MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logbmpt Structured version   Visualization version   GIF version

Theorem logbmpt 25948
Description: The general logarithm to a fixed base regarded as mapping. (Contributed by AV, 11-Jun-2020.)
Assertion
Ref Expression
logbmpt ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb𝐵) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝐵))))
Distinct variable group:   𝑦,𝐵

Proof of Theorem logbmpt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-logb 25925 . . 3 logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥)))
2 ovexd 7302 . . . 4 (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) ∧ (𝑥 ∈ (ℂ ∖ {0, 1}) ∧ 𝑦 ∈ (ℂ ∖ {0}))) → ((log‘𝑦) / (log‘𝑥)) ∈ V)
32ralrimivva 3115 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → ∀𝑥 ∈ (ℂ ∖ {0, 1})∀𝑦 ∈ (ℂ ∖ {0})((log‘𝑦) / (log‘𝑥)) ∈ V)
4 ax-1cn 10939 . . . . . 6 1 ∈ ℂ
5 ax-1ne0 10950 . . . . . . 7 1 ≠ 0
6 elsng 4575 . . . . . . . 8 (1 ∈ ℂ → (1 ∈ {0} ↔ 1 = 0))
74, 6ax-mp 5 . . . . . . 7 (1 ∈ {0} ↔ 1 = 0)
85, 7nemtbir 3040 . . . . . 6 ¬ 1 ∈ {0}
9 eldif 3896 . . . . . 6 (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ ¬ 1 ∈ {0}))
104, 8, 9mpbir2an 708 . . . . 5 1 ∈ (ℂ ∖ {0})
1110ne0ii 4271 . . . 4 (ℂ ∖ {0}) ≠ ∅
1211a1i 11 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (ℂ ∖ {0}) ≠ ∅)
13 cnex 10962 . . . . 5 ℂ ∈ V
1413difexi 5250 . . . 4 (ℂ ∖ {0}) ∈ V
1514a1i 11 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (ℂ ∖ {0}) ∈ V)
16 eldifpr 4593 . . . 4 (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
1716biimpri 227 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → 𝐵 ∈ (ℂ ∖ {0, 1}))
181, 3, 12, 15, 17mpocurryvald 8073 . 2 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb𝐵) = (𝑦 ∈ (ℂ ∖ {0}) ↦ 𝐵 / 𝑥((log‘𝑦) / (log‘𝑥))))
19 csbov2g 7313 . . . . 5 (𝐵 ∈ ℂ → 𝐵 / 𝑥((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / 𝐵 / 𝑥(log‘𝑥)))
20 csbfv 6811 . . . . . . 7 𝐵 / 𝑥(log‘𝑥) = (log‘𝐵)
2120a1i 11 . . . . . 6 (𝐵 ∈ ℂ → 𝐵 / 𝑥(log‘𝑥) = (log‘𝐵))
2221oveq2d 7283 . . . . 5 (𝐵 ∈ ℂ → ((log‘𝑦) / 𝐵 / 𝑥(log‘𝑥)) = ((log‘𝑦) / (log‘𝐵)))
2319, 22eqtrd 2778 . . . 4 (𝐵 ∈ ℂ → 𝐵 / 𝑥((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / (log‘𝐵)))
24233ad2ant1 1132 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → 𝐵 / 𝑥((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / (log‘𝐵)))
2524mpteq2dv 5175 . 2 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (𝑦 ∈ (ℂ ∖ {0}) ↦ 𝐵 / 𝑥((log‘𝑦) / (log‘𝑥))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝐵))))
2618, 25eqtrd 2778 1 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb𝐵) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  Vcvv 3429  csb 3831  cdif 3883  c0 4256  {csn 4561  {cpr 4563  cmpt 5156  cfv 6426  (class class class)co 7267  curry ccur 8068  cc 10879  0cc0 10881  1c1 10882   / cdiv 11642  logclog 25720   logb clogb 25924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-1cn 10939  ax-1ne0 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-id 5484  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-ov 7270  df-oprab 7271  df-mpo 7272  df-1st 7820  df-2nd 7821  df-cur 8070  df-logb 25925
This theorem is referenced by:  logbf  25949  relogbf  25951  logblog  25952
  Copyright terms: Public domain W3C validator