![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > logbmpt | Structured version Visualization version GIF version |
Description: The general logarithm to a fixed base regarded as mapping. (Contributed by AV, 11-Jun-2020.) |
Ref | Expression |
---|---|
logbmpt | ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb ‘𝐵) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-logb 26826 | . . 3 ⊢ logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥))) | |
2 | ovexd 7483 | . . . 4 ⊢ (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) ∧ (𝑥 ∈ (ℂ ∖ {0, 1}) ∧ 𝑦 ∈ (ℂ ∖ {0}))) → ((log‘𝑦) / (log‘𝑥)) ∈ V) | |
3 | 2 | ralrimivva 3208 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → ∀𝑥 ∈ (ℂ ∖ {0, 1})∀𝑦 ∈ (ℂ ∖ {0})((log‘𝑦) / (log‘𝑥)) ∈ V) |
4 | ax-1cn 11242 | . . . . . 6 ⊢ 1 ∈ ℂ | |
5 | ax-1ne0 11253 | . . . . . . 7 ⊢ 1 ≠ 0 | |
6 | elsng 4662 | . . . . . . . 8 ⊢ (1 ∈ ℂ → (1 ∈ {0} ↔ 1 = 0)) | |
7 | 4, 6 | ax-mp 5 | . . . . . . 7 ⊢ (1 ∈ {0} ↔ 1 = 0) |
8 | 5, 7 | nemtbir 3044 | . . . . . 6 ⊢ ¬ 1 ∈ {0} |
9 | eldif 3986 | . . . . . 6 ⊢ (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ ¬ 1 ∈ {0})) | |
10 | 4, 8, 9 | mpbir2an 710 | . . . . 5 ⊢ 1 ∈ (ℂ ∖ {0}) |
11 | 10 | ne0ii 4367 | . . . 4 ⊢ (ℂ ∖ {0}) ≠ ∅ |
12 | 11 | a1i 11 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (ℂ ∖ {0}) ≠ ∅) |
13 | cnex 11265 | . . . . 5 ⊢ ℂ ∈ V | |
14 | 13 | difexi 5348 | . . . 4 ⊢ (ℂ ∖ {0}) ∈ V |
15 | 14 | a1i 11 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (ℂ ∖ {0}) ∈ V) |
16 | eldifpr 4680 | . . . 4 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) | |
17 | 16 | biimpri 228 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → 𝐵 ∈ (ℂ ∖ {0, 1})) |
18 | 1, 3, 12, 15, 17 | mpocurryvald 8311 | . 2 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb ‘𝐵) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ⦋𝐵 / 𝑥⦌((log‘𝑦) / (log‘𝑥)))) |
19 | csbov2g 7496 | . . . . 5 ⊢ (𝐵 ∈ ℂ → ⦋𝐵 / 𝑥⦌((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / ⦋𝐵 / 𝑥⦌(log‘𝑥))) | |
20 | csbfv 6970 | . . . . . . 7 ⊢ ⦋𝐵 / 𝑥⦌(log‘𝑥) = (log‘𝐵) | |
21 | 20 | a1i 11 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → ⦋𝐵 / 𝑥⦌(log‘𝑥) = (log‘𝐵)) |
22 | 21 | oveq2d 7464 | . . . . 5 ⊢ (𝐵 ∈ ℂ → ((log‘𝑦) / ⦋𝐵 / 𝑥⦌(log‘𝑥)) = ((log‘𝑦) / (log‘𝐵))) |
23 | 19, 22 | eqtrd 2780 | . . . 4 ⊢ (𝐵 ∈ ℂ → ⦋𝐵 / 𝑥⦌((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / (log‘𝐵))) |
24 | 23 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → ⦋𝐵 / 𝑥⦌((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / (log‘𝐵))) |
25 | 24 | mpteq2dv 5268 | . 2 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (𝑦 ∈ (ℂ ∖ {0}) ↦ ⦋𝐵 / 𝑥⦌((log‘𝑦) / (log‘𝑥))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝐵)))) |
26 | 18, 25 | eqtrd 2780 | 1 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb ‘𝐵) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ⦋csb 3921 ∖ cdif 3973 ∅c0 4352 {csn 4648 {cpr 4650 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 curry ccur 8306 ℂcc 11182 0cc0 11184 1c1 11185 / cdiv 11947 logclog 26614 logb clogb 26825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-1ne0 11253 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-cur 8308 df-logb 26826 |
This theorem is referenced by: logbf 26850 relogbf 26852 logblog 26853 |
Copyright terms: Public domain | W3C validator |