MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logbmpt Structured version   Visualization version   GIF version

Theorem logbmpt 25366
Description: The general logarithm to a fixed base regarded as mapping. (Contributed by AV, 11-Jun-2020.)
Assertion
Ref Expression
logbmpt ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb𝐵) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝐵))))
Distinct variable group:   𝑦,𝐵

Proof of Theorem logbmpt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-logb 25343 . . 3 logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥)))
2 ovexd 7191 . . . 4 (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) ∧ (𝑥 ∈ (ℂ ∖ {0, 1}) ∧ 𝑦 ∈ (ℂ ∖ {0}))) → ((log‘𝑦) / (log‘𝑥)) ∈ V)
32ralrimivva 3191 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → ∀𝑥 ∈ (ℂ ∖ {0, 1})∀𝑦 ∈ (ℂ ∖ {0})((log‘𝑦) / (log‘𝑥)) ∈ V)
4 ax-1cn 10595 . . . . . 6 1 ∈ ℂ
5 ax-1ne0 10606 . . . . . . 7 1 ≠ 0
6 elsng 4581 . . . . . . . 8 (1 ∈ ℂ → (1 ∈ {0} ↔ 1 = 0))
74, 6ax-mp 5 . . . . . . 7 (1 ∈ {0} ↔ 1 = 0)
85, 7nemtbir 3112 . . . . . 6 ¬ 1 ∈ {0}
9 eldif 3946 . . . . . 6 (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ ¬ 1 ∈ {0}))
104, 8, 9mpbir2an 709 . . . . 5 1 ∈ (ℂ ∖ {0})
1110ne0ii 4303 . . . 4 (ℂ ∖ {0}) ≠ ∅
1211a1i 11 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (ℂ ∖ {0}) ≠ ∅)
13 cnex 10618 . . . . 5 ℂ ∈ V
1413difexi 5232 . . . 4 (ℂ ∖ {0}) ∈ V
1514a1i 11 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (ℂ ∖ {0}) ∈ V)
16 eldifpr 4597 . . . 4 (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
1716biimpri 230 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → 𝐵 ∈ (ℂ ∖ {0, 1}))
181, 3, 12, 15, 17mpocurryvald 7936 . 2 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb𝐵) = (𝑦 ∈ (ℂ ∖ {0}) ↦ 𝐵 / 𝑥((log‘𝑦) / (log‘𝑥))))
19 csbov2g 7202 . . . . 5 (𝐵 ∈ ℂ → 𝐵 / 𝑥((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / 𝐵 / 𝑥(log‘𝑥)))
20 csbfv 6715 . . . . . . 7 𝐵 / 𝑥(log‘𝑥) = (log‘𝐵)
2120a1i 11 . . . . . 6 (𝐵 ∈ ℂ → 𝐵 / 𝑥(log‘𝑥) = (log‘𝐵))
2221oveq2d 7172 . . . . 5 (𝐵 ∈ ℂ → ((log‘𝑦) / 𝐵 / 𝑥(log‘𝑥)) = ((log‘𝑦) / (log‘𝐵)))
2319, 22eqtrd 2856 . . . 4 (𝐵 ∈ ℂ → 𝐵 / 𝑥((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / (log‘𝐵)))
24233ad2ant1 1129 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → 𝐵 / 𝑥((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / (log‘𝐵)))
2524mpteq2dv 5162 . 2 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (𝑦 ∈ (ℂ ∖ {0}) ↦ 𝐵 / 𝑥((log‘𝑦) / (log‘𝑥))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝐵))))
2618, 25eqtrd 2856 1 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb𝐵) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  Vcvv 3494  csb 3883  cdif 3933  c0 4291  {csn 4567  {cpr 4569  cmpt 5146  cfv 6355  (class class class)co 7156  curry ccur 7931  cc 10535  0cc0 10537  1c1 10538   / cdiv 11297  logclog 25138   logb clogb 25342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-1cn 10595  ax-1ne0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-cur 7933  df-logb 25343
This theorem is referenced by:  logbf  25367  relogbf  25369  logblog  25370
  Copyright terms: Public domain W3C validator