MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logbmpt Structured version   Visualization version   GIF version

Theorem logbmpt 26723
Description: The general logarithm to a fixed base regarded as mapping. (Contributed by AV, 11-Jun-2020.)
Assertion
Ref Expression
logbmpt ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb𝐵) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝐵))))
Distinct variable group:   𝑦,𝐵

Proof of Theorem logbmpt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-logb 26700 . . 3 logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥)))
2 ovexd 7381 . . . 4 (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) ∧ (𝑥 ∈ (ℂ ∖ {0, 1}) ∧ 𝑦 ∈ (ℂ ∖ {0}))) → ((log‘𝑦) / (log‘𝑥)) ∈ V)
32ralrimivva 3175 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → ∀𝑥 ∈ (ℂ ∖ {0, 1})∀𝑦 ∈ (ℂ ∖ {0})((log‘𝑦) / (log‘𝑥)) ∈ V)
4 ax-1cn 11061 . . . . . 6 1 ∈ ℂ
5 ax-1ne0 11072 . . . . . . 7 1 ≠ 0
6 elsng 4590 . . . . . . . 8 (1 ∈ ℂ → (1 ∈ {0} ↔ 1 = 0))
74, 6ax-mp 5 . . . . . . 7 (1 ∈ {0} ↔ 1 = 0)
85, 7nemtbir 3024 . . . . . 6 ¬ 1 ∈ {0}
9 eldif 3912 . . . . . 6 (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ ¬ 1 ∈ {0}))
104, 8, 9mpbir2an 711 . . . . 5 1 ∈ (ℂ ∖ {0})
1110ne0ii 4294 . . . 4 (ℂ ∖ {0}) ≠ ∅
1211a1i 11 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (ℂ ∖ {0}) ≠ ∅)
13 cnex 11084 . . . . 5 ℂ ∈ V
1413difexi 5268 . . . 4 (ℂ ∖ {0}) ∈ V
1514a1i 11 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (ℂ ∖ {0}) ∈ V)
16 eldifpr 4611 . . . 4 (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
1716biimpri 228 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → 𝐵 ∈ (ℂ ∖ {0, 1}))
181, 3, 12, 15, 17mpocurryvald 8200 . 2 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb𝐵) = (𝑦 ∈ (ℂ ∖ {0}) ↦ 𝐵 / 𝑥((log‘𝑦) / (log‘𝑥))))
19 csbov2g 7394 . . . . 5 (𝐵 ∈ ℂ → 𝐵 / 𝑥((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / 𝐵 / 𝑥(log‘𝑥)))
20 csbfv 6869 . . . . . . 7 𝐵 / 𝑥(log‘𝑥) = (log‘𝐵)
2120a1i 11 . . . . . 6 (𝐵 ∈ ℂ → 𝐵 / 𝑥(log‘𝑥) = (log‘𝐵))
2221oveq2d 7362 . . . . 5 (𝐵 ∈ ℂ → ((log‘𝑦) / 𝐵 / 𝑥(log‘𝑥)) = ((log‘𝑦) / (log‘𝐵)))
2319, 22eqtrd 2766 . . . 4 (𝐵 ∈ ℂ → 𝐵 / 𝑥((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / (log‘𝐵)))
24233ad2ant1 1133 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → 𝐵 / 𝑥((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / (log‘𝐵)))
2524mpteq2dv 5185 . 2 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (𝑦 ∈ (ℂ ∖ {0}) ↦ 𝐵 / 𝑥((log‘𝑦) / (log‘𝑥))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝐵))))
2618, 25eqtrd 2766 1 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb𝐵) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  csb 3850  cdif 3899  c0 4283  {csn 4576  {cpr 4578  cmpt 5172  cfv 6481  (class class class)co 7346  curry ccur 8195  cc 11001  0cc0 11003  1c1 11004   / cdiv 11771  logclog 26488   logb clogb 26699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-1cn 11061  ax-1ne0 11072
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-cur 8197  df-logb 26700
This theorem is referenced by:  logbf  26724  relogbf  26726  logblog  26727
  Copyright terms: Public domain W3C validator