| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > logbmpt | Structured version Visualization version GIF version | ||
| Description: The general logarithm to a fixed base regarded as mapping. (Contributed by AV, 11-Jun-2020.) |
| Ref | Expression |
|---|---|
| logbmpt | ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb ‘𝐵) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-logb 26703 | . . 3 ⊢ logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥))) | |
| 2 | ovexd 7387 | . . . 4 ⊢ (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) ∧ (𝑥 ∈ (ℂ ∖ {0, 1}) ∧ 𝑦 ∈ (ℂ ∖ {0}))) → ((log‘𝑦) / (log‘𝑥)) ∈ V) | |
| 3 | 2 | ralrimivva 3176 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → ∀𝑥 ∈ (ℂ ∖ {0, 1})∀𝑦 ∈ (ℂ ∖ {0})((log‘𝑦) / (log‘𝑥)) ∈ V) |
| 4 | ax-1cn 11071 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 5 | ax-1ne0 11082 | . . . . . . 7 ⊢ 1 ≠ 0 | |
| 6 | elsng 4589 | . . . . . . . 8 ⊢ (1 ∈ ℂ → (1 ∈ {0} ↔ 1 = 0)) | |
| 7 | 4, 6 | ax-mp 5 | . . . . . . 7 ⊢ (1 ∈ {0} ↔ 1 = 0) |
| 8 | 5, 7 | nemtbir 3025 | . . . . . 6 ⊢ ¬ 1 ∈ {0} |
| 9 | eldif 3908 | . . . . . 6 ⊢ (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ ¬ 1 ∈ {0})) | |
| 10 | 4, 8, 9 | mpbir2an 711 | . . . . 5 ⊢ 1 ∈ (ℂ ∖ {0}) |
| 11 | 10 | ne0ii 4293 | . . . 4 ⊢ (ℂ ∖ {0}) ≠ ∅ |
| 12 | 11 | a1i 11 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (ℂ ∖ {0}) ≠ ∅) |
| 13 | cnex 11094 | . . . . 5 ⊢ ℂ ∈ V | |
| 14 | 13 | difexi 5270 | . . . 4 ⊢ (ℂ ∖ {0}) ∈ V |
| 15 | 14 | a1i 11 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (ℂ ∖ {0}) ∈ V) |
| 16 | eldifpr 4610 | . . . 4 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) | |
| 17 | 16 | biimpri 228 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → 𝐵 ∈ (ℂ ∖ {0, 1})) |
| 18 | 1, 3, 12, 15, 17 | mpocurryvald 8206 | . 2 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb ‘𝐵) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ⦋𝐵 / 𝑥⦌((log‘𝑦) / (log‘𝑥)))) |
| 19 | csbov2g 7400 | . . . . 5 ⊢ (𝐵 ∈ ℂ → ⦋𝐵 / 𝑥⦌((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / ⦋𝐵 / 𝑥⦌(log‘𝑥))) | |
| 20 | csbfv 6875 | . . . . . . 7 ⊢ ⦋𝐵 / 𝑥⦌(log‘𝑥) = (log‘𝐵) | |
| 21 | 20 | a1i 11 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → ⦋𝐵 / 𝑥⦌(log‘𝑥) = (log‘𝐵)) |
| 22 | 21 | oveq2d 7368 | . . . . 5 ⊢ (𝐵 ∈ ℂ → ((log‘𝑦) / ⦋𝐵 / 𝑥⦌(log‘𝑥)) = ((log‘𝑦) / (log‘𝐵))) |
| 23 | 19, 22 | eqtrd 2768 | . . . 4 ⊢ (𝐵 ∈ ℂ → ⦋𝐵 / 𝑥⦌((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / (log‘𝐵))) |
| 24 | 23 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → ⦋𝐵 / 𝑥⦌((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / (log‘𝐵))) |
| 25 | 24 | mpteq2dv 5187 | . 2 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (𝑦 ∈ (ℂ ∖ {0}) ↦ ⦋𝐵 / 𝑥⦌((log‘𝑦) / (log‘𝑥))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝐵)))) |
| 26 | 18, 25 | eqtrd 2768 | 1 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb ‘𝐵) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 ⦋csb 3846 ∖ cdif 3895 ∅c0 4282 {csn 4575 {cpr 4577 ↦ cmpt 5174 ‘cfv 6486 (class class class)co 7352 curry ccur 8201 ℂcc 11011 0cc0 11013 1c1 11014 / cdiv 11781 logclog 26491 logb clogb 26702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-1cn 11071 ax-1ne0 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-cur 8203 df-logb 26703 |
| This theorem is referenced by: logbf 26727 relogbf 26729 logblog 26730 |
| Copyright terms: Public domain | W3C validator |