![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > logbmpt | Structured version Visualization version GIF version |
Description: The general logarithm to a fixed base regarded as mapping. (Contributed by AV, 11-Jun-2020.) |
Ref | Expression |
---|---|
logbmpt | ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb ‘𝐵) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-logb 26506 | . . 3 ⊢ logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥))) | |
2 | ovexd 7446 | . . . 4 ⊢ (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) ∧ (𝑥 ∈ (ℂ ∖ {0, 1}) ∧ 𝑦 ∈ (ℂ ∖ {0}))) → ((log‘𝑦) / (log‘𝑥)) ∈ V) | |
3 | 2 | ralrimivva 3198 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → ∀𝑥 ∈ (ℂ ∖ {0, 1})∀𝑦 ∈ (ℂ ∖ {0})((log‘𝑦) / (log‘𝑥)) ∈ V) |
4 | ax-1cn 11170 | . . . . . 6 ⊢ 1 ∈ ℂ | |
5 | ax-1ne0 11181 | . . . . . . 7 ⊢ 1 ≠ 0 | |
6 | elsng 4641 | . . . . . . . 8 ⊢ (1 ∈ ℂ → (1 ∈ {0} ↔ 1 = 0)) | |
7 | 4, 6 | ax-mp 5 | . . . . . . 7 ⊢ (1 ∈ {0} ↔ 1 = 0) |
8 | 5, 7 | nemtbir 3036 | . . . . . 6 ⊢ ¬ 1 ∈ {0} |
9 | eldif 3957 | . . . . . 6 ⊢ (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ ¬ 1 ∈ {0})) | |
10 | 4, 8, 9 | mpbir2an 707 | . . . . 5 ⊢ 1 ∈ (ℂ ∖ {0}) |
11 | 10 | ne0ii 4336 | . . . 4 ⊢ (ℂ ∖ {0}) ≠ ∅ |
12 | 11 | a1i 11 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (ℂ ∖ {0}) ≠ ∅) |
13 | cnex 11193 | . . . . 5 ⊢ ℂ ∈ V | |
14 | 13 | difexi 5327 | . . . 4 ⊢ (ℂ ∖ {0}) ∈ V |
15 | 14 | a1i 11 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (ℂ ∖ {0}) ∈ V) |
16 | eldifpr 4659 | . . . 4 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) | |
17 | 16 | biimpri 227 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → 𝐵 ∈ (ℂ ∖ {0, 1})) |
18 | 1, 3, 12, 15, 17 | mpocurryvald 8257 | . 2 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb ‘𝐵) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ⦋𝐵 / 𝑥⦌((log‘𝑦) / (log‘𝑥)))) |
19 | csbov2g 7457 | . . . . 5 ⊢ (𝐵 ∈ ℂ → ⦋𝐵 / 𝑥⦌((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / ⦋𝐵 / 𝑥⦌(log‘𝑥))) | |
20 | csbfv 6940 | . . . . . . 7 ⊢ ⦋𝐵 / 𝑥⦌(log‘𝑥) = (log‘𝐵) | |
21 | 20 | a1i 11 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → ⦋𝐵 / 𝑥⦌(log‘𝑥) = (log‘𝐵)) |
22 | 21 | oveq2d 7427 | . . . . 5 ⊢ (𝐵 ∈ ℂ → ((log‘𝑦) / ⦋𝐵 / 𝑥⦌(log‘𝑥)) = ((log‘𝑦) / (log‘𝐵))) |
23 | 19, 22 | eqtrd 2770 | . . . 4 ⊢ (𝐵 ∈ ℂ → ⦋𝐵 / 𝑥⦌((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / (log‘𝐵))) |
24 | 23 | 3ad2ant1 1131 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → ⦋𝐵 / 𝑥⦌((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / (log‘𝐵))) |
25 | 24 | mpteq2dv 5249 | . 2 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (𝑦 ∈ (ℂ ∖ {0}) ↦ ⦋𝐵 / 𝑥⦌((log‘𝑦) / (log‘𝑥))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝐵)))) |
26 | 18, 25 | eqtrd 2770 | 1 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb ‘𝐵) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ≠ wne 2938 Vcvv 3472 ⦋csb 3892 ∖ cdif 3944 ∅c0 4321 {csn 4627 {cpr 4629 ↦ cmpt 5230 ‘cfv 6542 (class class class)co 7411 curry ccur 8252 ℂcc 11110 0cc0 11112 1c1 11113 / cdiv 11875 logclog 26299 logb clogb 26505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-1cn 11170 ax-1ne0 11181 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-cur 8254 df-logb 26506 |
This theorem is referenced by: logbf 26530 relogbf 26532 logblog 26533 |
Copyright terms: Public domain | W3C validator |