Proof of Theorem ord2eln012
Step | Hyp | Ref
| Expression |
1 | | ne0i 4268 |
. . 3
⊢
(2o ∈ 𝐴 → 𝐴 ≠ ∅) |
2 | | 2on0 8313 |
. . . . . 6
⊢
2o ≠ ∅ |
3 | | el1o 8325 |
. . . . . 6
⊢
(2o ∈ 1o ↔ 2o =
∅) |
4 | 2, 3 | nemtbir 3040 |
. . . . 5
⊢ ¬
2o ∈ 1o |
5 | | eleq2 2827 |
. . . . 5
⊢ (𝐴 = 1o →
(2o ∈ 𝐴
↔ 2o ∈ 1o)) |
6 | 4, 5 | mtbiri 327 |
. . . 4
⊢ (𝐴 = 1o → ¬
2o ∈ 𝐴) |
7 | 6 | necon2ai 2973 |
. . 3
⊢
(2o ∈ 𝐴 → 𝐴 ≠ 1o) |
8 | | 2on 8311 |
. . . . . 6
⊢
2o ∈ On |
9 | 8 | onirri 6373 |
. . . . 5
⊢ ¬
2o ∈ 2o |
10 | | eleq2 2827 |
. . . . 5
⊢ (𝐴 = 2o →
(2o ∈ 𝐴
↔ 2o ∈ 2o)) |
11 | 9, 10 | mtbiri 327 |
. . . 4
⊢ (𝐴 = 2o → ¬
2o ∈ 𝐴) |
12 | 11 | necon2ai 2973 |
. . 3
⊢
(2o ∈ 𝐴 → 𝐴 ≠ 2o) |
13 | 1, 7, 12 | 3jca 1127 |
. 2
⊢
(2o ∈ 𝐴 → (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o)) |
14 | | nesym 3000 |
. . . . . . 7
⊢ (𝐴 ≠ 2o ↔ ¬
2o = 𝐴) |
15 | 14 | biimpi 215 |
. . . . . 6
⊢ (𝐴 ≠ 2o → ¬
2o = 𝐴) |
16 | 15 | 3ad2ant3 1134 |
. . . . 5
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o) →
¬ 2o = 𝐴) |
17 | | simp1 1135 |
. . . . . . 7
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o) →
𝐴 ≠
∅) |
18 | | simp2 1136 |
. . . . . . 7
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o) →
𝐴 ≠
1o) |
19 | 17, 18 | nelprd 4592 |
. . . . . 6
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o) →
¬ 𝐴 ∈ {∅,
1o}) |
20 | | df2o3 8305 |
. . . . . . 7
⊢
2o = {∅, 1o} |
21 | 20 | eleq2i 2830 |
. . . . . 6
⊢ (𝐴 ∈ 2o ↔
𝐴 ∈ {∅,
1o}) |
22 | 19, 21 | sylnibr 329 |
. . . . 5
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o) →
¬ 𝐴 ∈
2o) |
23 | 16, 22 | jca 512 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o) →
(¬ 2o = 𝐴
∧ ¬ 𝐴 ∈
2o)) |
24 | | pm4.56 986 |
. . . 4
⊢ ((¬
2o = 𝐴 ∧
¬ 𝐴 ∈
2o) ↔ ¬ (2o = 𝐴 ∨ 𝐴 ∈ 2o)) |
25 | 23, 24 | sylib 217 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o) →
¬ (2o = 𝐴
∨ 𝐴 ∈
2o)) |
26 | 8 | onordi 6371 |
. . . 4
⊢ Ord
2o |
27 | | ordtri2 6301 |
. . . 4
⊢ ((Ord
2o ∧ Ord 𝐴)
→ (2o ∈ 𝐴 ↔ ¬ (2o = 𝐴 ∨ 𝐴 ∈ 2o))) |
28 | 26, 27 | mpan 687 |
. . 3
⊢ (Ord
𝐴 → (2o
∈ 𝐴 ↔ ¬
(2o = 𝐴 ∨
𝐴 ∈
2o))) |
29 | 25, 28 | syl5ibr 245 |
. 2
⊢ (Ord
𝐴 → ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o) →
2o ∈ 𝐴)) |
30 | 13, 29 | impbid2 225 |
1
⊢ (Ord
𝐴 → (2o
∈ 𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠
2o))) |