![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > logbmpt | Structured version Visualization version GIF version |
Description: The general logarithm to a fixed base regarded as mapping. (Contributed by AV, 11-Jun-2020.) |
Ref | Expression |
---|---|
logbmpt | ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb ‘𝐵) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-logb 26822 | . . 3 ⊢ logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥))) | |
2 | ovexd 7465 | . . . 4 ⊢ (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) ∧ (𝑥 ∈ (ℂ ∖ {0, 1}) ∧ 𝑦 ∈ (ℂ ∖ {0}))) → ((log‘𝑦) / (log‘𝑥)) ∈ V) | |
3 | 2 | ralrimivva 3199 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → ∀𝑥 ∈ (ℂ ∖ {0, 1})∀𝑦 ∈ (ℂ ∖ {0})((log‘𝑦) / (log‘𝑥)) ∈ V) |
4 | ax-1cn 11210 | . . . . . 6 ⊢ 1 ∈ ℂ | |
5 | ax-1ne0 11221 | . . . . . . 7 ⊢ 1 ≠ 0 | |
6 | elsng 4644 | . . . . . . . 8 ⊢ (1 ∈ ℂ → (1 ∈ {0} ↔ 1 = 0)) | |
7 | 4, 6 | ax-mp 5 | . . . . . . 7 ⊢ (1 ∈ {0} ↔ 1 = 0) |
8 | 5, 7 | nemtbir 3035 | . . . . . 6 ⊢ ¬ 1 ∈ {0} |
9 | eldif 3972 | . . . . . 6 ⊢ (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ ¬ 1 ∈ {0})) | |
10 | 4, 8, 9 | mpbir2an 711 | . . . . 5 ⊢ 1 ∈ (ℂ ∖ {0}) |
11 | 10 | ne0ii 4349 | . . . 4 ⊢ (ℂ ∖ {0}) ≠ ∅ |
12 | 11 | a1i 11 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (ℂ ∖ {0}) ≠ ∅) |
13 | cnex 11233 | . . . . 5 ⊢ ℂ ∈ V | |
14 | 13 | difexi 5335 | . . . 4 ⊢ (ℂ ∖ {0}) ∈ V |
15 | 14 | a1i 11 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (ℂ ∖ {0}) ∈ V) |
16 | eldifpr 4662 | . . . 4 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) | |
17 | 16 | biimpri 228 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → 𝐵 ∈ (ℂ ∖ {0, 1})) |
18 | 1, 3, 12, 15, 17 | mpocurryvald 8293 | . 2 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb ‘𝐵) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ⦋𝐵 / 𝑥⦌((log‘𝑦) / (log‘𝑥)))) |
19 | csbov2g 7478 | . . . . 5 ⊢ (𝐵 ∈ ℂ → ⦋𝐵 / 𝑥⦌((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / ⦋𝐵 / 𝑥⦌(log‘𝑥))) | |
20 | csbfv 6956 | . . . . . . 7 ⊢ ⦋𝐵 / 𝑥⦌(log‘𝑥) = (log‘𝐵) | |
21 | 20 | a1i 11 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → ⦋𝐵 / 𝑥⦌(log‘𝑥) = (log‘𝐵)) |
22 | 21 | oveq2d 7446 | . . . . 5 ⊢ (𝐵 ∈ ℂ → ((log‘𝑦) / ⦋𝐵 / 𝑥⦌(log‘𝑥)) = ((log‘𝑦) / (log‘𝐵))) |
23 | 19, 22 | eqtrd 2774 | . . . 4 ⊢ (𝐵 ∈ ℂ → ⦋𝐵 / 𝑥⦌((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / (log‘𝐵))) |
24 | 23 | 3ad2ant1 1132 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → ⦋𝐵 / 𝑥⦌((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / (log‘𝐵))) |
25 | 24 | mpteq2dv 5249 | . 2 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (𝑦 ∈ (ℂ ∖ {0}) ↦ ⦋𝐵 / 𝑥⦌((log‘𝑦) / (log‘𝑥))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝐵)))) |
26 | 18, 25 | eqtrd 2774 | 1 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb ‘𝐵) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 Vcvv 3477 ⦋csb 3907 ∖ cdif 3959 ∅c0 4338 {csn 4630 {cpr 4632 ↦ cmpt 5230 ‘cfv 6562 (class class class)co 7430 curry ccur 8288 ℂcc 11150 0cc0 11152 1c1 11153 / cdiv 11917 logclog 26610 logb clogb 26821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-1cn 11210 ax-1ne0 11221 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-1st 8012 df-2nd 8013 df-cur 8290 df-logb 26822 |
This theorem is referenced by: logbf 26846 relogbf 26848 logblog 26849 |
Copyright terms: Public domain | W3C validator |