ∈ 2o) ↔ ¬ (2o = 𝐴𝐴 ∈ 2o))
2523, 24sylib 217 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o𝐴 ≠ 2o) → ¬ (2o = 𝐴𝐴 ∈ 2o))
268onordi 6432 . . . 4 Ord 2o
27 ordtri2 6356 . . . 4 ((Ord 2o ∧ Ord 𝐴) → (2o𝐴 ↔ ¬ (2o = 𝐴𝐴 ∈ 2o)))
2826, 27mpan 689 . . 3 (Ord 𝐴 → (2o𝐴 ↔ ¬ (2o = 𝐴𝐴 ∈ 2o)))
2925, 28imbitrrid 245 . 2 (Ord 𝐴 → ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o𝐴 ≠ 2o) → 2o𝐴))
3013, 29impbid2 225 1 (Ord 𝐴 → (2o𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o𝐴 ≠ 2o)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  wne 2940  c0 4286  {cpr 4592  Ord word 6320  1oc1o 8409  2oc2o 8410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-tr 5227  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-ord 6324  df-on 6325  df-suc 6327  df-1o 8416  df-2o 8417
This theorem is referenced by:  2ellim  8449
  Copyright terms: Public domain W3C validator